贵阳市中考数学试题含答案解析
- 格式:docx
- 大小:289.10 KB
- 文档页数:27
贵州省贵阳市2022年中考[数学]考试真题与答案解析一、选择题以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共36分.1. 下列各数为负数的是()A. B. 0C. 3D. 【答案】A【解析】是负数.故选A .2. 如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是( )A. B. C. D.【答案】B【解析】用平行底面的平面截圆锥体,截面是圆形,故选:B .3. 中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为()2-2-A. B. C. D. 【答案】C 【解析】1200=1.2×103,故选:C .4. 如图,将菱形纸片沿着线段剪成两个全等图形,则的度数是( )A 40° B. 60° C. 80° D. 100°【答案】C【解析】∵纸片是菱形,∴对边平行且相等∴(两直线平行,内错角相等)故选:C .5.x 的取值范围是A. x ≥3B. x ≤3C. x >3D. x <3【答案】A【解析】由题意得.解得x ≥3,故选:A .6. 如图,在中,是边上的点,,,则与的周长比是( )A. B. C. D. 【答案】B 的.40.1210⨯41.210⨯31.210⨯21210⨯AB 1∠180∠=︒30x -≥ABC V D AB B ACD ∠=∠:1:2AC AB =ADC V ACB △1:1:21:31:4【解析】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴,∵,∴,∴,∴△ADC 与△ACB 的周长比1:2,故选:B .7. 某校九年级选出三名同学参加学校组织的“法治和安全知识竞赛”.比赛规定,以抽签方式决定每个人的出场顺序,主持人将表示出场顺序的数字1,2,3分别写在3张同样的纸条上,并将这些纸条放在一个不透明的盒子中,搅匀后从中任意抽出一张,小星第一个抽,下列说法中正确的是()A. 小星抽到数字1的可能性最小B. 小星抽到数字2的可能性最大C. 小星抽到数字3的可能性最大D. 小星抽到每个数的可能性相同【答案】D【解析】每个数字抽到的概率都为:,故小星抽到每个数的可能性相同.故选:D .8. 如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的大正方形,若图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是( )AC AD CD AB AC BC ==12AC AB =12AC AD CD AB AC BC ===12AC AD CD AC AD CD AB AC BC AB AC BC ++====++13A. 4B. 8C. 12D. 16【答案】B 【解析】图中的直角三角形的两条直角边的长分别为1和3,则中间小正方形的周长是.故选B .9. 如图,已知,点为边上一点,,点为线段的中点,以点为圆心,线段长为半径作弧,交于点,连接,则的长是( )A. 5B. C. D. 【答案】A 【解析】连接OE ,如图所示:∵,点为线段的中点,∴,()4318⨯-=60ABC ∠=︒D BA 10BD =O BD O OB BC E DEBE10BD =O BD 5OB OD ==∵以点为圆心,线段长为半径作弧,交于点,∴,∴,∴为等边三角形,即,故选:A .10. 如图,在平面直角坐标系中有,,,四个点,其中恰有三点在反比例函数的图象上.根据图中四点的位置,判断这四个点中不在函数的图象上的点是( )A. 点B. 点C. 点D. 点【答案】C【解析】在第一象限内随的增大而减小,用平滑的曲线连接发现点不在函数的图象上故选CO OB BC E 5OE OB OD ===60ABC OEB ∠=∠=︒OBE △5BE OE OB ===P Q M N ()0k y k x =>k y x =PQ M N ()0k y k x=>y x M k y x=11. 小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是()A. 5,10B. 5,9C. 6,8D. 7,8【答案】C【解析】数列5,5,6,7,8,9,10的众数是5,中位数是7,去掉两个数后中位数和众数保持不变,据此逐项判断:A 项,去掉5之后,数列的众数不再是5,故A 项错误;B 项,去掉5之后,数列的众数不再是5,故B 项错误;C 项,去掉6和8之后,新数列的中位数和众数依旧保持不变,故C 项正确;D 项,去掉7和8之后,新数列的中位数为6,发生变化,故D 项错误,故选:C .12. 在同一平面直角坐标系中,一次函数与的图象如图所示,小星根据图象得到如下结论:①在一次函数的图象中,的值随着值的增大而增大;②方程组的解为;③方程的解为;y ax b =+()0y mx n a m =+<<y mx n =+y x y ax b y mx n -=⎧⎨-=⎩32x y =-⎧⎨=⎩0mx n +=2x =④当时,.其中结论正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】由一次函数的图象过一,二,四象限,的值随着值的增大而减小;故①不符合题意;由图象可得方程组的解为,即方程组的解为;故②符合题意;由一次函数的图象过 则方程的解为;故③符合题意;由一次函数的图象过 则当时,.故④不符合题意;综上:符合题意有②③,故选B二、填空题13. 因式分解:_________.【答案】【解析】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).14. 端午节到了,小红煮好了10个粽子,其中有6个红枣粽子,4个绿豆粽子.小红想从煮好的粽子中随机捞一个,若每个粽子形状完全相同,被捞到的机会相等,则她捞到红枣粽子的概率是_______.【答案】##0.6的0x =1ax b +=-y mx n =+y x y ax b y mx n =+⎧⎨=+⎩32x y =-⎧⎨=⎩y ax b y mx n -=⎧⎨-=⎩32x y =-⎧⎨=⎩y mx n =+()2,0,0mx n +=2x =y ax b =+()0,2,-0x =2ax b +=-22a a +=(2)a a +35【解析】6÷10=,即捞到红枣粽子概率为.故答案为:.15. “方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数,的系数与相应的常数项,即可表示方程,则表示的方程是_______.【答案】【解析】表示的方程是故答案为:【点睛】本题考查了列二元一次方程组,理解题意是解题的关键.16. 如图,在四边形中,对角线,相交于点,,.若,则的面积是_______,_______度.【答案】①. ## ②. 的353535x y423x y +=232x y +=232x y +=232x y +=ABCD AC BD E 6cm AC BC ==90ACB ADB ∠=∠=︒2BE AD =ABE △2cm AEB ∠=36-36-+112.5【解析】,,,,设,,,,在中,由勾股定理得,,解得或,对角线,相交于点,,,,90,ACB ADB AED BEC ∠=∠=︒∠=∠ ADE BCE ∴V :V AD AE BC BE∴=6,2BC AC BE AD === ,2AD m BE m ==62m AE m∴=23m AE ∴=263m CE ∴=-Rt BCE V 222BC CE BE +=22226(6(2)2m m ∴+-=236m =-236m =+ AC BD E 236m ∴=-12AE ∴=-6CE ∴=-∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=-V过点E 作EF ⊥AB ,垂足为F ,,,,,,,,故答案为:,.三、解答题本大题9小题,共98分,解答应写出必要的文字说明、证明过程或演算步骤.17. (1)a ,b 两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a _______b ,ab _______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x 2+2x −1=0;②x 2−3x =0;③x 2−4x =4;④x 2−4=0.【答案】(1)<,<;(2)①x 1,x 2;②x 1=0,x 2=3;③x 1=2+x 2=2-x 1=-2,x 2=2.