取水泵房设计
- 格式:doc
- 大小:135.00 KB
- 文档页数:12
取水泵站设计计算书一、流量确定考虑到输水管漏渗和净化站本身用水,取自用水系数α=1.5,则近期设计流量:Q=1.05×100000÷3600÷24=1.215 m³/s远期设计流量:Q=1.05×1.5×100000÷3600÷24=1.823 m³/s二、设计扬程(1)水泵扬程:H=HST+Σh式中HST 为水泵静扬程.Σh 包括压水管水头损失、吸水管路水头损失和泵站内部水头损失采用灵菱型式取水头部。
在最不利情况下的水头损失,即一条虹吸自流管检修时要求另一条自流管通过75%最大设计流量,取水头部到吸水间的全部水头损失为1 米,则吸水间最高水面标高为4.36-1=39.36 米,最低水位标高为32.26-1=31.26 米。
正常情况时,Q=1.215/2=0.608 m³/s,一般不会淤泥,所以设计最小静扬程:HST=42.50-39.36=3.14 m设计最大静扬程:HST=42.50-31.26=11.24 m(2)输水管中的水头损失∑h设采用两条φ900 铸铁管,由徽城给水工程总平面图可知,泵站到净水输水管干线全长1000m ,当一条输水管检修时,另一条输水管应通过75% 设计流量,即:Q=0.75×1.823=1.367 m³ /s,查水力计算表得管内流速v=2.16 m/s, 1000i=5.7m ,所以∑h=1.1×5.7×1000/1000=6.27m (式中1.1 系包括局部水头损失而加大的系数)。
(3)泵站内管路中的水头损失hp其值粗估为2 m(4)安全工作水头hp其值粗估为2 m综上可知,则水泵的扬程为: 设计高水位时:Hmax=11.24+1+6.27+2+2=21.51 m设计低水位时:Hmin=3.14+1+6.27+2+2=13.41 m三、机组选型及方案比较:水泵选型有以下二种方案:方案一: 一台 20sh-19 型水泵(Q=450~650 l/s,H=15~27m, N=148~137KW),近期4 台,3 台工作,一台备用,远期增加一台,4 台工作,一台备用。
取水泵站工程设计方案一、前言水是生命之源,对于人类来说,水的重要性不言而喻。
然而,在许多地区,水资源的获取并不容易,因此需要采取一些措施来保证水资源的供应。
取水泵站就是为了解决这一问题而设计建造的设施之一。
本文将针对取水泵站工程设计方案进行详细阐述,以期为相关工程实施提供参考和指导。
二、设计需求分析1. 环境条件:取水泵站可能会建设在河流、湖泊、水库等水体附近,因此需要考虑相关环境条件对工程建设的影响,包括气候、地质、水文等因素。
2. 供水需求:根据周边的生活、农业和工业用水需求,确定取水泵站的供水能力和运行时间,并考虑未来的供水扩展规划。
3. 设备选型:根据供水需求和环境条件,选择合适的水泵、管道、阀门等设备,并确保其安全可靠、高效节能。
4. 运行维护:考虑取水泵站的运行维护便捷性和安全性,合理布局设备、通道和维修设施。
5. 泵站建筑:对泵站建筑的设计,要提供充足的防洪措施,并考虑建筑的美观性和可维护性。
三、取水泵站工程设计方案1. 基本构成取水泵站主要由进水口、泵房、出水口、输水管道等组成。
进水口的位置应尽可能选择在水体的最深处,以确保水的质量和供水量;泵房内设备包括水泵、输水管道和控制系统;出水口要设计成能够方便水流出。
2. 设备选型(1)水泵:根据供水需求和水源特点选择合适的水泵,如离心泵、深井泵等,并安装多台泵实现备用和联合运行,以确保供水的稳定性和可靠性。
(2)输水管道:根据水泵站的位置、供水需求和地形地貌等因素选择合适的输水管道,使用耐腐蚀、抗压力差的管材,并采用合理的布局和降噪措施。
(3)控制系统:采用先进的自动控制系统,实现水泵的自动启停、负荷调节和故障报警等功能,提高运行效率和安全性。
3. 运行维护(1)设备布置:泵房内设备应合理布置,留有足够的通道方便维护人员的操作。
同时,根据设备的特点和安全性要求,设置照明、通风、通道等设施。
(2)安全防护:设备和管道的安全防护措施应考虑到设备运行、维护时的安全性,设置警示标志、护栏和紧急停机装置等配套设施。
一、设计说明书<一>工程概述(一) 工程概括市因发展需要,原有的第一水厂已不能满足居民的用水要求,因此,规划设计日产水能力为9.5万m3的第二水厂,给水管线设计已经完成,现需设计该水厂取水泵房。
(二) 设计资料市新建第二水厂工程近期设计水量为85000m3/d,要求远期发展到95000m3/d,采用固定取水泵房用两条直径为800mm的自流管从江中取水。
