车辆电液控制理论及应用6-2
- 格式:ppt
- 大小:15.72 MB
- 文档页数:55
电液控制技术概述及应用机自11级4班(机电112)XX摘要:电液控制系统是以电液伺服阀、电液比例阀或数字控制阀为电液控制元件的阀控液压系统,和以电液伺服或比例变量泵为动力元件的泵控液压系统。
本文主要以电液控制元件对电液技术发展和应用作探讨。
关键词:电液控制技术,电液比例控制技术,电液伺服技术,电液控制元件前言:电液控制技术是高新科技不可或缺的组成部分[1],电液控制技术广泛运用于军事与工业领域,工业是国民经济的重要支柱,电液控制技术的发展必将助推国民经济的稳固发展。
1电液控制技术概述电液控制技术是液压技术的一个重要分支,主要表现为电液伺服控制技术和电液比例控制技术。
液压控制技术的快速发展始于18世纪欧洲工业革命时期,在此期间,包括液压阀在内的多种液压机械装置得到很好的开发和利用。
19 世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等[2]。
第二次世界大战期间及战后,电液技术的发展加快,主要是为了满足军事装备的需求。
到了20世纪50~60 年代,电液元件和技术达到了发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
50至60年代早期,电液控制技术在非军事工业中得到了越来越多的应用,最主要的是机床工业,其次是工程机械。
在以后几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。
70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域[3]。
1.1电液伺服技术电液伺服系统是电液控制技术最早出现的一种应用形式,从其机构上来说,就是指以电液伺服阀(或伺服变量泵)作为电液转换和放大元件实现某种控制规律的系统[4]。
20世纪初控制理论及其应用的飞速发展,使古典控制理论走向成熟,为电液伺服控制技术的出现与发展提供了理论基础与技术支持[5]。
电液比例课程设计一、课程目标知识目标:1. 理解电液比例控制系统的基本原理,掌握其组成、功能及工作流程;2. 掌握电液比例控制系统的数学模型,能够进行简单的系统分析和设计;3. 了解电液比例控制技术在工程实际中的应用,学会运用相关理论知识解决实际问题。
技能目标:1. 能够运用所学知识,对电液比例控制系统进行模拟和实验操作;2. 掌握电液比例控制系统的调试方法,具备一定的系统故障排查和处理能力;3. 学会对电液比例控制系统进行性能评价,提出合理的优化方案。
情感态度价值观目标:1. 培养学生对电液比例控制技术及其在工程应用中的兴趣,提高学生的专业认同感;2. 培养学生的团队协作精神和沟通能力,使学生在学习过程中形成良好的合作氛围;3. 培养学生严谨的科学态度,树立正确的工程伦理观念。
本课程针对高年级学生,结合电液比例控制技术在实际工程中的应用,注重理论知识与实际操作相结合。
课程目标旨在帮助学生掌握电液比例控制系统的基本原理和技能,培养学生在实际工程问题中运用所学知识解决问题的能力,同时注重培养学生的情感态度价值观,使其成为具有创新精神和实践能力的工程技术人才。
二、教学内容1. 电液比例控制系统原理- 液压基础知识回顾- 电液比例控制系统的组成与工作原理- 电液比例阀的结构与性能特点2. 电液比例控制系统的数学模型- 系统建模方法- 数学模型推导与分析- 模型参数的识别与调整3. 电液比例控制系统设计- 系统设计原则与方法- 控制器的设计与参数整定- 系统仿真与优化4. 电液比例控制技术在工程中的应用- 典型应用案例分析- 控制系统调试与故障排除- 性能评价与优化措施5. 实践教学环节- 电液比例控制系统实验操作- 模拟工程实际案例,进行小组讨论与设计- 实际工程现场参观与实习教学内容依据课程目标,紧密结合教材,注重理论与实践相结合。
