第三章合成气衍生产品——费托合成分析
- 格式:ppt
- 大小:2.99 MB
- 文档页数:76
费托合成产物分布1. 费托合成简介费托合成(Fischer-Tropsch synthesis)是一种通过合成气(合成气主要由一氧化碳和氢气组成)制造液体燃料和化工产品的过程。
费托合成是一种重要的工业化学反应,具有广泛的应用领域。
在费托合成过程中,合成气通过催化剂的作用,发生一系列的化学反应,生成各种有机化合物。
2. 合成气的制备合成气是费托合成的重要原料,通常由煤炭、天然气或生物质通过气化反应制备而成。
气化反应将固体或液体碳源转化为气体燃料,主要产物是一氧化碳和氢气。
3. 费托合成反应机理费托合成反应机理复杂,涉及多个反应步骤。
主要反应包括: - 一氧化碳和氢气的加氢反应生成醇类化合物; - 醇类化合物的脱水反应生成烯烃; - 烯烃的聚合反应生成烷烃。
4. 费托合成产物费托合成反应产物种类繁多,包括液体燃料和化工产品。
主要的产物有: - 烷烃:包括甲烷、乙烷、丙烷等,是费托合成的主要产品之一。
烷烃具有较高的热值和稳定性,可用作燃料和化工原料。
- 醇类化合物:包括甲醇、乙醇、丙醇等,是费托合成的中间产物。
醇类化合物具有较高的溶解性和反应活性,可用于合成其他有机化合物。
- 烯烃:包括乙烯、丙烯、丁烯等,是费托合成的重要产物之一。
烯烃具有较高的反应活性和催化活性,可用于合成聚合物和化工产品。
- 氧化物:包括醛、酮、酸等,是费托合成的副产物。
氧化物具有较高的化学活性,可用于合成其他有机化合物。
5. 费托合成产物分布费托合成产物的分布受多种因素影响,包括反应条件、催化剂选择、反应器设计等。
不同的反应条件和催化剂选择会导致产物分布的差异。
一般来说,低温和高压条件下,费托合成反应产物以烷烃为主。
随着反应温度的升高,烯烃和醇类化合物的产量逐渐增加。
此外,催化剂的选择也会对产物分布产生影响。
铁基催化剂通常偏向于产生烯烃和醇类化合物,而钴基催化剂则更倾向于产生烷烃。
在实际工业生产中,费托合成产物的分布通常通过优化反应条件和催化剂选择来实现。
费托合成原理及应用费托合成原理是指在高压和高温条件下,通过将碳(C)和氢(H)进行反应合成氢气(H2)和甲烷(CH4)。
费托合成技术是一种用于生产合成气和液体燃料的重要工艺。
费托合成反应的化学方程式如下:2H2 + CO -> CH3OH3H2 + CO -> CH4 + H2O费托合成原理主要基于以下几个步骤。
第一步是水气反应。
水蒸气(H2O)和一氧化碳(CO)通过水气反应生成氢气(H2)和二氧化碳(CO2)。
CO + H2O -> CO2 + H2第二步是水煤气变换反应(WGS反应)。
一氧化碳和水蒸气通过水煤气变换反应生成二氧化碳和氢气。
CO + H2O -> CO2 + H2第三步是甲烷合成反应。
在合成气中,氢气和一氧化碳经过甲烷合成反应生成甲烷。
2H2 + CO -> CH3OH由于费托合成原理只需碳和水素两种元素即可,因此可以使用各种碳源,如煤、天然气、生物质等。
此外,该工艺还可以用于合成多种液体燃料,如甲醇、烯烃等。
费托合成技术具有以下几个重要应用。
1. 液体燃料生产:费托合成技术可用于生产多种液体燃料,如甲醇、柴油等。
这些燃料具有高燃烧效率和低污染排放的特点。
2. 氢气生产:费托合成反应可产生大量的氢气。
氢气是一种清洁能源,被广泛用于工业生产和能源转化。
3. 一次性化学品生产:费托合成技术可用于生产一次性化学品,如单体、溶剂等。
这些化学品在医疗、工业和日常生活中有广泛的应用。
4. 合成氨生产:费托合成技术可用于生产合成氨。
合成氨是一种重要的化学原料,广泛用于农业肥料和化学工业。
5. 温室气体减排:费托合成技术可将二氧化碳捕获并储存,从而减少温室气体排放。
这对于应对气候变化具有重要意义。
总之,费托合成原理及其应用对于提高能源利用效率、减少污染和推动可持续发展具有重要意义。