水源洪水位标高为38.00m,枯水位标高为24.60m。
净水构筑物前配水井的水面标高为57.20m,自流取水管全长280m,泵站到净化场的输水干管全长1500m。
自用水系数α=1.05~1.1,取水头部到泵房吸水间的全部水头损失为10kPa,泵房底板高度取1~1.5m。
二、设计概要取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。
取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。
其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。
本次课程设计仅以取水泵房为例进行设计,设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。
取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。
设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。
在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。
在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。
此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算。
(一)取水泵站工艺设计设计资料:某厂新建水源工程近期设计水量80000,要求远期发展到120000,采用固定是取水泵房用两条直径为800mm虹吸自流管从江中取水。
水源洪水位标高为26.14m(1%频率),枯水位标高8.29m(97%频率)。
净水站反应沉淀池前配水井的水面标高为33.14m。
虹吸自流管全长为85.5 m(其中在枯水位以上部分长55 m)。
泵站至净水站的输水干管全长为700m,见取水泵站枢纽布置图。
其中通过取水部分的计算已知在最不利情况下(即一条虹吸自流管检修,要求另一条虹吸自流管通过75%最大设计流量是),从取水头部到泵房吸水间的全部水头损失为1.2 m。
试进行泵站工艺设计。
设计要求:1.完成设计计算书一份,书写整齐并装订成册。
2.绘制泵房平面图、剖面图、立面图。
文字书写一律采用仿宋字,严格按制图标准作图。
一、设计流量Q和扬程H(1)考虑到输水干管漏损和净化厂本身用水,取水自用系数α=1.05 所以近期设计流量为 Q=1.05×80000/24=3500m3/h= 0.97222m3/s远期设计流量为 Q=1.05×120000/24=5250m3/h= 1.45833m3/s(2)设计扬程H①泵所需静扬程H ST通过取水部分的计算已知在最不利情况下(即一条自流管道检修,另一条自流管道通过75%的设计流量时),从取水头部到吸水间的全部水头损失为8.29m-7.09m=1.2m。
则吸水间中最高水面标高为26.14m-1.2m=24.94m,最低水面标高为8.29m-1.2m=7.09m.所以泵所需静扬程H ST 为:洪水位时,H ST=33.14-24.94=8.2m枯水位时,H ST=33.14-7.09=26.05m②输水干管中的水头损失∑h设采用两条DN800的铸铁管并联作为原水输水干管,当一条输水管检修,另一条输水管应通过75%的设计流量(按远期考虑),即Q=0.75×5250=3937.5m3/h=1.09375m3/s,查水力计算表5得管内流速v=1.45m/s, i=0.00302所以输水管路水头损失:=1.1×0.00302×700=2.3254m(式中1.1是包括局部损失而加大的系数)③泵站内管路中的水头损失∑h粗估2m,安全水头2m,则泵设计扬程为:枯水位时:H max=26.05+2.3254+2+2=32.3754m洪水位时:H min=8.2+2.3254+2+2=14.5254m二、初选泵和电机由近期和远期的设计流量以及泵的设计扬程选择合适的泵故近期选择1台800S32型泵(Q=4698~6462 m3/h, H=25.4~35m,轴功率N=556~575kW,转数n=730r/min,),1台工作,1台备用。