教学大纲明确教学内容安排和进度,确保学生能够系统掌握电液比例控制技术相关知识,培养其工程实践能力。
第一章绪论1.1 机电液一体化技术在汽车中的应用现状分析机电液一体化技术是机械控制、液压控制技术和电控相结合,它融合了机械、液压、传感器检测、计算机自动控制等多门现代技术的基础上发展起来的一门新兴的科学。
在汽车方面的应用主要包括汽车安全控制、电子控制、行驶系控制、汽车稳定性控制以及汽车特定的电子传感器,对汽车运行实时监控。
例如,传感器可以同步监测发动机冷却系统、润滑系统、汽车操控系统、汽车减震装置、转向系统等压强、流量等参数。
电子控制传感器技术和计算机监控技术将对汽车的报警信号进行分析,并利用微电子控制器对汽车各系统的继电器、电磁开关和阀门的故障进行了检测和诊断,并对故障代码进行了分析。
机电液一体化技术在汽车上的应用,不仅可以实现车辆安全性的增强,提高汽车的高效性,而且可以达到功率与能耗的最佳匹配,使得汽车更加人性化之外,也使得汽车维修人员维修缩短工作时间,提高工作效率,进而提高汽车性能和质量。
1.2 机电液一体化技术发展现状早在上世纪90年代,某些汽车工业发达的国家在机电液一体化技术方面已经拥有了都有自己独特的电子产品,如美国的德科公司、德国的BOSCH公司等大型的汽车电子产品研发生产公司在机电液一体化技术上都拥有自己的核心技术,无论是产量上的优势还是价格和品质方面都远远的超过了一般汽车研发公司的发展,作为汽车行业的领跑者带动汽车行业的发展,随着科学理论研究的不断深入和电子技术的发展,机电液一体化技术得到了很大的发展,并开始作为选装件安装在一些中高档轿车上。
近20年来,随着微机和电液控制技术的迅速发展,日本和欧美国家高度重视其在汽车中的应用,开发出适用于汽车各系统的机电液一体化系统。
[1]我国机电液系统的发展比较早,但汽车机电液控制的研究还处在起步阶段,虽然我国各个汽车研究所就早在20世纪70年代就开始采用全液压机控制技术,但由于我国自主创新能力的落后和国外关键技术的限制,在发展程度上,与发达国家仍存在一定的差距。
《汽车电液控制》复习思考题绪论简述电子技术在汽车上的应用。
第一章汽车电子控制技术基础1.汽车电控系统由哪三部分组成?各起何作用?汽车电控系统由传感器、电子控制器和执行器三部分组成。
①传感器:它将反映发动机的工况及状态、汽车行驶工况及状态的各种物理参量转变为电信号,并输送给电子控制器。
②电子控制器:它对各传感器输入的电信号及部分执行器的反馈信号进行综合处理后,向执行器按控制目标的要求进行工作。
③执行器:它按控制器的控制信号进行工作,使被控对象迅速做出反应或将控制对象的控制参数迅速调整到设定值,以实现控制目标。
2.汽车电控系统控制环路有哪几种类型?汽车电控系统控制环路有开环和闭环两种类型。
3.汽车电控系统常用的传感器有哪几种?试说明各传感器的作用、结构原理、安装位置及其在汽车上的应用情况。
①发动机转速与曲轴位置传感器安装在曲轴前端、飞轮上或分电器内。
常见的有磁感应式、光电式、霍尔效应式。
作用:用于产生发动机转速和曲轴位置电信号,传给ECU,从而确定点火时刻。
结构原理见P171—175②空气流量传感器安装在空气滤清器后的进气管上。
作用:将发动机的进气流量转变为电信号,是电子控制器计算基本喷油量、确定点火提前角的重要参数之一。
结构原理见P176—178 涡旋式空气流量传感器、热丝式和热膜式空气流量传感器③进气压力传感器安装在进气歧管处、发动机驾驶室、ECU控制盒内。