随着技术的进步,费托合成技术的应用前景将更加广阔。
一氧化碳氢气费托合成一氧化碳、氢气和费托合成是三个与化学和工业领域紧密相关的概念。
本文将围绕这三个主题展开,探讨它们的特性、应用和相关的实验方法。
一氧化碳是一种无色、无味、无臭的气体,由一分子碳和一分子氧组成。
它是一种重要的工业原料和中间体,广泛应用于化学制品的合成、金属冶炼和燃料燃烧等领域。
然而,一氧化碳也是一种有毒气体,对人体健康有害。
因此,在使用一氧化碳时必须注意安全措施,确保其不会对人体造成伤害。
氢气是一种轻、无色、无臭的气体,由两个氢原子组成。
它是宇宙中最常见的元素之一,也是地球上最轻的元素。
氢气具有高燃烧性和高能量密度的特点,因此广泛应用于能源领域,如氢燃料电池。
此外,氢气还可用于合成氨、氢化脱氧等化学反应中,具有重要的工业价值。
费托合成是一种将一氧化碳和氢气转化为有机化合物的重要工艺。
它是一种催化反应,利用特定的催化剂将一氧化碳和氢气转化为碳氢化合物,如甲烷、乙烷等。
费托合成广泛应用于石油化工和化学工业中,用于合成燃料、塑料、化肥等化学品。
通过费托合成,可以高效地利用一氧化碳和氢气这两种廉价而丰富的原料,为工业生产提供了可持续发展的解决方案。
在实验室中,可以通过不同的方法合成一氧化碳和氢气。
例如,一氧化碳可以通过将碳与氧反应,或者通过将二氧化碳还原而得到。
氢气可以通过电解水或者与金属反应来制备。
费托合成实验则需要特定的催化剂和反应器,将一氧化碳和氢气加热并加入适量的催化剂,通过催化剂的作用,将一氧化碳和氢气转化为有机化合物。
在化学工业中,一氧化碳和氢气的合成和利用具有重要意义。
一方面,它们是许多化学品合成的关键原料;另一方面,它们的高能量密度和可再生性也使它们成为可持续发展的能源选择。
然而,由于一氧化碳的有毒性和氢气的易燃性,安全性是使用和储存这两种气体时必须要考虑的重要问题。
总结起来,一氧化碳、氢气和费托合成是与化学和工业领域密切相关的概念。
它们在化学品合成、能源开发和工业生产等方面具有重要的应用和意义。
费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍)间接液化概念间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
费托合成(F-T)综述综述F-T合成的基本原料为合成⽓,即CO和H2。
F-T合成⼯艺中合成⽓来源主要有煤、天然⽓和⽣物质。
以煤为原料,通过加⼊⽓化剂,在⾼温条件下将煤在⽓化炉中⽓化,然后制成合成⽓(H2+CO),接着通过催化剂作⽤将合成⽓转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。
煤间接液化⼯艺主要有:Fischer-Tropsch ⼯艺和莫⽐尔(Mobil)⼯艺。
典型的Fischer-Tropsch⼯艺指将由煤⽓化后得到的粗合成⽓经脱硫、脱氧净化后,根据使⽤的F-T合成反应器,调整合成⽓的H2/CO ⽐,在反应器中通过合成⽓与固体催化剂作⽤合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加⼯成汽油、柴油、航空煤油、⽯蜡等成品。
F-T合成早已实现⼯业化⽣产,早在⼆战期间,德国的初产品⽣产能⼒已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。
⼆战之后,由于⽯油的迅述兴起,间接液化技术⼀度处于停滞状态。
期间,南⾮由于种族隔离制度⽽被“禁油”,不得不⼤⼒发展煤间接液化技术。
但是随着70年代⽯油危机的出现,间接液化技术再次受到强烈关注。
同时,由间接液化出来的合成液体燃料相⽐由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。
80年代后,国际上,⼀些⼤的⽯油公司开始投资研发GTL相关技术和⼯艺[1]。