设计供水水量Q=4000m3/d自由水系数 1.05设计规模Q=4200m3/d175m3/h一取水泵房计算1设计扬程取水泵房输水至净水厂时的水泵扬程H为H=H1+H2+h1+h2H1-水源最低水位与水泵基准面的几何高度mH2-水泵基准面与净水构筑物的几何高度mh1-吸水管路水头损失mh2-输水管路水头损失m富裕水头1~2m水源最低水位:4586.5m水泵基准面高度:4586.5m净水构筑物高度:4621.3mH1=0mH2=34.8m2吸水管路水头损失单管道流量Q=87.5m3/h吸水管径d200mm流速v=0.77m/s吸水管路长度L= 4.5m1000i 5.92沿程水头损失 h沿= 0.02664m局部水头损失最不利管段主要配件如下:配件数量局部阻力系数总系数流速(m/s)DN125-200异径管10.170.17 1.98DN200碟阀10.240.240.77DN200伸缩节10.210.210.77总和h1=h沿+h局=3压水管路水头损失单管道流量Q=87.5m3/h压水管总管径d300mm流速v=0.69m/s压水总管长度L=800m1000i 2.7压水管管径d200mm流速v=0.77m/s压水总管长度L=6m1000i 5.92沿程水头损失 h沿= 2.20m局部水头损失最不利管段主要配件如下:配件数量局部阻力系数总系数流速(m/s)DN125-200异径管10.170.17 1.98DN200碟阀20.240.480.77DN200伸缩节10.210.210.77总和H压=h沿+h局=h2=h吸+h压=取水头部水头富余水头故水泵总扬程H=H=H1+H2+h1+h2+富余水头=取2选泵本工程取水泵房选用3台(2用1备)单台水泵流量Q=87.5m3/h扬程H=42m效率η=0.6轴功率N=ρgQH/η=16.673611KW局部阻力(m)0.030.010.010.050.07m局部阻力(m)0.030.010.010.062.25m2.33m2.00m2m41.20m42.00m。
引水管及泵房施工方案一、工程概况取水泵房按2.0万m3/d规模一次建成,设备按1.0万m3/d规模安装.取水泵房内径为11m,内设三台泵位,本次设计安装两台水泵,一用一备,单泵Q=276—461—581m3/h,H=40-36-29m,P=75Kw,NPSH=3.2m。
取水泵房下部为钢筋混凝土,上部为框架结构,占地面积约为116.90m2,建筑面积约116.90m2,下部高度为8。
4m,上部高度为5。
62m。
设计工程使用年限为50年,建筑安全等级二级,耐火等级二级,屋面防水等级为Ⅱ级,抗震设防烈度7度,设防类别为重点设防。
沉井封底为C25混凝土,井筒及底板均为C30钢筋混凝土结构,抗渗等级为S6。
8.4m以下所有结构构件的表面(壁板内外侧、底板顶面、走道板上下面)均采用1:2防水砂浆抹面;8.4m以上为框架结构,框架填充墙采用250mm加气混凝土块,M7.5混合砂浆砌筑。
屋面为有组织排水,天沟纵向排水坡度为1%,在屋面泛水,雨水口及管道穿通处,均应加铺一道防水材料,凡檐口处、雨篷及女儿墙压顶处、窗顶处,必须认真做好泛水滴水处理。
排雨水管采用Φ100UPVC。
外墙四周均为800mm宽混凝土散水,坡度4%。
二、水文地质情况施工处于降雨不稳定阶段,目前水位17.2m,设计最高水位18.2m,水库为备用水源,不能放水施工;取水泵房下部钢筋混凝土只能在水下施工,根据工程地质勘察报告ZK14钻孔情况,①粉砂:褐黄色、褐红色,顶部夹有少量植物根系,以石英质粉粒、细粒为主。
为松散岩类孔隙潜水,富水性和透水性较好,属强透水层,地下水主要接受大气降水和侧向补给影响,地下水位年变幅约1.5m. 三、工程特点、对策与措施本工程施工的特点主要是:一该沉井结构较深,直径较大,采取围堰、降水井降水和周边对称挖土控制,确保平稳下沉。
二是本工程各个专业多,施工组织要求高,必须做好总体部署和施工协调,做到有序施工,衔接合理,确保总工期如期完成。
二级泵站流量和扬程的设计一、二级泵站供水曲线二级泵站的设计供水曲线是根据徽城地区最高日用水量变化曲线拟定。
具体要求如下:A:泵站分级不应太多,一般分为两级或三级,高峰时分一级,低峰时分一级。
分级太多不便于水泵机组的运行管理;B:泵站各级供水量尽量接近用水量,以减少水塔的调节容积;C:分级供水时,应注意每级能否选到合适的水泵,以及水泵机组的合理搭配,并尽可能满足目前和今后一段时间内用水量增长的需要;D:必须使泵站24小时供水量之和与最高时用水量相等。
现在根据该地区最高日用水量变化数据绘制用水量变化曲线,从而确定二级泵站采用分级供水,级数为两级。
该地区最高日用水量近期为7万吨∕日二、二级泵站压水管径及扬程的设计输水管径应按最高时城市中最大日平均小时的水量设计流量来确定。
