第二章 静电场分析
- 格式:ppt
- 大小:2.62 MB
- 文档页数:50
第二章静电场与导体教学目的要求:1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。
2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。
3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。
4、深刻理解电场能量的概念,会计算电场能。
教学重点:1、静电场中的导体2、电容和电容器教学难点:1、静电场的唯一定理§2.1 静电场中的导体§2.2 电容和电容器§2.3 静电场的能量§2.1 静电场中的导体1、导体的特征功函数(1)金属导体的特征金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。
①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。
②自由电子在电场作用下将作定向运动,从而形成金属中的电流。
③自由电子的平均速率远大与定向运动速率。
(2)功函数金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。
一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。
2、导体的静电平衡条件(1)什么是静电感应?当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。
(2)静电平衡状态当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。
(3)静电平衡条件所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。
静电平衡时:①导体是等势体。
②导体外表面附近的电场强度与导体表面垂直。
第2章 静电场(二)2.1 静电场的唯一性定理及其应用静电场中的待求量:电场强度E ,静电力F 。
静电场求解方法:(1) 直接由电场强度公式计算;(2) 求解泊松方程(或拉普拉斯方程)→电位→电场强度E 。
E ⇒-∇=⇒-=∇ϕϕερϕE 2唯一性定理的重要意义:确定静电场解的唯一性。
2.1.1 唯一性定理静电场中,满足给定边界条件的电位微分方程(泊松方程或拉普拉斯方程)的解是唯一的。
2.1.2 导体边界时,边界条件的分类(1) 自然边界条件:有限值参考点=∞→ϕr r lim(相当于指定电位参考点的值)(2) 边界衔接条件:σϕεϕεϕϕ=∂∂-∂∂=nn 221121(该条件主要用于求解区域内部)(3) 导体表面边界条件(a) 给定各导体表面的电位值。
(第一类边界条件) (b) 导体表面为等位面,给定各导体表面的电荷量。
该条件相当于给定了第二类边界条件。
在求解过程中,可通过积分运算确定任意常数。
S n ∂∂-=ϕεσ,(注:n 的正方向由介质导向导体内部)q dS r S=∂∂-⎰)(11ϕε (c) 给定某些导体表面的电位值及其它每一导体表面的电荷量。
相当于给定了第三类边界条件。
思考?为什么条件(a),或(c)可唯一确定电位函数,而条件(b)确定的电位函数相关任一常数? 答:边值问题的求解所需的边界条件有:自然边界条件、衔接条件和区域边界条件。
条件(a),(c)中,同时给定了边界条件和自然边界条件,与条件(2)结合,可唯一地确定场解;而条件(c)没有指定自然边界条件(电位参考点的值),因而,其解相差一个任意常数。
2.1.3 静电场唯一性定理的意义唯一性定理为静电场问题的多种解法(试探解、数值解、解析解等)提供了思路及理论根据2.1.4 等位面法1 等位面法:静电场中,若沿场的等位面的任一侧,填充导电媒质,则等位面另侧的电场保持不变。
2 等位面法成立的理论解释:等位面内填充导电媒质后,边界条件沿发生变化:(1)边界k 的等位性不变;(2)边界k 内的总电荷量不变。
第二章 静电场2.1 静电场的基本概念基本内容和要求:(1)电荷守恒定律;库仑定律。
(2)电场强度的定义;场强迭加原理。
(3)点电荷系、简单带电体的场强计算。
一、 电荷及其量子化 电荷守恒定律二、库仑定律02211221r rq q k F F r r r =−=这里比例系数229/C m N 1000.9⋅×=k041πε=k22120m /N C 1085.8⋅×=−ε 真空介电常数注意:库仑定律只适用于点电荷!三、电场 电场强度1 试验电荷:电量足够小的点电荷注:(1)电场强度反映电场固有性质。
(2)电场强度的单位:N/C 或V/m3 E q F r r 0=四、场强计算 1 点电荷的场强=02004r rqq F r r πε这里是场源到场点.....P .的单位矢量.....r r 注:点电荷的电场是球对称场。
2 场强迭加原理⇒=∑i F F r r ∑=i E E r r这里i F r是第i 个电荷单独存在时对试验电荷的作用力;i E r是第i 个电荷单独存在时在场点P 产生的场强。
这里是到场点P 的单位矢量。
i r ri q 4 连续带电体的场强体分布:dV dq e ρ= (e ρ电荷体密度) 面分布:dV dq e σ= (e σ电荷面密度) 线分布:dV dq e λ= (e λ电荷线密度)例1 电偶极子在轴线上的场强。
θcos 22++−+−==+=E E E E E x x x x 0=+=−+y y y E E E)4(4220ly q E +=+πε,2/122)4(2cos l y l +=θ所以 2/3220)4(4l y qlE +=πε,沿轴负向x 讨论: 若,则y l <<304yql E πε≈定义电偶极距 l q p r r=,304yp E πεr r −≈例2 均匀带电细棒的场强分布。
204rdydE πελ= θθπsin )sin(dE dE dE x =−= θθπcos )cos(dE dE dE y =−−=因为y r a r =−=−)cos()sin(θπθπ 所以θθctg sin /a y a r −==即,因此 θθd a dy 2csc =ad dE 04πεθλ=最后得到)cos (cos 4sin 4210021θθπελθθπελθθ−===∫∫ad a dE E x x)sin (sin 4cos 4120021θθπελθθπελθθ−===∫∫ad a dE E y x 讨论:(1)P 点在细棒的中垂面上,21θπθ−=所以 10cos 2,0θπελaE E x y == (2)无限长的均匀带电细棒,πθθ==21,0,所以 0=y E(3)P 点在细棒的延长线上。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷位于q 1及q 2的连线上时,系统处于平衡状态,试求的大小及位置。
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。