【解析】(1)由题意可知:a <0,b >0,∴a <b ,ab <0;故答案为:<,<;90,ACB AC BC ∠=︒= 45BAC ABC AEF ∴∠=∠=︒=∠6AE AF AE CE ∴===-=BE BE = ()Rt BCE Rt BFE HL ∴≅V V 122.52EBF EBC ABC ∴∠=∠=∠=︒112.5AEB ACB EBC ∴∠=∠+∠=︒36-112.5(2)①x 2+2x −1=0;移项得x 2+2x =1,配方得x 2+2x +1=1+1,即(x +1)2=2,则x,∴x 1,x 2;②x 2−3x =0;因式分解得x (x -3)=0,则x =0或x -3=0,解得x 1=0,x 2=3;③x 2−4x =4;配方得x 2-4x +4=4+4,即(x -2)2=8,则x -2=±∴x 1=2+x 2=2-④x 2−4=0.因式分解得(x +2) (x -2)=0,则x +2=0或x -2=0,解得x 1=-2,x 2=2.18. 小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择_______统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是_______万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.【答案】(1)折线(2)2021年我国货物进出口顺差是万亿元.(3)答案见解析【小问1详解】解:选择折线统计图比较合适,这种统计图不仅能表示数量的多少,还能反映出数量间的增减变化情况.【小问2详解】(万亿元)∴2021年我国货物进出口顺差是万亿元.【小问3详解】2019年至2021年进出口的总额总的来说呈现上升的趋势.出口逐年递增,进口先少量递减,再递增.4.3621.7317.37 4.36-= 4.36【点睛】本题考查的是从条形统计图与折线统计图中获取信息,根据信息再做出决策,掌握以上统计知识是解本题的关键.19. 一次函数的图象与反比例函数的图象相交于,两点.(1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的的取值范围.【答案】(1) (2)或者【小问1详解】∵A 、B 点是一次函数与反比例函数的交点,∴A 、B 点在一次函数上,∴当x =-4时,y =1;当y =-4时,x =1,∴A (-4,1)、B (1,-4),将A 点坐标代入反比例函数,∴,即k =-4,3y x =--k y x=()4,A m -(),4B n -x 4y x=-40x -<<1x >3y x =--k y x =3y x =--k y x=14k =-即反比例函数的解析式为:【小问2详解】一次函数值小于反比例函数值,在图象中表现为,一次函数图象在反比例函数图象的下方,∵A (-4,1)、B (1,-4),∴一次函数值小于反比例函数值的x 的取值范围为:或者.20. 国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【解析】【分析】设小货车货运量吨,则大货车货运量,根据题意,列出分式方程,解方程即可求解.【解析】设小货车货运量吨,则大货车货运量,根据题意,得,,解得,经检验,是原方程的解,吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.21. 如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.4y x=-40x -<<1x >x ()4x +x ()4x +80604x x=+12x =12x =412416x +=+=ABCD E AD BE BE AB M CD N O F DC MF AD ∥(1)求证:;(2)若,,求的长.【答案】(1)见详解(2)【小问1详解】在正方形ABCD 中,有AD =DC =CB =AB ,∠A =∠D =∠C =90°,,,∵,∠A =∠D =90°,,∴四边形ADFM 是矩形,∴AD =MF ,∠AMF =90°=∠MFD ,∴∠BMF =90°=∠NFM ,即∠BMO +∠OMF =90°,AB =AD =MF ,∵MN 是BE 的垂直平分线,∴MN ⊥BE ,∴∠BOM =90°=∠BMO +∠MBO ,∴∠MBO =∠OMF ,∵,∴△ABE ≌△FMN ;ABE FMN ≌△△8AB =6AE =ON 254BC AD ∥AB DC ∥MF AD ∥AB DC ∥90NFM A MF AB OMF MBO ⎧∠=∠=⎪=⎨⎪∠=∠⎩【小问2详解】连接ME ,如图,∵AB =8,AE =6,∴在Rt △ABE 中,,∴根据(1)中全等的结论可知MN =BE =10,∵MN 是BE 的垂直平分线,∴BO =OE==5,BM =ME ,∴AM =AB -BM =8-ME ,∴在Rt △AME 中,,∴,解得:,∴,∴在Rt △BMO 中,,∴,∴ON =MN -MO =.即NO 的长为:.10===BE 12BE 222AM AE ME +=222(8)6ME ME -+=254ME =254BM ME ==222MO BM BO =-154MO ===15251044-=25422. 交通安全心系千万家.高速公路管理局在某隧道内安装了测速仪,如图所示的是该段隧道的截面示意图.测速仪和测速仪到路面之间的距离,测速仪和之间的距离,一辆小汽车在水平的公路上由西向东匀速行驶,在测速仪处测得小汽车在隧道入口点的俯角为25°,在测速仪处测得小汽车在点的俯角为60°,小汽车在隧道中从点行驶到点所用的时间为38s (图中所有点都在同一平面内).(1)求,两点之间的距离(结果精确到1m );(2)若该隧道限速22m/s ,判断小汽车从点行驶到点是否超速?通过计算说明理由.(参考数据:,,,,,)【答案】(1)760米(2)未超速,理由见解析【小问1详解】四边形是平行四边形四边形是矩形,C E 7m CD EF ==CE 750m CE =C A E B A B A B AB 1.7≈sin 250.4︒≈cos 250.9︒≈tan 250.5︒≈sin 650.9︒≈cos 650.4︒≈ ,,CD EF CD EF =∥∴CDFE ,CD AF EF AF⊥⊥∴CDFE 750DF CE ∴==在中,在中,答:,两点之间的距离为760米;【小问2详解】,小汽车从点行驶到点未超速.23. 如图,为的直径,是的切线,为切点,连接.垂直平分,垂足为,且交于点,交于点,连接,.(1)求证:;(2)当平分时,求证:;(3)在(2)的条件下,,求阴影部分的面积.【答案】(1)证明见解析 (2)证明见解析 (3)Rt ACD△25,tan CDCAD CAD AD∠=︒∠=7tan 250.5CD AD ∴=≈︒Rt BEF △60,tan EFEBF EBF BF∠=︒∠=7tan 60 1.7EF BF ∴=≈777507600.5 1.7AB AF BF AD DF BF ∴=-=+-=+-≈A B 760202238=<∴A B AB O e CD O e C BC ED OB E »BC F BC P BF CF DCP DPC ∠=∠BC ABF ∠CF AB ∥2OB =23π-【小问1详解】解:如图,连接 为的切线,【小问2详解】如图,连接OF ,垂直平分而为等边三角形,,CO DC O e 90,OCD OCB DCP \Ð=Ð+Ð=°,DE AB ⊥ 90,BPE PBE \Ð+Ð=°,,OC OB DPC BPE =Ð=ÐQ ,OCB OBC ∴∠=∠.DCP DPC \Ð=ÐFE ,OB ,FO FB \=,OF OB =BOF ∴V平分【小问3详解】为等边三角形,为等边三角形,24. 已知二次函数y =ax 2+4ax +b .(1)求二次函数图象的顶点坐标(用含a ,b 的代数式表示);(2)在平面直角坐标系中,若二次函数的图象与x 轴交于A ,B 两点,AB =6,60,FOB FBO \Ð=Ð=°16030,2FCB \Ð=°=°BC ,FBO Ð30,CBO FCB \Ð=°=Ð.FC AB \∥2,OB OFB =Q V 2,60,OF OC FOB \==Ð=°,CF AB ∥Q 60,OFC \Ð=°OCF△2,60,sin 60CF OF COF FE OF \==Ð=°=°g 12223COF COF S S S p \=-´´=-V 阴影扇形且图象过(1,c ),(3,d ),(−1,e ),(−3,f )四点,判断c ,d ,e ,f 的大小,并说明理由;(3)点M (m ,n )是二次函数图象上的一个动点,当−2≤m ≤1时,n 的取值范围是−1≤n ≤1,求二次函数的表达式.【答案】(1)二次函数图象的顶点坐标为(-2,b -4a );(2)当a <0时,e =f > c >d ;当a >0时,e =f < c <d ;理由见解析(3)二次函数的表达式为y=x 2x -或y =x 2x +.