⽬前南⾮建有3座间接液化⼚。
马来西亚(Shell公司)和新西兰(Mobil 公司)各建有⼀座天然⽓基间接液化⼚。
综述F-T合成的基本原料为合成气,即CO和H2。
F-T合成工艺中合成气来源主要有煤、天然气和生物质。
以煤为原料,通过加入气化剂,在高温条件下将煤在气化炉中气化,然后制成合成气(H2+CO),接着通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。
煤间接液化工艺主要有:Fischer-Tropsch 工艺和莫比尔(Mobil)工艺。
典型的Fischer-Tropsch工艺指将由煤气化后得到的粗合成气经脱硫、脱氧净化后,根据使用的F-T合成反应器,调整合成气的H2/CO 比,在反应器中通过合成气与固体催化剂作用合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加工成汽油、柴油、航空煤油、石蜡等成品。
F-T合成早已实现工业化生产,早在二战期间,德国的初产品生产能力已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692−1744 )。
二战之后,由于石油的迅述兴起,间接液化技术一度处于停滞状态。
期间,南非由于种族隔离制度而被“禁油”,不得不大力发展煤间接液化技术。
但是随着70年代石油危机的出现,间接液化技术再次受到强烈关注。
同时,由间接液化出来的合成液体燃料相比由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。
80年代后,国际上,一些大的石油公司开始投资研发GTL相关技术和工艺[1]。
目前南非建有3座间接液化厂。
马来西亚(Shell公司)和新西兰(Mobil 公司)各建有一座天然气基间接液化厂。
费托合成工艺学习分析报告本科Final approval draft on November 22, 2020关于煤间接液化技术“费-托合成”的学习报告报告说明F-T合成作为煤的间接液化的重要工艺,有着广泛的应用。
本文将分别报告作者在F-T合成的基本原理、高低温工艺、催化剂以及F-T合成新工艺的学习情况。
在以上学习的基础上,报告末尾有本人对F-T合成工艺改进的一点设想和建议。
一、F-T合成的基本原理主反应生成烷烃:nCO+(2n+1)H2==H H H2H+2+HH2H(1)(n+1)H2+2HHH==H H H2H+2+HHH2(2)生成烯烃:nCO+2n H2==H H H2H+HH2H(3)n H2+2HHH==H H H2H+HHH2(4)副反应生成含氧有机物:nCO+2n H2==H H H2H+HH2H(5)nCO+(2n−2)H2=H H H2H H2+(H−2)H2H(6)(n+1)CO+(2n+1)H2==H H H2H+1HHH+HH2H(7)生成甲烷:CO+3H2==HH4+H2H(8)积碳反应:CO+H2==H+H2H(9)歧化反应:2CO==C+C H2(10)F-T合成利用合成气在炉内反应生成液体燃料,1-4式为目标反应,其中1和3是生产过程中主要反应。
其合成的烃类基本为直链型、烯烃基本为1-烯烃。
5-7式会生成含氧有机物的反应会降低产品品质;8式生成甲烷虽然是优质燃料但价值不高(原料合成气也为气体),往往需要分离出来进行制氢,构成循环;积碳反应主要是会对催化剂产生影响,温度过高时积碳反应产生的碳会镀在催化剂上(结焦现象),堵塞孔隙,造成催化剂失效。
二、高温工艺与低温工艺反应温度不同,F-T合成液体产物C数目也不同(或者说选择性不同),基本上呈温度变高,碳链变短的趋势。
低温工艺约在200-240摄氏度下反应,即可使用Fe催化剂也可用Co系催化剂,后者效果较好,产物主要是柴油、润滑油和石蜡等重质油品。
前言费托合成(F-T合成)是指合成气(H2+CO)在一定的反应温度和压力下经催化转化为烃类产物的反应[1],是煤、天然气、生物质等含碳资源间接转化为液体燃料的关键步骤。