作用:将发动机进气歧管的压力转变为相应的电信号,电子控制器计算基本喷油时间、确定基本点火提前角。
结构原理见P178—179 半导体压敏电阻式、电容式④温度传感器冷却液温度传感器安装在发动机冷却水管上;进气温度传感器安装在进气管路上。
作用:将被测对象的温度变化转换为相应的电信号,使控制器能进行温度修正或与温度相关的自动控制。
结构原理见P180—181. 热敏电阻式温度传感器⑤节气门位置传感器安装在节气门轴的一端。
作用:将节气门开度转变为电信号,输送给电子控制器,电子控制器从节气门位置传感器信号中获得节气门开度、节气门开启速度、怠速状态等信息,用于进行点火时间、燃油喷射、怠速、废气再循环、碳罐通气量等控制。
电液伺服阀的原理分类和应用简介一.电液伺服阀的工作原理电液伺服阀由力矩马达和液压放大器组成。
力矩马达工作原理磁铁把导磁体磁化成N、S极,形成磁场。
衔铁和挡板固连由弹簧支撑位于导磁体的中间。
挡板下端球头嵌放在滑阀中间凹槽内;线圈无电流时,力矩马达无力矩输出,挡板处于两喷嘴中间;当输入电流通过线圈使衔铁3左端被磁化为N极,右端为S极,衔铁逆时针偏转。
弹簧管弯曲产生反力矩,使衔铁转过θ角。
电流越大θ角就越大,力矩马达把输入电信号转换为力矩信号输出。
前置放大级工作原理压力油经滤油器和节流孔流到滑阀左、右两端油腔和两喷嘴腔,由喷嘴喷出,经阀9中部流回油箱力矩马达无输出信号时,挡板不动,滑阀两端压力相等。
当力矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理当前置放大级有压差信号使滑阀阀芯移动时,主油路被接通。
滑阀位移后的开度正比于力矩马达的输入电流,即阀的输出流量和输入电流成正比;当输入电流反向时,输出流量也反向。
滑阀移动的同时,挡板下端的小球亦随同移动,使挡板弹簧片产生弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的位移量减小,实现了反馈。
当滑阀上的液压作用力和挡板弹性反力平衡时,滑阀便保持在这一开度上不再移动。
二.电液伺服阀的分类1 按液压放大级数可分为单级电液伺服阀,两级电液伺服阀,三级电液伺服阀。
2 按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。
3 按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式等。
4 按电机械转换装置可分为动铁式和动圈式。
5 按输出量形式可分为流量伺服阀和压力控制伺服阀。
三.电液伺服阀的发展趋势1/新型结构的设计在20 世纪90 年代,国外研制直动型电液伺服阀获得了较大的成就.现形成系列产品的有Moog 公司的D633,D634 系列的直动阀,伊顿威格士(EatonVickers)公司的LFDC5V 型,德国Bosch 公司的NC10 型,日本三菱及KYB 株式会社合作开发的MK 型阀及Moog 公司与俄罗期沃斯霍得工厂合作研制的直动阀等.该类型的伺服阀去掉了一般伺服阀的前置级, 利用一个较大功率的力矩马达直接拖动阀芯, 并由一个高精度的阀芯位移传感器作为反馈.该阀的最大特点是无前置级,提高了伺服阀的抗污染能力.同时由于去掉了许多难加工零件,降低了加工成本,可广泛使用于工业伺服控制的场合.国内有些单位如中国运载火箭技术研究院第十八研究所, 北京机床研究所, 浙江工业大学等单位也研制出了相关产品的样机. 特别是北京航空航天大学研制出转阀式直动型电液伺服阀. 该伺服阀通过将普通伺服阀的滑阀滑动结构转变为滑阀的转动, 并在阀芯与阀套上相应开了几个与轴向有一定倾角的斜槽.阀芯阀套相互转动时,斜槽相互开通或相互封闭,从而控制输出压力或流量.