【小问1详解】解:∵y =ax 2+4ax +b =a (x 2+4x +4-4)+b = a (x +2)2+b -4a ,∴二次函数图象的顶点坐标为(-2,b -4a );【小问2详解】解:由(1)知二次函数的图象的对称轴为直线x =-2,又∵二次函数的图象与x 轴交于A ,B 两点,AB =6,∴A ,B 两点的坐标分别为(-5,0),(1,0),当a <0时,画出草图如图:∴e =f > c >d ;当a >0时,画出草图如图:2989+1929-89-19∴e =f < c <d ;【小问3详解】解:∵点M (m ,n )是二次函数图象上的一个动点,当a <0时,根据题意:当m =-2时,函数有最大值为1,当m =1时,函数值为-1,即,解得:,∴二次函数的表达式为y =x 2x+.当a >0时,根据题意:当m =-2时,函数有最小值为-1,当m =1时,函数值为1,即,解得:,∴二次函数的表达式为y =x 2x -.综上,二次函数的表达式为y =x 2x -或y =x 2x +.4141b a a a b -=⎧⎨++=-⎩2919a b ⎧=-⎪⎪⎨=⎪⎩29-89-194141b a a a b -=-⎧⎨++=⎩2919a b ⎧=⎪⎪⎨⎪=-⎪⎩2989+192989+1929-89-1925. 小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.(1)问题解决:如图①,当,将沿翻折后,使点与点重合,则______;(2)问题探究:如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;(3)拓展延伸:当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.【答案】(1(2) (3)作图见解析,【小问1详解】,是等边三角形,四边形是平行四边形,,ABCD □AN BC AD m AN=M AD BA BM =E AM BE ABE △BE FBE V 60BAD ∠=︒ABE △BE F M AM AN=45BAD ∠=︒ABE △BE EF BM ∥ABE ∠m 30BAD ∠=︒ABE △BE EF AD ⊥AE MD =m 22.5,2ABE m ∠=︒=1BA BM =60BAD ∠=︒ABM ∴V AB AM BM∴== ABCD AD BC ∴∥,为边上的高,,【小问2详解】,,是等腰直角三角形,,,,,,,,,是等腰直角三角形,为底边上的高,则点在边上,当时,取得最小值,最小值;【小问3详解】如图,连接,为60ABN BAM ∴∠=∠=︒ ANBC 1cos AM AB AN AN BAN ∴====∠ 45BAD ∠=︒BA BM =∴AMB V 45MBC AMB ∴∠=∠=︒ EF BM ∥45FEM AMB ∴∠=∠=︒()118045112.52AEB FEB ∴∠=∠=︒+︒=︒AD NC ∥ 45BAE ABN ∴∠=∠=︒18022.5ABE AEB BAE ∴∠=︒-∠-∠︒ AD m AN =AMB V AN 12AN AM = M AD ∴AD AM=m 2AM AN =FM,则,设, 则,,折叠,,,,,,,,,,,在中,,,延长交于点,如图,,,,,,在中,,,. 30BAD ∠=︒30ABN ∠=︒AN a =2AB a=NB == ∴2FB AB a == EF AD ⊥()1180901352AEB FEB ∴∠=∠=︒+︒=︒30EAB BAD ∠=∠=︒ 1803013515ABE ∴∠=︒-︒-︒=︒30ABF ∴∠=︒,30AB BM BAD =∠=︒ 120ABM ∴∠=︒30MBC AMB ∠=∠=︒ 12090FBM ABF ∴∠=︒-∠=︒Rt FBM △FB AB BM ==FM ∴==FE NC G EG GB ∴⊥153045EBG ABE ABN ∠=∠+∠=︒+︒=︒ GB EG a ∴==NB=)1AE EF MD a ∴===-Rt EFM△EM ==)1a=+))()22111AD AE EM MD AE EM a a a ∴=++=+=-+=1AD m AN ∴==。
贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣13.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m二、填空题:每小题4分,共20分11.不等式组的解集为.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡上填涂正确选项的字母框,每小题3分,共30分.1.下面的数中,与﹣6的和为0的数是()A.6 B.﹣6 C.D.﹣【考点】相反数.【分析】根据两个互为相反数的数相加得0,即可得出答案.【解答】解:与﹣6的和为0的是﹣6的相反数6.故选A.2.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.3.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【考点】平行线的性质.【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.4.5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.B.C.D.【考点】概率公式.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有200辆车,其中帕萨特60辆,∴随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率==.故选C.5.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.6.6月4日﹣5日贵州省第九届“贵青杯”﹣“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队成绩的()A.中位数B.平均数C.最高分D.方差【考点】统计量的选择.【分析】由于有45名同学参加全省中小学生器乐交流比赛,要取前23名获奖,故应考虑中位数的大小.【解答】解:共有45名学生参加预赛,全省中小学生器乐交流比赛,要取前23名获奖,所以某代表队已经知道了自己的成绩是否进入前23名.我们把所有同学的成绩按大小顺序排列,第23名的成绩是这组数据的中位数,此代表队知道这组数据的中位数,才能知道自己是否获奖.故选:A.7.如图,在△ABC中,DE∥BC,=,BC=12,则DE的长是()A.3 B.4 C.5 D.6【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,得出对应边成比例,即可求DE的长.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∵BC=12,∴DE=BC=4.故选:B.8.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.2cm B.4cm C.6cm D.8cm【考点】三角形的外接圆与外心;等边三角形的性质.【分析】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题.【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.设⊙O的半径为R,由等边三角形的性质知:∠OBC=30°,OB=R.∴BD=cos∠OBC×OB=R,BC=2BD=R.∵BC=12,∴R==4.故选B.9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A.B.C.D.【考点】函数的图象.【分析】根据给定s关于t的函数图象,分析AB段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论.【解答】解:观察s关于t的函数图象,发现:在图象AB段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.10.若m、n(n<m)是关于x的一元二次方程1﹣(x﹣a)(x﹣b)=0的两个根,且b<a,则m,n,b,a的大小关系是()A.m<ab<n B.a<m<n<b C.b<n<m<a D.n<b<a<m【考点】抛物线与x轴的交点.【分析】利用图象法,画出抛物线y=(x﹣a)(x﹣b)与直线y=1,即可解决问题.【解答】解:如图抛物线y=(x﹣a)(x﹣b)与x轴交于点(a,0),(b,0),抛物线与直线y=1的交点为(n,1),(m,1),由图象可知,n<b<a<m.故选D.二、填空题:每小题4分,共20分11.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<2,故不等式组的解集为:x<1.