目前具有工业应用价值的F-T合成催化剂主要有铁基和钴基催化剂,两类催化剂均需经还原预处理才能获得合适的反应活性[2],而还原后催化剂的物相结构将直接影响催化剂的反应性能和运转寿命[3-5],因此研究催化剂的还原预处理对F-T合成过程的优化具有重要意义。
对于低温(220~250℃)F-T合成工艺的Fe-Cu系催化剂,Bukur等[4,5]研究了在不同还原气氛(H2、CO和合成气)中催化剂物相结构的变化规律,发现在H2还原过程中主要生成α-Fe/Fe3O4的混合物相,随后在合成气反应状态下进一步转化为铁碳化物相;而在CO或合成气还原气氛中则主要形成铁碳化物或与Fe3O4的混合物相。
郝庆兰等[6,7]详细考察了各种还原条件对Fe-Cu系催化剂的浆态床F-T 合成反应性能的影响,认为在高的CO转化率的反应条件下,反应体系中H2O/H2比例较高时,部分铁碳化物会被氧化生成Fe3O4,形成铁碳化物与Fe3O4的动态平衡。
此外,铁碳化物相又是由多种复杂晶相构成的,如χ-Fe5C2、ε-Fe2C、έ-Fe2.2C、θ-Fe3C、Fe7C3等[8],目前对铁催化剂还原态物相结构与反应性能的关联尚无明确结论。
Fe-Mn催化剂最早用于固定床工艺的低碳烯烃或轻质液态烃的合成[9]。
近年来,中科院山西煤炭化学研究所提出了采用改性的Fe-Mn催化剂,实现高温(260~280℃)浆态床F-T合成轻质馏分油新工艺概念,杨勇等[10]通过喷雾干燥成型技术研制出适合浆态床F-T合成工艺使用的微球状Fe-Mn-K-SiO2催化剂,该类催化剂在体现高的反应活性的基础上表现出较高的中间馏分段(C8-C22)烃的选择性和较低的重质蜡的选择性。
在该催化剂中,Mn助剂和粘结剂SiO2的同时引入,对Fe-Mn系催化剂的还原和活性相结构均有较大影响,与Fe-Cu系催化剂的还原行为亦有较大差异[10,11]。
费-托合成费-托合成最早是由德国科学家FranFicher和HanTropch于1923首先发现的,就以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成(主要反应是nCO+2nH2=nCH2+nH2O)。
研究方向主要包括几个方面:催化剂(包括催化剂的制备、表征、组成以及活性选择性研究),费-托合成反应机理(包括反应动力学和反应机理,费-托合成反应比较复杂,虽然反应物很简单,但是产物很复杂,相关机理研究一直没有中断,关于机理,说法很多,但一直没有很明确的定论),费-托合成反应器研究(也是比较重要的一个分支,现在主要集中在反应器的结构与改进研究方面,重点集中在浆态床反应器),费-托合成工业化研究(包括工业催化剂、工艺以及工业反应器的开发和改进,这是最大的一块)。
再讲讲研究单位,在国外除了高校和科研院所外主要集中在能源公司和催化剂公司,比如已经工业化应用的南非Saol,荷兰Shell两家,还有其他一些没有大规模工业应用,只是中试开发的公司,这些公司主要分为以下几种:大的石油公司如E某某onMobil、Statoil、BP、ConocoPhillip、Chevron;专业做合成油的公司如Rentech、Syntroleum;还有一些专业做催化剂的公司如JohnonMatthey、Albemarle等。
在国内,研究大部分还是集中在高校和科研院所,比如山西煤化所(已经做到工业化示范装置,16万吨级别的,这是国内最先进的),大连化物所(除了基础研究外,也作了工业化应用,主要是和中石化合作,也和BP有合作,现在在浙江镇海有一套天然气液化10吨/天的中试装置),这两家是国内科研院所的领头羊,再就是高校系统(大部分做一些基础研究),做得比较有系统地的包括厦门大学、中国石油大学,北京大学(寇元做了水相Ru的费-托合成),浙江工业大学,四川大学、中南民族大学,还有其他一些学校做的规模比较小就不一一列举了。