1.经济流速:选定流速时,应考虑技术和经济两方面的要求。
从技术上考虑,为了防止输水管因水锤现象而出现事故,最大设计流速不应超过2.5~3.5m/s;输送原水时,为避免水中杂质在管内沉积,最低流速不得小于0.6m/s。
从经济上考虑,流量一定时管径与流速的平方成反比。
如果流速取得小,管径增大,相应的造价增加。
可是管径大些。
则管段的水头损失减小,水泵所需的扬程降低,日常电费可以节省。
相反,流速取得大些,管径虽然小,造价有所下降,但因水头损失增大,所需扬程必须提高,所需电费势必增加。
因此,一般按一定年限t年内(称为投资偿还期)造价和年经营管理费用(主要是电费)为最经济的流速(称为经济流速)来确定管径。
依据《给排水设计手册》二级为6点至21点,供水量为4.97%,根据泵站二级供水计算流量: Q2=70000×4.97%/3.6=966.39(L/s)2. 二级泵站扬程设计净水厂设计资料:净水厂内沉淀池进水口设计水位42.50m,清水池最高水位40.3m,清水池最低水位38.2m.。
输水管网资料:净水厂至水塔输水管道长度为2500m。
出水塔最高水位为68.3m,水塔最低水位为65.8m。
高层建筑地下消防水池及水泵房设计高层建筑地下消防水池及水泵房设计本文就高层建筑地下消防水池及水泵房设计等问题进行了简要阐述和分析。
1.前言随着当今社会的经济飞速发展,高层建筑、超高层建筑越来越多。
高层建筑中工作、居住人员集中,一旦发生火灾,易造成重大人员伤亡及巨大财产损失,因此,高层建筑消防设施建设已成为当今高层建筑中的一个重要问题,而消防泵房是整个消防系统的核心,是整个建筑消防设施中最重要的动力源。
因此,本文就高层建筑给水排水栖消防水池泵房设计进行握阐述和分析。
2.消防憎水池消防水池是储言存消防用水的构筑物,锡是市政给水管网的一种反重要补充手段。
当室外屋给水管网能保证室外消勇防用水量时,消防水池掀的有效容量应满足在火箔灾延续时间内室内消防灌用水量的要求。
当室外撕给水管网不能保证室外架消防用水量时,消防水宣池的有效容量应满足在祈火灾延续时间内室内消缴防用水量与室外消防用歹水量不足部分之和的要酬求。
当室外给水管网供胯水充足且在火灾情况下泛能保证连续补水时,消棉防水池的容量可减去火辗灾延续时间内补充的水纸1/ 8量。
消防水池的设墅计在满足《高层民用建初筑设计防火规范》的前膏提下应注意以下问题:挞在水池中设计时设导流谐墙,以增长流路,减少纬死角;安设循环水泵,孔使池水得以充分循环。
建常用方法如下:一砧是利用消防泵本身加旁叔路加减压阀来循环水池顿死水;二是设专用循环舟泵使池水循环。
循环泵姓的流量以一天周转池水锹一次为准。
例如,池水终容积为 600m3,设韵计的循环泵流量为一般陡取 30m3/h,为消稚防水池容积的 5%,也恭可根据实际情况确定。
沿三是在循环泵吸水管上崖以压力投加漂白精溶液废,浓度为 2%~10% 滨,将池水消毒,使池水研保持足够的余氯量,以俭控制藻类的繁殖、生长厕。
循环泵可间断开启,嚏也可天天开启,按各处副操作经验确定。
另外,知对水喷雾系统来说,如无果与消化栓或水喷雾系予统合用水池的话,很容助易发生一些由于水质的篮原因引起水喷雾系统堵酱塞的现象,为了增加其惮控火灭火的安全性,建粗议水喷雾系统与生活给呕水系统合用水池。
市旅游管理区自来水厂(一期)取水泵房及引水管工程施工组织设计编制单位:省水利水电第一工程有限公司日期:2015 年05 月目录1、编制说明 (2)2、工程概况与施工条件 (5)3、主要工程项目施工方案 (8)3.1 主要施工工艺流程3.2 一般项目施工方案3.3 沉井施工方案3.4 顶管施工方案3.5 取水头与自流管施工方案3.6 砌筑工程4、施工组织与部署 (89)5、施工平面布置 (93)6、施工资源用量计划 (95)7、施工网络进度计划及保证措施 (101)&工程质量管理体系及保证措施 (105)9、职业健康安全管理体系及保证措施 (116)10、................................................... 文明施工措施13211、......................................... 水土保持与环境保护措施13712、....................................... 