故答案为:x<1.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.【考点】利用频率估计概率.【分析】利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.【解答】解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.13.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b.【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.14.如图,已知⊙O的半径为6cm,弦AB的长为8cm,P是AB延长线上一点,BP=2cm,则tan∠OPA的值是.【考点】垂径定理;解直角三角形.【分析】作OM⊥AB于M,由垂径定理得出AM=BM=AB=4cm,由勾股定理求出OM,再由三角函数的定义即可得出结果.【解答】解:作OM⊥AB于M,如图所示:则AM=BM=AB=4cm,∴OM===2(cm),∵PM=PB+BM=6cm,∴tan∠OPA===;故答案为:.15.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【考点】全等三角形的判定;等腰直角三角形.【分析】分析:过点B作BD⊥AC于点D,则△△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8三、解答题:本大题10小题,共100分.16.先化简,再求值:﹣÷,其中a=.【考点】分式的化简求值.【分析】原式第二项利用除法法则变形,约分后两项利用同分母分式的减法法则计算得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•=﹣=,当a=+1时,原式=.17.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.【考点】列表法与树状图法.【分析】(1)由于控制第二排灯的开关已坏,所以所有灯都亮起为不可能事件;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图展示所有12种等可能的结果数,再找出关掉第一排与第三排灯的结果数,然后根据概率公式求解.【解答】解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮,所以将4个开关都闭合时,所以教室里所有灯都亮起的概率是0;故答案为0;(2)用1、2、3、4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率==.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为150;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据统计图可知,C等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A等级的学生数,B等级和D等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.111120.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.21.“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】首先过点D作DF⊥BC于点F,延长DE交AC于点M,进而表示出AM,DF的长,再利用AE=,求出答案.【解答】解:过点D作DF⊥BC于点F,延长DE交AC于点M,由题意可得:EM⊥AC,DF=MC,∠AEM=29°,在Rt△DFB中,sin80°=,则DF=BD•sin80°,AM=AC﹣CM=1790﹣1700•sin80°,在Rt△AME中,sin29°=,故AE==≈238.9(m),答:斜坡AE的长度约为238.9m.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和抛物线的交点坐标即可.【解答】解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x+,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规,作∠CAB的平分线,交⊙O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC=CD,求∠B的度数;(3)在(2)的条件下,OD交BC于点E,求由线段ED,BE,所围成区域的面积.(其中表示劣弧,结果保留π和根号)【考点】圆的综合题.【分析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数;(3)证出∠OEB=90°,在Rt△OEB中,求出OE=OB=2,由勾股定理求出BE,再由三角形的面积公式和扇形面积公式求出△OEB的面积=OE•BE=2,扇形BOD的面积═,所求图形的面积=扇形面积﹣△OEB的面积,即可得出结果.【解答】解:(1)如图1所示,AP即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°;(3)由(2)得:∠CAD=∠BAD,∠DAB=30°,又∵∠DOB=2∠DAB,∴∠BOD=60°,∴∠OEB=90°,在Rt△OEB中,OB=AB=4,∴OE=OB=2,∴BE===2,∴△OEB的面积=OE•BE=×2×2=2,扇形BOD的面积==,∴线段ED,BE,所围成区域的面积=﹣2.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【考点】三角形综合题.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.25.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c 的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为P(x1,y1),Q(x2,y2),当PQ平行x轴时,线段PQ的长度可由公式PQ=|x1﹣x2|求出;当PQ平行y轴时,线段PQ的长度可由公式PQ=|y1﹣y2|求出.【考点】二次函数综合题.【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【解答】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(﹣1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=﹣x2+4x+5;(2)如图1,∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=﹣x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=﹣x+5,设ND的长为d,N点的横坐标为n,则N点的纵坐标为﹣n+5,D点的坐标为D(n,﹣n2+4n+5),则d=|﹣n2+4n+5﹣(﹣n+5)|,由题意可知:﹣n2+4n+5>﹣n+5,。
贵州省贵阳市2022年中考数学真题试题一、选择题〔每题3分.共30分〕1. 当x=﹣1时,代数式3x+1的值是〔〕A. ﹣1B. ﹣2C. 4D. ﹣4【答案】B【解析】【分析】把x的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,应选B.【点睛】此题考查了代数式求值,熟练掌握运算法那么是解此题的关键.2. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,那么该线段是〔〕A. 线段DEB. 线段BEC. 线段EFD. 线段FG【答案】B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,应选B.【点睛】此题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3. 如图是一个几何体的主视图和俯视图,那么这个几何体是〔〕A. 三棱柱B. 正方体C. 三棱锥D. 长方体【答案】A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,应选A.【点睛】此题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4. 