除了以上一些高校和科研院所外,就是一些公司企业了,包括中石化、中石油、中海油下属的一些研究院和催化剂公司,除此之外,还有兖矿、神华、凯迪电力、金巢国际等,还有一些企业是跟上述一些科研院所、企业及高校合作开发的,这里就不提了。
费托合成费托合成(Fischer-Tropsch synthesis)是煤间接液化技术之一,可简称为FT反应,它以合成气(CO和H2)为原料在催化剂(主要是铁系) 和适当反应条件下合成以石蜡烃为主的液体燃料的工艺过程。
1923年由就职于Kaiser Wilhelm 研究院的德国化学家Franz Fischer 和Hans Tropsch开发,第二次世界大战期间投入大规模生产。
其反应过程可以用下式表示:nCO+2nH2─→[-CH2-]n+nH2O 副反应有水煤气变换反应H2O + CO →H2 + CO2 等。
一般来说,烃类生成物满足Anderson-Schulz-Flor分布。
费托合成总的工艺流程主要包括煤气化、气体净化、变换和重整、合成和产品精制改质等部分。
合成气中的氢气与一氧化碳的摩尔比要求在2~2.5。
反应器采用固定床或流化床两种形式。
如以生产柴油为主,宜采用固定床反应器;如以生产汽油为主,则用流化床反应器较好。
此外,近年来正在开发的浆态反应器,则适宜于直接利用德士古煤气化炉或鲁奇熔渣气化炉生产的氢气与一氧化碳之摩尔比为0.58~0.7的合成气。
铁系化合物是费托合成催化剂较好的活性组分。
研究进展传统费托合成法是以钴为催化剂,所得产品组成复杂,选择性差,轻质液体烃少,重质石蜡烃较多。
其主要成分是直链烷烃、烯烃、少量芳烃及副产水和二氧化碳。
50年代,中国曾开展费托合成技术的改进工作,进行了氮化熔铁催化剂流化床反应器的研究开发,完成了半工业性放大试验并取得工业放大所需的设计参数。
南非萨索尔公司在1955年建成SASOL-I小型费托合成油工厂,1977年开发成功大型流化床Synthol反应器,并于1980年和1982年相继建成两座年产1.6Mt的费托合成油工厂(SASOL-Ⅱ、SASOL-Ⅲ)。
此两套装置皆采用氮化熔铁催化剂和流化床反应器。
反应温度320~340℃,压力2.0~2.2MPa。
产品组成为甲烷11%、C2~C4烃33%、C5~C8烃44%、C9以上烃6%、以及含氧化合物6%。
费托合成工艺简介费托合成(Fischer–Tropsch process),又称F-T合成,是将煤由气态转变成液态烃的技术之一,以CO和H2的合成气为原料在合适的催化剂及条件的促进下,合成以汽柴油、石蜡烃等为主的液体燃料的工艺过程。
费托合成反应原理主反应:生成烷烃:nCO+(2n+1)H2= C n H2n+2+nH2O生成烯烃:nCO+(2n)H2 = CnH2n+nH2O副反应:生成甲烷:CO+3H2 = CH4+H2O生成甲醇:CO+2H2= CH3OH生成乙醇:2CO+4H2 = C2H5OH+ H2O积炭反应:2CO = C+CO2除了以上反应以外,还有生成更高碳数的醇以及醛、酮、酸、酯等含氧化合物的副反应。
按反应温度可分为低温费托合成工艺和高温费托合成工艺。
通常将反应温度低于280℃的称为低温费托合成工艺,产物主要是柴油以及高品质石蜡等,常采用固定床或浆态床反应器;高于300℃的称为高温费托合成工艺,产物主要是汽油、柴油、含氧有机化学品和烯烃,常采用流化床(循环流化床、固定流化床)反应器。
低温费托合成工艺产品相对来说比较单一,产品以柴油为主,占到75%左右。
其余为石脑油、液化气和部分高品质石蜡。
高温费托合成工艺产品种类更加多样化,不但有汽油、柴油、溶剂油,还有烯烃、烷烃、含氧化合物等,其中烯烃含量能达到40%左右,且以直链烯烃为主,这些产品的附加值比较高。
几种常见的费托合成反应器1固定床反应器(Arge反应器)固定床反应器首先由鲁尔化学(Ruhrchemir)和鲁奇(Lurge)两家公司合作开发而成,简称Arge反应器。
1955年第一个商业化Arge反应器在南非建成投产。