由于在工作时阀芯阀套是相互转动的,降低了阀工作时的摩擦阻力,同时污染物不容易在转动的滑阀内堆积,提高了抗污染性能.此外,Park 公司开发了"音圈驱动(Voice Coil Drive)"技术(VCD),以及以此技术为基础开发的DFplus 控制阀.所谓音圈驱动技术, 顾名思义, 即是类似于扬声器的一种驱动装置, 其基本结构就是套在固定的圆柱形永久磁铁上的移动线圈,当信号电流输入线圈时,在电磁效应的作用下,线圈中产生与信号电流相对应的轴向作用力,并驱动与线圈直接相连的阀芯运动,驱动力很大.线圈上内置了位移反馈传感器,因此,采用VCD 驱动的DFplus 阀本质上是以闭环方式进行控制的,线性度相当好.此外,由于VCD 驱动器的运动零件只是移动线圈,惯量极小,相对运动的零件之间也没有任何支承,DFplus 阀的全部支承就是阀芯和阀体间的配合面,大大减小了摩擦这一非线性因素对控制品质的影响.综合上述的技术特点,配合内置的数字控制模块,使DFplus 阀的控制性能佳,尤其在频率响应方面更是优越,可达400Hz.从发展趋势来看,新型直动型电液伺服阀在某些行业有替代传统伺服阀特别是喷嘴挡板式伺服阀的趋向, 但它的最大问题在于体积大, 重量重, 只适用于对场地要求较低的工业伺服控制场合. 如能减轻其重量, 减小其体积,在航空,航天等军工行业亦具有极大的发展潜力.另外,近年来伺服阀新型的驱动方式除了力矩马达直接驱动外,还出现了采用步进电机,伺服电机,新型电磁铁等驱动结构以及光-液直接转换结构的伺服阀.这些新技术的应用不仅提高了伺服阀的性能, 而且为伺服阀发展开拓了思路, 为电液伺服阀技术注入了新的活力.2/新型材料的采用当前在电液伺服阀研制领域的新型材料运用,主要是以压电元件,超磁致伸缩材料及形状记忆合金等为基础的转换器研制开发.它们各具有其自己的优良特性.2.1 压电元件压电元件的特点是"压电效应":在一定的电场作用下会产生外形尺寸的变化,在一定范围内,形变与电场强度成正比.压电元件的主要材料为压电陶瓷(PZT),电致伸缩材料(PMN)等.比较典型的压电陶瓷材料有日本TOKIN 公司的叠堆型压电伸缩陶瓷等.PZT 直动式伺服阀的原理是: 在阀芯两端通过钢球分别与两块多层压电元件相连. 通过压电效应, 使压电材料产生伸缩驱动阀芯移动.实现电-机械转换.PMN 喷嘴挡板式伺服阀则在喷嘴处设置一与压电叠堆固定连接的挡板,由压电叠堆的伸,缩实现挡板与喷嘴间的间隙增减,使阀芯两端产生压差推动阀芯移动.目前压电式电-机械转换器的研制比较成熟并已得到较广泛的应用.它具有频率响应快的特点,伺服阀频宽甚至能达到上千赫兹,但亦有滞环大,易漂移等缺点,制约了压电元件在电液伺服阀上的进一步应用.2.2 超磁致伸缩材料液压与电气论坛超磁致伸缩材料(GMM)与传统的磁致伸缩材料相比,在磁场的作用下能产生大得多的长度或体积变化. 利用GMM 转换器研制的直动型伺服阀是把GMM 转换器与阀芯相连,通过控制驱动线圈的电流,驱动GMM 的伸缩,带动阀芯产生位移从而控制伺服阀输出流量.该阀与传统伺服阀相比不仅有频率响应高的特点,而且具有精度高,结构紧凑的优点.目前,在GMM 的研制及应用方面,美国,瑞典和日本等国处于领先水平.国内浙江大学利用GMM 技术对气动喷嘴挡板阀和内燃机燃料喷射系统的高速强力电磁阀, 进行了结构设计和特性研究.从目前情况来看GMM 材料与压电材料和传统磁致伸缩材料相比,具有应变大,能量密度高,响应速度快,输出力大等特点.世界各国对GMM 电-机械转换器及相关的技术研究相当重视,GMM 技术水平快速发展,已由实验室研制阶段逐步进入市场开发阶段.今后还需解决GMM 的热变形,磁晶各向异性,材料腐蚀性及制造工艺, 参数匹配等方面的问题,以利于在高科技领域得到广泛运用.2.3 形状记忆合金形状记忆合金(SMA)的特点是具有形状记忆效应.