在“生命平安〞主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命平安知识掌握情况,小丽制定了如下方案,你认为最合理的是〔〕A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调査【答案】D【解析】【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调査,具有代表性和广泛性,合理,应选D.【点睛】此题考查了抽样调查,样本确实定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.5. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为〔〕A. 24B. 18C. 12D. 9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,应选A.【点睛】此题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 6. 如图,数轴上有三个点A、B、C,假设点A、B表示的数互为相反数,那么图中点C对应的数是〔〕A. ﹣2B. 0C. 1D. 4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,应选C.【点睛】此题主要考查了数轴,关键是正确确定原点位置.7. 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,那么tan∠BAC的值为〔〕A. B. 1 C. D.【答案】B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,那么tan∠BAC=1,应选B.【点睛】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解此题的关键.8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如下图位置的概率是〔〕A. B. C. D.【答案】A【解析】【分析】先找出符合的所有情况,再得出选项即可.【详解】如下图,共有12种情况,恰好摆放成如下图位置的只有1种,所以概率是,应选A.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=,能找出符合的所有情况是解此题的关键.9. 一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,那么点P的坐标可以为〔〕A. 〔﹣5,3〕B. 〔1,﹣3〕C. 〔2,2〕D. 〔5,﹣1〕【答案】C【解析】【分析】根据函数图象的性质判断系数k>0,那么该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,那么该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点〔﹣5,3〕代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点〔1,﹣3〕代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点〔2,2〕代入y=kx﹣1得到:k=>0,符合题意;D、把点〔5,﹣1〕代入y=kx﹣1得到:k=0,不符合题意,应选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10. 二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余局部不变,得到一个新函数〔如下图〕,请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是〔〕A. ﹣<m<3B. ﹣<m<2C. ﹣2<m<3D. ﹣6<m<﹣2【答案】D【解析】【分析】如图,解方程﹣x2+x+6=0得A〔﹣2,0〕,B〔3,0〕,再利用折叠的性质求出折叠局部的解析式为y=〔x+2〕〔x﹣3〕,即y=x2﹣x﹣6〔﹣2≤x≤3〕,然后求出直线•y=﹣x+m经过点A〔﹣2,0〕时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6〔﹣2≤x≤3〕有唯一公共点时m的值,从而得到当直线y=﹣x+m 与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,那么A〔﹣2,0〕,B〔3,0〕,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的局部图象的解析式为y=〔x+2〕〔x﹣3〕,即y=x2﹣x﹣6〔﹣2≤x≤3〕,当直线y=﹣x+m经过点A〔﹣2,0〕时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6〔﹣2≤x≤3〕有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,应选D.【点睛】此题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c〔a,b,c是常数,a≠0〕与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.二、填空題〔每题4分,共20分〕11. 某班50名学生在2022年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,那么该班在这个分数段的学生为_____人.【答案】10【解析】【分析】频率是指每个对象出现的次数与总次数的比值〔或者百分比〕,即频率=频数÷数据总数,进而得出即可.【详解】∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10,故答案为:10.【点睛】此题考查了频数与频率,熟练掌握频数与频率间的关系是解题的关键.12. 如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=〔x>0〕,y=﹣〔x>0〕的图象交于A点和B点,假设C为y轴任意一点.连接AB、BC,那么△ABC的面积为_____.【答案】【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为〔a,0〕那么点A坐标为〔a,〕,B点坐标为〔a,﹣〕∴S△ABC=S△ABO =S△APO+S△OPB==,故答案为:.【点睛】此题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.13. 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,那么∠MON的度数是_____度.【答案】72【解析】【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【详解】如图,连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点睛】此题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 关于x的不等式组无解,那么a的取值范围是_____.【答案】a≥2【解析】【分析】先把a当作条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】此题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.15. 如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,那么对角线EG长的最小值为_____.【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,那么AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=〔4﹣x〕,由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,那么AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴,即,那么EF=DG=〔4﹣x〕,∴EG===,∴当x=时,EG取得最小值,最小值为,故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分〕16. 