反应器直径3米,由2052根管子组成,管内径5厘米,长12米,体积40m3,管外为沸腾水,通过水的蒸发移走管内的反应热,产生蒸汽。
管内装填了挤出式铁催化剂。
通常多管固定床反应器的径向温差为大约2~4°C。
轴向温度差为15~20°C。
生物质的费托合成工艺一、引言生物质是一种可再生的资源,其利用对于环境保护和可持续发展具有重要意义。
费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,具有广泛的应用前景。
本文将从费托合成工艺的原理、优势和应用等方面进行探讨。
二、费托合成工艺的原理费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,其原理是将生物质通过热解、气化等方式转化为合成气,再将合成气通过费托反应器进行催化反应,最终得到液体燃料和化学品。
三、费托合成工艺的优势1. 可再生性:生物质是一种可再生的资源,其利用对于环境保护和可持续发展具有重要意义。
2. 降低碳排放:费托合成工艺可以将生物质转化为液体燃料和化学品,从而降低碳排放。
3. 多样性:费托合成工艺可以利用多种生物质进行转化,具有较高的适应性。
4. 经济性:费托合成工艺可以将生物质转化为高附加值的液体燃料和化学品,具有较高的经济效益。
四、费托合成工艺的应用1. 生物质液体燃料:费托合成工艺可以将生物质转化为液体燃料,如生物柴油、生物汽油等,具有广泛的应用前景。
2. 生物质化学品:费托合成工艺可以将生物质转化为化学品,如甲醇、乙醇等,具有广泛的应用前景。
3. 生物质能源:费托合成工艺可以将生物质转化为能源,如生物气、生物煤等,具有广泛的应用前景。
五、结论费托合成工艺是一种将生物质转化为液体燃料和化学品的技术,具有可再生性、降低碳排放、多样性和经济性等优势,其应用前景广阔。
在未来的发展中,费托合成工艺将成为生物质利用的重要途径,为环境保护和可持续发展做出贡献。
费托合成产品分布影响分析摘要:现行费托合成技术主要是依靠煤炭和天然气蒸汽混合进行深度脱硫技术而得到的不同的液体燃料的一种先进技术,费托合成技术获得燃料油具有高效清洁的作用。
费托合成反应的进行,催化剂的影响较显著,对于生成的烯烃、烷烃、副产物甲烷和乙醇等等,其组成成分服从ASF分布规律,对于不同的反应条件,使得系统的反应呈现不同的趋势,该文采用壳牌气化炉技术,将粗煤气后经一氧化碳变换器变换,由低温甲醇洗脱除二氧化碳,得到适当H2/CO比的合成气,经由费托合成反应生成目标产品,本文针对费托合成技术对产品分布影响分析,全面而系统的阐述费托合成技术中反应温度、反应压力、反应时间、H2/CO比例、合成气空速等对合成产物的影响等,并根据生产实际进行标定存在的问题并提出相应建议,以满足生产实际。
关键词:费-托合成煤炭和天然气操作条件催化剂产物生产实际早在20世纪初,费托合成技术开始走进人们视野,费托合成主要是依靠煤炭和天然气蒸汽混合进行深度脱硫技术而得到不同液体燃料一种先进技术。
20世纪早期,Sabatier和Senderens将一氧化碳转化为气态轻质烃类物质;1922年左右,德国Franz Fischer和Hans Tropsch对该技术进行进一步研究发展,随后的1925年,德国开始探索费托合成技术,并于1934年成功兴建世界上第一个F-T合成油厂,在短短的10年时间内,德国相继建立多家炼油厂。
1955年,南非Sasol 公司兴建第一家采用费托合成技术的炼油厂Sasolburg。
进入21世纪,美国、俄国、中国、日本、尼日尼亚等国家均相继开始建立费托合成技术炼燃料油厂;2006年我国神华集团与南非的Sasol 公司合资在内蒙古建立万吨燃料油炼油厂,同年2月,山西潞安矿物局煤基合成油示范厂完工,旨在计划年产16万t燃料油,费托合成技术把CO 和氢气转化为我们所用的燃料油是世界用油的必然趋势。
费托合成技术获得燃料油,具有高效清洁的作用。