将其在高温下定型后,冷却到低温状态,对其施加外力.一般金属在超过其弹性变形后会发生永久变形,而SMA 却在将其加热到某一温度之上后, 会恢复其原来高温下的形状. 利用其特性研制的伺服阀是在阀芯两端加一组由形状记忆合金绕制的SMA 执行器, 通过加热和冷却的方法来驱动SMA 执行器, 使阀芯两端的形状记忆合金伸长或收缩, 驱动阀芯作用移动, 同时加入位置反馈来提高伺服阀的控制性能.从该阀的情况来看,SMA 虽变形量大,但其响应速度较慢,且变形不连续, 也限制了其应用范围.与传统伺服阀相比,采用新型材料的电-机械转换器研制的伺服阀,普遍具有高频响, 高精度,结构紧凑的优点.虽然目前还各自呈在某些关键技术需要解决,但新型功能材料的应用和发展,给电液伺服阀的技术发展发展提供了新的途径.3/电子化,数字化技术的运用液压与电气论坛目前电子化, 数字化技术在电液伺服阀技术上的运用主要有两种方式: 其一,在电液伺服阀模拟控制元器件上加入D/A 转换装置来实现其数字控制.随着微电子技术的发展,可把控制元器件安装在阀体内部,通过计算机程序来控制阀的性能,实现数字化补偿等功能.但存在模拟电路容易产生零漂,温漂,需加D/A 转换接口等问题.其二, 为直动式数字控制阀. 通过用步进电机驱动阀芯, 将输入信号转化成电机的步进信号来控制伺服阀的流量输出.该阀具有结构紧凑,速度及位置开环可控及可直接数字控制等优点,被广泛使用.但在实时性控制要求较高的场合,如按常规的步进方法,无法兼顾量化精度及响应速度的要求.浙江工业大学采用了连续跟踪控制的办法,消除了两者之间的矛盾,获得了良好的动态特性. 此外还有通过直流力矩电机直接驱动阀芯来实现数字控制等多种控制方式或伺服阀结构改变等方法来形成众多的数字化伺服阀产品.随着各项技术水平的发展,通过采用新型的传感器和计算机技术研制出机械,电子, 传感器及计算机自我管理(故障诊断,故障排除)为一体的智能化新型伺服阀.该类伺服阀可按照系统的需要来确定控制目标:速度,位置,加速度,力或压力.同一台伺服阀可以根据控制要求设置成流量控制伺服阀, 压力控制伺服阀或流量/ 压力复合控制伺服阀. 并且伺服阀的控制参数,如流量增益,流量增益特性,零点等都可以根据控制性能最优化原则进行设置.伺服阀自身的诊断信息,关键控制参数(包括工作环境参数和伺服阀内部参数)可以及时反馈给主控制器;可以远距离对伺服阀进行监控,诊断和遥控.在主机调试期间,可以通过总线端口下载或直接由上位机设置伺服阀的控制参数, 使伺服阀与控制系统达到最佳匹配,优化控制性能.而伺服阀控制参数的下载和更新,甚至在主机运转时也能进行.而在伺服阀与控制系统相匹配的技术应用发展中, 嵌入式技术对于伺服阀已经成为现实. 按照嵌入式系统应定义为:"嵌入到对像体系中的专用计算机系统"."嵌入性","专用性"与"计算机系统"是嵌入式系统的三个基本要素.它是在传统的伺服阀中嵌入专用的微处理芯片和相应的控制系统, 针对客户的具体应用要求而构建成具有最优控制参数的伺服阀并由阀自身的控制系统完成相应的控制任务(如各控制轴同步控制),再嵌入到整个的大控制系统中去.从目前的技术发展和控制系统对伺服阀的要求看, 伺服阀的自诊断和自检测功能应该有更大的发展. 结束语当前的液压伺服控制技术已经能将自动控制技术, 液压技术与微电子有机的结合起来, 形成新一代的伺服阀产品.而随着电子设备,控制策略,软件及材料等方面的发展与进步, 电液控制技术及伺服阀产品将在机,电,液一体化获得长足的进步.四 .电液伺服阀的发展历程液压控制技术的历史最早可追溯到公元前240 年,当时一位古埃及人发明了人类历史上第一个液压伺服系统――水钟. 