防洪度汛及季节性施工措施1411、编制说明1.1 编制依据本工程投标文件技术部分编制的主要依据如下:1)本工程招标文件2)本工程施工图纸3) 《建筑地基基础工程施工质量验收规范》 ( GB50202-2002);4) 《给水排水构筑物工程施工及验收规范( GB50141-2008);5) 《给水排水管道工程施工及验收规范》 ( GB50268-2008);6) 《建筑桩基技术规范》 (JGJ94-2008);7) 《砌体结构工程施工质量验收规范》 ( GB50203-2011);8) 《混凝土结构工程施工质量验收规范》 ( GB50204-2002)(2011 版);9) 《钢结构工程施工质量验收规范》 (GB50205-2001);10) 《屋面工程质量验收规范》 (GB50207-2012);11) 《建筑地面工程施工质量验收规范》 (GB50209-2010);12) 《钢筋焊接及验收规程》 (JGJ18-2012);13) 《混凝土质量控制标准》 (GB50164-2011);14) 《混凝土强度检验评定标准》 (GB/T50107-2010);15) 《普通混凝土用砂、石质量及检验方法标准》 ( JGJ52-2006);16) 《建筑工程施工质量验收统一标准》 (GB50300-2001);17) 《航道整治工程技术规范》 (JTJ312-2003);18) 《水运工程测量规范》 (JTS131-2012);19) 《水运工程混凝土施工规范》 (JTS202-2011);20) 《水运工程混凝土质量控制标准》 (JTS202-2-2011);21) 《水运工程质量检验标准》 (JTS257-2008);22) 《水工建筑物地下开挖工程施工规范》 (SL378-2007);23) 《水工混凝土外加剂技术规程》 (DL/T5100-1999);24) 《水工混凝土钢筋施工规范》( DL/T5169-2002);25) 《水运工程爆破技术规范》 (JTS204-2008);26)《中华人民共和国建筑法》;27)《中华人民共和国安全生产法》;28)其他有关技术规程规范和法律法规。
一. 主要设计资料1. 取水规模:阆中市二水厂终期取水规模为5万m 3/d ;一期工程2.5万m 3/d ,二期工程达5万m 3/d ;2. 设计取水量:一期:332.5 1.101145.8m /0.318/24Q h m s ⨯==万=二期:335 1.102291.7m /0.637/24Q h m s ⨯'==万=其中水厂自用水系数为10%。
3.水源的水位:根据业主单位提供的资料显示:金银台电航工程库区水位设计高程为:库区0.2%校核洪水位362.15m ,2%设计洪水位357.5m ,正常蓄水位352.00m ,汛期限制水位346.0-348.5m (闸底高程)。
(以上均为黄海高程)二. 取水头部取水头部为喇叭口带格栅,采用钢(A 3)或不锈钢制作。
本工程用3个取水头部,每个设计取水量:Q =2291.7/3=763.9m 3/h =0.212m 3/s 。
取水管管径采用d =DN500,取水喇叭口直径取D =1.5d=750mm 。
1. 格栅及进水孔面积计算设计规范要求:河床式取水构筑物无冰絮时,进水孔过栅流速V 0为0.2~0.6m/s ,本设计V 0取0.30m/s 。
栅条采用扁钢,厚度为S=10mm ,栅条净距采用b =50mm ,格栅堵塞系数k 1=0.75,栅条引起的面积减少系数为:833.01050502=+=+=s b b k进水孔面积为:201200.2121.130.750.8330.30Q F m K K V ===⨯⨯=端部面积+直段侧面积 =L D D 124ππ+ =20.750.814L ππ⨯+⨯=0.442+2.545L直段长度:L=1.130.4420.6880.2702.545 2.545m -== 取L=300mm2、取水头部的位置和标高取水头部的位置根据实测的取水地点的水下地形图确定,该处保证取水头部下缘高出河床底0.8m 以上。
取水头部中心线标高为344.50m ,满足航道部门要求。
关于取水泵房施工方案设计的论文一、项目背景及意义随着我国经济的快速发展,水资源的需求量日益增加,尤其是在干旱地区,水资源已成为制约经济发展的瓶颈。
为了合理利用水资源,提高水资源利用效率,我国政府高度重视取水泵房的建设。
本项目旨在为某地区设计一座取水泵房,以满足当地居民生活用水和工业用水的需求。
二、施工方案设计1.施工总体布局(1)施工区域划分:根据泵房的功能需求,将施工区域划分为泵房主体、水泵房、配电室、清水池、排水设施等几个部分。