在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品〞的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:68 88 100 100 79 94 89 85 100 88初一:100 90 98 97 77 94 96 100 92 6769 97 91 69 98 100 99 100 90 100初二:99 69 97 100 99 94 79 99 98 79〔1〕根据上述数据,将以下表格补充完成.整理、描述数据:分数段60≤x≤6970≤x≤7980≤x≤8990≤x≤100初一人数 2 2 4 12初二人数 2 2 1 15分析数据:样本数据的平均数、中位数、总分值率如表:年级平均教中位教总分值率初一90.1 93 25%初二92.8 20%得出结论:〔2〕估计该校初一、初二年级学生在本次测试成绩中可以得到总分值的人数共人;〔3〕你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【答案】〔1〕99分,补全表格见解析;〔2〕270;〔3〕初二年级掌握禁毒知识的总体水平较好,理由见解析. 【解析】【分析】〔1〕根据中位数的定义求解可得;〔2〕用初一、初二的总人数乘以其总分值率之和即可得;〔3〕根据平均数和中位数的意义解答可得.【详解】〔1〕由题意知初二年级的中位数在90≤x≤100分数段中,将90≤X≤100的分数从小到大排列为90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为99分,补全表格如下:年级平均教中位教总分值率初一90.1 93 25%初二92.8 99 20%〔2〕估计该校初一、初二年级学生在本次测试成绩中可以得到总分值的人数共600×〔25%+20%〕=270人,故答案为:270;〔3〕初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点睛】此题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17. 如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.〔1〕用含m或n的代数式表示拼成矩形的周长;〔2〕m=7,n=4,求拼成矩形的面积.【答案】〔1〕矩形的周长为4m;〔2〕矩形的面积为33.【解析】【分析】〔1〕根据题意和矩形的周长公式列出代数式解答即可.〔2〕根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】〔1〕矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;〔2〕矩形的面积为S=〔m+n〕〔m﹣n〕=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】此题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.18. 如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【答案】==,理由见解析.【解析】【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【详解】==,理由为:如图,过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,那么==.【点睛】此题考查了解直角三角形,熟练掌握锐角三角函数定义是解此题的关键.19. 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.乙种树苗的价格比甲种树苗贵10元,用480元购置乙种树苗的棵数恰好与用360元购置甲种树苗的棵数相同.〔1〕求甲、乙两种树苗每棵的价格各是多少元?〔2〕在实际帮扶中,他们决定再次购置甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购置时降低了10%,乙种树苗的售价不变,如果再次购置两种树苗的总费用不超过1500元,那么他们最多可购置多少棵乙种树苗?【答案】〔1〕甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;〔2〕他们最多可购置11棵乙种树苗.【解析】【分析】〔1〕可设甲种树苗每棵的价格是x元,那么乙种树苗每棵的价格是〔x+10〕元,根据等量关系:用480元购置乙种树苗的棵数恰好与用360元购置甲种树苗的棵数相同,列出方程求解即可;〔2〕可设他们可购置y棵乙种树苗,根据不等关系:再次购置两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】〔1〕设甲种树苗每棵的价格是x元,那么乙种树苗每棵的价格是〔x+10〕元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;〔2〕设他们可购置y棵乙种树苗,依题意有30×〔1﹣10%〕〔50﹣y〕+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购置11棵乙种树苗.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20. 如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF 关于AG对称.〔1〕求证:△AEF是等边三角形;〔2〕假设AB=2,求△AFD的面积.【答案】〔1〕证明见解析;〔2〕S△ADF=.【解析】【分析】〔1〕先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;〔2〕由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【详解】〔1〕∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,那么AE=AF=EF,∴△AEF是等边三角形;〔2〕记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,那么EH=AE=、AH=,∴S△ADF=×.【点睛】此题考查了平行四边形的性质、等边三角形的判定与性质、含30°角的直角三角形,轴对称的性质,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21. 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规那么是:将这枚骰子掷出后,看骰子向上三个面〔除底面外〕的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.〔1〕随机掷一次骰子,那么棋子跳动到点C处的概率是〔2〕随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【答案】〔1〕;〔2〕棋子最终跳动到点C处的概率为.【解析】【分析】〔1〕和为8时,可以到达点C,根据概率公式计算即可;〔2〕列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面〔除底面外〕的数字之和可以是 6、7、8、9.〔1〕随机掷一次骰子,满足棋子跳动到点 C 处的数字是 8,那么棋子跳动到点C处的概率是,故答案为:;〔2〕列表得:9 8 7 69 9,9 8,9 7,9 6,98 9,8 8,8 7,8 6,87 9,7 8,7 7,7 6,76 9,6 8,6 7,6 6,6共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】此题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P〔A〕=.22. 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y 〔单位:cm〕与滑行时间x〔单位:s〕之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/cm 0 4 12 24 …〔1〕根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?〔2〕将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【答案】〔1〕他需要199.500625s才能到达终点;〔2〕y=2〔x+〕2+.【解析】【分析】〔1〕利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;〔2〕根据函数图象平移“上加下减,左加右减〞的原那么进行解答即可.