然而在随后漫长的历史阶段, 液压控制技术一直裹足不前, 直到18 世纪末19 世纪初,才有一些重大进展.在二战前夕,随着工业发展的需要,液压控制技术出现了突飞猛进地发展,许多早期的控制阀原理及专利均是这一时代的产物.如: Askania 调节器公司及Askania-Werke 发明及申请了射流管阀原理的专利.同样, Foxboro 发明了喷嘴挡板阀原理的专利.而德国Siemens 公司发明了一种具有永磁马达及接收机械及电信号两种输入的双输入阀,并开创性地使用在航空领域.在二战末期,伺服阀是用螺线管直接驱动阀芯运动的单级开环控制阀.然随着控制理论的成熟及军事应用的需要, 伺服阀的研制和发展取得了巨大成就. 1946 年, 英国Tinsiey 获得了两级阀的专利;Raytheon 和Bell 航空发明了带反馈的两级阀;MIT 用力矩马达替代了螺线管使马达消耗的功率更小而线性度更好.1950 年,W.C.Moog 第一个发明了单喷嘴两级伺服阀.1953 年至1955 年间,T.H.Carson发明了机械反馈式两级伺服阀; W.C.Moog 发明了双喷嘴两级伺服阀; Wolpin 发明了干式力矩马达, 消除了原来浸在油液内的力矩马达由油液污染带来的可靠性问题.1957 年R.Atchley 利用Askania 射流管原理研制了两级射流管伺服阀.并于1959 年研制了三级电反馈伺服阀.1959 年 2 月国外某液压与气动杂志对当时的伺服阀情况作了12 页的报道, 显示了当时伺服阀蓬勃发展的状况.那时生产各种类型的伺服阀的制造商有20 多家.各生产厂家为了争夺伺服阀生产的霸权地位展开了激烈地竞争. 回顾历史, 可以看到最终取胜的几个厂家, 大多数生产具有反馈及力矩马达的两级伺服阀.我们可以看到, 1960 年的伺服阀已具有现代伺服阀的许多特点.如:第二级对第一级反馈形成闭环控制;采用干式力矩马达;前置级对功率级的压力恢复通常可达到50%;第一级的机械对称结构减小了温度,压力变化对零位的影响. 同时, 由早期的直动型开环控制阀发展变化而来的直动型两级闭环控制伺服阀也已出现.当时的伺服阀主要用于军事领域,随着太空时代的到来,伺服阀又被广泛用于航天领域,并研制出高可靠性的多余度伺服阀等尖端产品.与此同时,随着伺服阀工业运用场合的不断扩大,某些生产厂家研制出了专门使用于工业场合的工业伺服阀. Moog 公司就在1963 年推出了第一款专为工业场合使用的73 如系列伺服阀产品.随后,越来越多的专为工业用途研制的伺服阀出现了.它们具有如下的特征:较大的体积以方便制造;阀体采用铝材(需要时亦可采用钢材);独立的第一级以方便调整及维修;主要使用在14MPa 以下的低压场合;尽量形成系列化,标准化产品.然而Moog 公司在德国的分公司却将其伺服阀的应用场合主要集中在高压场合, 一般工作压力在21MPa,有的甚至到35MPa,这就使阀的设计专重于高压下的使用可靠性.而随着伺服阀在工业场合的广泛运用, 各公司均推出了各自的适合工业场合用的比例阀. 其特点为低成本, 控制精度虽比不上伺服阀, 但通过先进的控制技术和先进的电子装置以弥补其不足, 使其性能和功效逼近伺服阀.1973 年,Moog 公司按工业使用的需要,把某些伺服阀转换成工业场合的比例阀标准接口.Bosch 研制出了其标志性的射流管先导级及电反馈的平板型伺服阀.1974 年,Moog 公司推出了低成本,大流量的三级电反馈伺服阀.Vickers 公司研制了压力补偿的KG 型比例阀.Rexroth,Bosch 及其他公司研制了用两个线圈分别控制阀芯两方向运动的比例阀等等五. 电液伺服阀运转不良引起的故障1 油动机拒动在机组启动前做阀门传动试验时,有时出现个别油动机不动的现象,在排除控制信号故障的前提下,造成上述现象的主要原因是电液伺服阀卡涩。