(2)施工顺序:按照泵房主体、水泵房、配电室、清水池、排水设施的顺序进行施工。
2.施工方法及工艺(1)泵房主体施工泵房主体采用现浇混凝土结构,施工方法如下:1)基础施工:采用人工挖孔桩基础,桩径1.2米,桩长20米,混凝土强度等级C30。
基础施工完毕后,进行桩基检测,合格后方可进行下一步施工。
2)主体结构施工:采用模板支撑体系,模板采用钢模板,支撑体系采用钢管脚手架。
混凝土浇筑采用泵送混凝土,强度等级C30。
混凝土浇筑过程中,严格控制浇筑速度和混凝土质量。
(2)水泵房施工水泵房内部设备安装包括水泵、管道、阀门等。
施工方法如下:1)设备安装:按照设计图纸进行设备安装,设备安装完毕后进行调试,确保设备运行正常。
2)管道安装:采用焊接钢管,管道连接采用法兰连接。
管道安装完毕后,进行试压、冲洗和消毒。
(3)配电室施工配电室内部设备包括变压器、配电柜、电缆等。
施工方法如下:1)设备安装:按照设计图纸进行设备安装,设备安装完毕后进行调试,确保设备运行正常。
2)电缆敷设:采用电缆桥架敷设,电缆型号为YJV-22,电压等级为10KV。
(4)清水池施工清水池采用现浇混凝土结构,施工方法如下:1)基础施工:采用人工挖孔桩基础,桩径1.2米,桩长20米,混凝土强度等级C30。
2)主体结构施工:采用模板支撑体系,模板采用钢模板,支撑体系采用钢管脚手架。
混凝土浇筑采用泵送混凝土,强度等级C30。
取水泵房初步设计一、设计说明书设计任务及基本设计资料宜城市自来水公司为解决供水紧张问题,计划新建一座设计水量为80000 吨/天的水厂(远期供水120000吨/天),水厂以赣江为原水,采用固定式取水泵房,取水点处修水最高洪水位米(1﹪频率),最低枯水位(99%保证率)米,常水位92.40 米,水厂地面标高115.00 米,泵站设计地面标高97.00 米,水厂反应池水面高出地面3.00 米,泵站到水厂的输水干管全长3200 米。
试进行该一级泵站的工艺设计。
3. 设计技术要求设计要求达到扩初设计程度,设计成果包括:(1)泵站平面布置图. (1~2 张)(2)泵站剖面图. (1 张)(3)主要设备及材料表.(4)设计计算及说明书.二、设计概要取水泵站在水厂中也称一级泵站. 在地面水水源中, 取水泵站一般由吸水井、泵房及闸阀井三部分组成。
取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。
其从水源中吸进所需处理的水量, 经泵站输送到水处理工艺流程进行净化处理。
设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。
取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。
设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。
在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。
在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。
此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算三、设计计算<一> 设计流量的确定和设计扬程估算:(1)设计流量Q 为了减小取水构筑物、输水管道各净水构筑物的尺寸,节约基建投资,在这种情况下,我们要求一级泵站中的泵昼夜不均匀工作。
取水泵房初步设计一、设计说明书设计任务及基本设计资料宜城市自来水公司为解决供水紧张问题,计划新建一座设计水量为80000吨/天的水厂(远期供水120000吨/天),水厂以赣江为原水,采用固定式取水泵房,取水点处修水最高洪水位59.340米(1﹪频率),最低枯水位50.830(99%保证率)米,常水位92.40米,水厂地面标高115.00米,泵站设计地面标高97.00米,水厂反应池水面高出地面3.00米,泵站到水厂的输水干管全长3200米。
试进行该一级泵站的工艺设计。
3.设计技术要求设计要求达到扩初设计程度,设计成果包括:(1)泵站平面布置图.(1~2张)(2)泵站剖面图. (1张)(3)主要设备及材料表.(4)设计计算及说明书.二、设计概要取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。
取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。
