同步辐射元素成像技术说课讲解
- 格式:ppt
- 大小:9.25 MB
- 文档页数:44
1 同步辐射概括同步辐射(synchrotron radiation)是速度接近光速的带电粒子在磁场中做变速运动时放出的电磁辐射,一些理论物理学家早些时候曾经预言过这种辐射的存在。
这些预言,大多是针对其负面效应而作出的。
以加速电子为例,建造加速器令电子在其中运行,通过磁场增加电子的速度,从而得到高能量,视为正面效应;然而在加速器中转圈运行的电子一定要放出辐射,从而丢失能量,视为负面效应。
通过得失的平衡,给出了加速器提速的限制。
1947年,位于美国纽约州Schenectady的通用电气公司实验室(GE lab)在调试新建成的一台70MeV电子同步加速器时首次观测到了同步辐射的存在。
同步辐射是加速器物理学家发现的,但最初它并不受欢迎,因为建造加速器的目的在于使粒子得到更高的能量,而它却把粒子获得的能量以更高的速率辐射掉,它只作为一种不可避免的现实被加速器物理学家和高能物理学家接受。
但同步辐射的能量高、亮度大、发射度低、脉冲时间短、能量连续可调等的相对于台式光源所不具有的部分优异特性却吸引了固体物理学家的注意,将其引用于X射线谱学研究领域。
而20年后随着第一代同步辐射光源的纷纷建立,同步辐射摆脱了作为加速器负效应的形象,基本确立了同步辐射及其相关谱学技术在固体物理研究领域的学术地位,并且在最近50年的发展中将同步辐射的应用领域大大扩展,成为现代科学研究前沿的不可或缺的工具,同时也是衡量一个国家是否具有学科研究领军能力的少数几个大型科学装置之一。
目前在中国现在共有4个同步辐射光源装置:1991年开始运行的北京光源(BSRF)属第一代同步辐射光源;1992年开始运行的合肥光源(NSRL)属第二代同步辐射光源;1994年建成的台湾光源(SSRC)以及2007年开始运行的上海光源(SSRF)属第三代同步辐射光源。
同时预计“十三五”期间内建设在北京光源所在地的高能光子源(HEPS)将成为亮度、发射度超越世界目前同步辐射光源先进水平的第三代光源,而在上海光源所在地规划建设的X射线自由电子激光(XFEL)将拥有更高的亮度和完全的相干性成为新一代光源。
理化检验2物理分册P TCA(PA R T:A P H YS.TEST.)2008年 第44卷 7 专题综述同步辐射的基本知识第二讲 同步辐射中的衍射术及其应用(五)程国峰1,杨传铮2,黄月鸿1(1.中国科学院上海硅酸盐研究所,上海200050; 2.中国科学院上海微系统与信息技术研究所,上海200050)BASIC KNOWL ED GE O F S YNC HRO TRON RADIA TION ———L EC TU R E No.2 DIFFRAC TION TEC HN IQU E AND ITS A PPL ICA TIONSIN SYNC HRO TRON RADIA TIONΦCHENG G uo2feng1,YANG Chuan2zheng2,HUANG Yue2hong1(1.Shanghai Institute of Ceromics Chinese Academy of Sciences,Shanghai200050,China;2.Shanghai Institute of Micro2System and Information Technology,Chinese Academy of Science,Shanghai200050,China)中图分类号:O434.11 文献标识码:A 文章编号:100124012(2008)07203912045 纳米材料中微结构的表征和研究纳米材料是一个不十分明确的概念,可能是纳米大小、纳米尺度、纳米颗粒或纳米晶粒材料的通称,所谓纳米级材料是大小、尺度、颗粒或晶粒在1~100nm范围的材料。
纳米材料的结构表征方法有传统的透射电子显微镜(TEM)、扫描电子显微镜(SEM)和粒度分布测量仪。
20世纪80年代以后,扫描探针显微镜(SPM),包括扫描隧道显微镜(STM)和原子力显微镜(A FM)在纳米材料研究中获得应用,有人甚至把SPM视为纳米科技的“眼”和“手”。
专题综述同步辐射的基本知识第四讲同步辐射中的光谱术及其应用(三)杨传铮1,程国峰2,黄月鸿2(1.中国科学院上海微系统与信息技术研究所,上海200050; 2.中国科学院上海硅酸盐研究所,上海200050)Basic Knowledge of Synchrotron Radiation)))Lecture No.4Spectrum Technique and Its Applicationsin Synchrotron Radiation(Ó)YANG Chuan-zheng1,CHENG Guo-feng2,HUANG Yue-hong2(1.Shang hai Institute of M icro-Sy stem and Info rmation T echnolog y,Chinese A cademy o f Science,Shanghai200050,China;2.Shang ha i Inst itute of Ceromics,Chinese A cademy o f Sciences,Shang hai200050,China)中图分类号:O434.11文献标识码:A文章编号:1001-4012(2009)06-0389-044俄歇电子能谱上节已提到用俄歇(Aug er)电子信号测定表面EXAFS谱,那是就特定能量的俄歇电子强度随入射X射线或电子能量变化的关系谱,是研究表面局域结构的重要方法。
俄歇电子能谱则是能量约几千电子伏特的入射线(可为电子束,也可为X射线)轰击试样表面,使试样表面逸出俄歇电子,再用电子能量探测器、锁相放大器等接收和放大,最后给出能量分布曲线[N(E)-E]或能量分布微分曲线[d N(E)d E-E],见图10,各种逸出的俄歇电子在分布曲线上对应于一个谱峰,它的形状、位置和强度与表面几个原子层内的成分、浓度、价态和价态密度有关,图10是用1keV 电子束激发银的俄歇电子能谱曲线,除俄歇电子峰外,还包括弹性电子峰和等离子损失电子峰,用X 射线激发的俄歇电子谱要简单得多。