【详解】〔1〕∵该抛物线过点〔0,0〕,∴设抛物线解析式为y=ax2+bx,将〔1,4〕、〔2,12〕代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625〔负值舍去〕,即他需要199.500625s才能到达终点;〔2〕∵y=2x2+2x=2〔x+〕2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式为y=2〔x+2+〕2﹣+5=2〔x+〕2+.【点睛】此题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23. 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.〔1〕求∠OMP的度数;〔2〕当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【答案】〔1〕∠PMO=135°;〔2〕内心M所经过的路径长为2πcm.【解析】【分析】〔1〕先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;〔2〕分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【详解】〔1〕∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣〔∠EOP+∠OPE〕,∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣〔∠EOP+∠OPE〕=180°﹣〔180°﹣90°〕=135°;〔2〕如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上〔和〕;点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π〔cm〕,同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点睛】此题考查了弧长的计算公式、三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹.24. 如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.〔1〕用尺规在图①中作出CD边上的中点E,连接AE、BE〔保存作图痕迹,不写作法〕;〔2〕如图②,在〔1〕的条体下,判断EB是否平分∠AEC,并说明理由;〔3〕如图③,在〔2〕的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法〔指出对称轴、旋转中心、旋转方向和平移距离〕【答案】〔1〕作图见解析;〔2〕EB是平分∠AEC,理由见解析;〔3〕△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【解析】【分析】〔1〕根据作线段的垂直平分线的方法作图即可得出结论;〔2〕先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;〔3〕先判断出△AEP≌△FBP,即可得出结论.【详解】〔1〕依题意作出图形如图①所示;〔2〕EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;〔3〕∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】此题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解此题的关键.25. 如图,在平面直角坐标系xOy中,点A是反比例函数y=〔x>0,m>1〕图象上一点,点A的横坐标为m,点B〔0,﹣m〕是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.〔1〕当m=3时,求点A的坐标;〔2〕DE= ,设点D的坐标为〔x,y〕,求y关于x的函数关系式和自变量的取值范围;〔3〕连接BD,过点A作BD的平行线,与〔2〕中的函数图象交于点F,当m为何值时,以A、B、D、F为顶点的四边形是平行四边形?【答案】〔1〕点A坐标为〔3,6〕;〔2〕1,y=〔x>2〕;〔3〕m=2时,以A、B、D、F为顶点的四边形是平行四边形.【解析】【分析】〔1〕根据题意代入m值即可求得;〔2〕利用ED∥y轴,AD=AC构造全等三角形将求DE转化为求FC,再利用三角形相似求出FC;用m表示D点坐标,利用代入消元法得到y与x函数关系.〔3〕数值上线段中点坐标等于端点坐标的平均数,坐标系中同样可得线段中点横纵坐标分别是端点横纵坐标的平均数,利用此方法表示出F点坐标代入〔2〕中函数关系式即可.【详解】〔1〕当m=3时,y=,∴当x=3时,y=6,∴点A坐标为〔3,6〕;〔2〕如图,延长EA交y轴于点F,∵DE∥x轴∴∠FCA=∠EDA,∠CFA=∠DEA,∵AD=AC,∴△FCA≌△EDA,∴DE=CF,∵A〔m,m2﹣m〕,B〔0,﹣m〕,∴BF=m2﹣m﹣〔﹣m〕=m2,AF=m,∵Rt△CAB中,AF⊥x轴,∴△AFC∽△BFA,∴AF2=CF•BF,∴m2=CF•m2,∴CF=1,∴DE=1,故答案为:1;由上面步骤可知,点E坐标为〔2m,m2﹣m〕,∴点D坐标为〔2m,m2﹣m﹣1〕,∴x=2m,y=m2﹣m﹣1,∴把m=代入y=m2﹣m﹣1,∴y=〔x>2〕;〔3〕由题意可知,AF∥BD当AD、BF为平行四边形对角线时,由平行四边形对角线互相平分可得A、D和B、F的横坐标、纵坐标之和分别相等设点F坐标为〔a,b〕∴a+0=m+2mb+〔﹣m〕=m2﹣m+m2﹣m﹣1∴a=3m,b=2m2﹣m﹣1代入y=,得2m2﹣m﹣1=,解得m1=2,m2=0〔舍去〕当FD、AB为平行四边形对角线时,同理设点F坐标为〔a,b〕,那么a=﹣m,b=1﹣m,那么F点在y轴左侧,由〔2〕可知,点D所在图象不能在y轴左侧∴此情况不存在,综上当m=2时,以A、B、D、F为顶点的四边形是平行四边形.【点睛】此题为代数几何综合题,考查了反比例函数图象上点的坐标特征、三角形的全等、相似三角形的判定与性质、平行四边形判定及用字母表示坐标等根本数学知识,熟练掌握和灵活应用相关知识、利用数形结合和分类讨论的数学思想是解题的关键.。
2023年贵州贵阳中考数学真题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效. 3.不能使用计算器.一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂) 1.5的绝对值是( ) A .5±B .5C .5−D .52.如图所示的几何体,从正面看,得到的平面图形是( )A .B .C .D .3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是( ) A .50.108710⨯B .41.08710⨯C .31.08710⨯D .310.8710⨯4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是( )A .39︒B .40︒C .41︒D .42︒5.化简11a a a+−结果正确的是( )A .1B .aC .1aD .1a−6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是( )包装甲乙丙丁销售量(盒) 15 22 18 10A .中位数B .平均数C .众数D .方差7.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120︒,腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( ) A .模出“北斗”小球的可能性最大 B .摸出“天眼”小球的可能性最大 C .摸出“高铁”小球的可能性最大D .摸出三种小球的可能性相同9.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x 户人家,则下列方程正确的是( ) A .11003x +=B .31100x +=C .11003x x +=D .11003x += 10.已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限点D 为圆心,适当长度为半径画弧,分别交,DA DC 于E ,F 两点;②分别以点E ,F 为圆心以大于12EF 的长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是( )A .2B .3C .4D .512.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是( )A .