其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。
设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。
取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。
设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。
在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。
在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。
此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,所以用远期的容量及扬程计算。
三、设计计算<一> 设计流量的确定和设计扬程估算:(1) 设计流量Q为了减小取水构筑物、输水管道各净水构筑物的尺寸,节约基建投资,在这种情况下,我们要求一级泵站中的泵昼夜不均匀工作。
因此,泵站的设计流量应为:式中 Qr ——一级泵站中水泵所供给的流量(m3/h);Qd ——供水对象最高日用水量(m3/d);α——为计及输水管漏损和净水构筑物自身用水而加的系数,一般取α=0.5-1.0T ——为一级泵站在一昼夜内工作小时数。
考虑到输水干管漏损和净化厂本身用水,取水自用系数α=1.05 所以近期设计流量为 Q=1.05×80000/24=3500m3/h=0.972m3/s 远期设计流量为 Q=1.05×120000/24=5250m3/h=1.458m3/s (2)设计扬程H ST ①静扬程H ST 的计算通过取水部分的计算已知在最不利情况下(即一条自流管道检修,另一条自流管道通过75%的设计流量时),从取水头部到泵房吸水间的全部水头损失为0.8m 。
所以泵所需静扬程H ST 为:洪水位时,H ST =67.52-59.34+0.8=8.98m 枯水位时,H ST =67.52-50.83+0.8=17.49m ②输水干管中的水头损失∑h设采用两条DN900的铸铁管并联作为原水输水干管,当一条输水管检修,另一条输水管应通过75%的设计流量(按远期考虑),即Q=0.75×5250m 3/h=3937.5m 3/h=1.094m 3/sTQ Q d r α=查水力计算表得管内流速 v=1.72m/s,i=3.63‰所以输水管路水头损失: h=1.1×0.00363×3200=2.0m(式中1.1包括局部损失而加大的系数)③泵站内管路中的水头损失∑h粗估2m,安全水头2m,则泵设计扬程为:枯水位时:H max=8.98+2.0+2+2=14.98m洪水位时:H min=17.49+2.0+2+2=23.49m<二>、初选泵和电机(1)水泵选择选泵的主要依据:流量、扬程以及其变化规律①大小兼顾,调配灵活②型号整齐,互为备用③合理地用尽各水泵的高效段④要近远期相结合。
―小泵大基础‖⑤大中型泵站需作选泵方案比较。
根据上述选泵要点以及离心泵性能曲线型谱图和选泵参考书综合考虑初步拟定以下:近期选择4台500S35A型单级双吸离心泵(Q=1746 m3/h,H=37m,N=151kW,Hs=4m),两台工作,一台备用。
远期增加一台500S35A型泵,三台工作两台备用。
根据500S35A型泵的要求选用Y400-39-6型异步电动机(220kW,6000V)。
(2)机组基础尺寸的确定查泵与电机样本,计算出500S35A型泵机组基础平面尺寸为760mm×630mm,机组总重量W = Wp + Wm= 2210+3650=4560kg。
基础深度H可按下使计算H=3.0W/L×B×γ式中 L ——基础长度, L=0.76mB ——基础宽度, B=0.63mγ——基础所用材料的容重,对于混泥土基础,γ=23520N/m3 故H=3.0×4560/1.36×0.6×23520=0.524m基础实际深度连同泵房底板在内,应为0.524m。
<三>、吸水管路与压水管路计算流量QQ1=4375/3= 1750m3/h = 0.486m3/s(1) 吸水管路的要求①管材及接逢不漏气②管路安装不积气③吸水管进口位置不吸气④设计流速:管径小于250㎜时,V取1.0~1.2 m/s管径等于或大于250㎜时,V取1.2~1.6 m/s(2)压水管路要求①要求坚固而不漏水,通常采用钢管,并尽量焊接口,为便于拆装与检修,在适当地点可为法兰接口。
为了防止不倒流,应在泵压水管路上设置止回阀。
②压水管的设计流速:管径小于250㎜时,为1.5~2.0 m/s管径等于或大于250㎜时,为2.0~2.5 m/s(2) 吸水管路直径采用DN700钢管,则v=1.26/s ,1000i=2.76压水管的选取采用DN600钢管,则V=1.66m/s,1000i=5.41<四>、机组与管道布置<1> 基础布置基础布置情况见取水泵站祥图。
泵机组布置原则:在不妨碍操作和维修的需要下,尽量减少泵房建筑面积的大小,以节约成本。
<2>机组的排列方式采用机组横向排列方式,这种布置的优点是:布置紧凑,泵房跨度小,适用于双吸式泵,不仅管路布置简单,且水力条件好。
同时因各机组轴线在同一直线上,便于选择起重设备。
本取水泵房采用圆形钢筋混凝土结构,此类泵房平面面积相对较小,可以减少工程造价。
每台泵有单独的吸水管、压水管引出泵房后连接起来。
泵出水管上设有液压蝶阀((c)HDZs41X-10)和手动蝶阀(D2241X-10),吸水管上设手动闸板闸阀(Z545T-6)。
为了减少泵房建设面积,闸阀切换井设在泵房外面,两条DN900的输水干管用每条输水管上各设有切换用的蝶阀(GD371Xp-1)一个。
<五>、吸水管路与压水管路的水头损失的计算取一条最不利线路,从吸水口到输水干管上切换闸阀止为计算线路图 (1)吸水管路中水头损失∑h s :s h ∑ =fs h ∑ +1s h ∑ 1、吸水管路沿程水头损失:31 2.7638.25101000fs s h l i m-=⋅=⨯=⨯∑2、局部水头损失:22211123()22sv v hggζζζ=++∑式中 ζ1———吸水管进口局部阻力系数,ζ1=0.75ζ2 ———DN700钢管闸阀局部阻力系数,按开启度da =0.125考虑,ζ2=0.12ζ3 ———偏心渐缩管DN800×670 ,ζ3=0.18则 1s h ∑ =(0.75+0.12)×1.262/2g+0.18×1.372/2g=0.088m所以吸水管路总水头损失为:sh ∑ =fs h ∑ +1s h ∑ =0.00825+0.088=0.1m(2)压水管路水头损失∑h d :dh∑ =df h ∑ +ld h ∑1、压水管路沿程水头损失:23456172()ldd d hl l l l l i l i =++++⋅+⋅∑则:dfh ∑ =(0.5+4.0+0.6+0.5+4.1)×14.6‰+2×2.2‰=0.14m2、局部水头损失:∑h ld =ζ4V 32/2g+(ζ5+ζ6+ζ7+ζ8+2ζ9+ζ10)V 42/2g+(ζ11+ζ12+ζ13) V 52/2g式中:ζ4——DN500×600渐放管,ζ4=0.18ζ5——DN600钢制900弯头,ζ5=0.67ζ6——DN600液控蝶阀,ζ6=0.3ζ7——DN600伸缩接头,ζ7=0.21ζ8——DN600手动蝶阀,ζ8=0.15ζ10——DN600×900渐放管,ζ10=0.21ζ12——DN900钢制正四通,ζ12=1.5则∑h ld=0.33×5.242/2g+(0.54+0.15+0.21+0.15+2×1.08+0.41)×2.062/2g+(1.10+1.5+0.15)×1.83/2g=0.496+0.405+0.660=2.26m所以压水管路总水头损失为∑h d=∑h fd+∑h ld=0.18+2.26=2.44m 则泵站内水头损失:∑h=∑s+∑d=0.14+2.44=2.58m,符合假设的实际水头损失。
<六>泵安装高度和泵房筒体高度确定为了便于用沉井法施工,将泵房机器间底板放在与吸水间底板同一标高,因而泵为自灌式工作,所以泵的安装高度小于其允许吸上真空高度,无需计算。
已知吸水间最低动水位标高为50.83m,为保证吸水管的正常吸水,取吸水管的中心标高为50.08 m(吸水管上缘淹没深度为50.83-50.08-(D/2)=0.4m)。
取吸水管下缘距吸水间底板0.7,则吸水间底板标高为50-(D/2+0.7)=48.95m。
洪水位标高为59.34m,考虑1.0m的浪高,则操作平台标高为59.34+1.0=60.34m。
故泵房筒体高度为:H=60.34-48.95=11.39m<七>辅助设备设计(1)引水设备泵系自灌式工作,不需要引水设备。
(2)起重设备的选择①选型由前面设计可知,选用ZDY12-4型电动机,其重量为5.76t(包括起重机重量和电动葫芦重量),最大起吊高度为11.39+2=13.39m(其中2.0m是考虑操作平台上汽车的高度)。