小星家离黄果树景点的路程为50kmB .小星从家出发第1小时的平均速度为75km/hC .小星从家出发2小时离景点的路程为125kmD .小星从家到黄果树景点的时间共用了3h二、填空题(每小题4分,共16分) 13.因式分解:24x −=__________.14.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,若贵阳北站的坐标是()2,7−,则龙洞堡机场的坐标是_______.15.若一元二次方程2310kx x −+=有两个相等的实数根,则k 的值是_______. 16.如图,在矩形ABCD 中,点E 为矩形内一点,且1AB =,3,75,60AD BAE BCE =∠=︒∠=︒,则四边形ABCE 的面积是_______.三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:20(2)(21)1−+−−;(2)已知,1,3A a B a =−=−+.若A B >,求a 的取值范围.18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题: 某校学生一周体育锻炼调查问卷 以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)(1)参与本次调查的学生共有_______人,选择“自己主动”体育锻炼的学生有_______人; (2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数; (3)请写出一条你对同学体育锻炼的建议.19.为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x 的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AEBD ,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明; (2)连接AD ,若252,3CB AD AC ==,求AC 的长. 21.如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0k y x x=>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0ky x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围. 22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,AB 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m ); (2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈,2 1.41≈)23.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______; (2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.24.如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C 处,对称轴OC 与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离3OA =,点B 在抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =−++−>,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.25.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,根据题意在图中画出图形,图中PBE ∠的度数为_______度; (2)【问题探究】根据(1)所画图形,探究线段PA 与PE 的数量关系,并说明理由; (3)【拓展延伸】如图③,若点P 在射线CB 上移动,将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,探究线段,,BA BP BE 之间的数量关系,并说明理由.【详解】解:AB CD,∠计算. 6.C【分析】根据众数的意义结合题意即可得到乙的销量最好,要多进即可得到答案. 【详解】解:由表格可得,22181510>>>,众数是乙,故乙的销量最好,要多进, 故选C .【点睛】本题考查众数的意义,根据众数最多销量最好多进货. 7.B【分析】作AD BC ⊥于点D ,根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒−∠=︒,再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点D ,ABC 中,120BAC ∠=︒,AB AC =,∴()1180302B C BAC ∠=∠=︒−∠=︒, AD BC ⊥,∴11126m 22AD AB ==⨯=, 故选B .【点睛】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半. 8.C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案. 【详解】解:盒中小球总量为:32510++=(个), 摸出“北斗”小球的概率为:310, 摸出“天眼”小球的概率为:21105=, 摸出“高铁”小球的概率为:51102=,AD若贵阳北站的坐标是洞堡机场与喷水池的水平距离又9个单位长度,与喷水池的垂直距离又4个单位长度,且在平面直角坐标系的第三象限,∴龙洞堡机场的坐标是()9,4−,故答案为:()9,4−.【点睛】本题考查了平面直角坐标系点的坐标,掌握在平面直角坐标系中确定一个坐标需要找出距离坐标原点的水平距离和垂直距离是解题的关键.15.94【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程2310kx x −+=有两个相等的实数根,∴()22Δ43400b ac k k ⎧=−=−−=⎪⎨≠⎪⎩, ∴94k =, 故答案为:94. 【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根. 16.2312− 【分析】连接AC ,可得30ACE BCA ︒∠=∠=,即AC 平分BCE ∠,作点E 关于AC 的对称点F ,点F 在BC ,可证ABF △为等腰直角三角形,则四边形ABCE 的面积ABC ACE ABC ACF S S S S =+=+.【详解】解:如图,连接AC ,作点E 关于AC 的对称点F ,连接AF ,则ACE ACF S S =.矩形ABCD 中,1AB =,3AD =,∴3BC AD ==,∴13tan 33AB ACB BC ∠===,tan 3BC BAC AB ∠==, ∴30ACB ∠=︒,60BAC ∠=︒,60BCE ∠=︒,75BAE ∠=︒,∴30ACE BCA ︒∠=∠=,15CAE BAE BAC ∠︒=∠−∠=,∵603090ACD ACB ∠+∠=︒+︒=︒,∴点E 关于AC 的对称点F 在BC 上,15CAF CAE ︒∠=∠=,∴301545AFB CAF ACB ︒+︒=︒∠=∠+∠=,∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴31FC BC BF =−=−,∴四边形ABCE 的面积()11112311331122222ABC ACE ABC ACF S S S S AB BC CF AB −=+=+=⋅+⋅=⨯⨯+⨯−⨯=. 故答案为:2312−. 【点睛】本题考查矩形的性质,根据特殊角三角函数值求角的度数,轴对称的性质,等腰三角形的判定和性质,三角形外角的性质等,综合性较强,难度较大,解题的关键是正确作出辅助线,将四边形ABCE 的面积转化为ABC ACF SS +.17.(1)4;(2)2a >【分析】(1)先计算乘方和零次幂,再进行加减运算;19.(1)1.25x(2)125件【分析】(1)根据“更新设备后生产效率比更新前提高了25%”列代数式即可;(2)根据题意列分式方程,解方程即可.【详解】(1)解:更新设备前每天生产x 件产品,更新设备后生产效率比更新前提高了25%,∴更新设备后每天生产产品数量为:()125% 1.25x x +=(件),故答案为:1.25x ;(2)解:由题意知:500060002 1.25x x−=, 去分母,得6250 2.56000x −=,解得100x =,经检验,100x =是所列分式方程的解,1.25100125⨯=(件),因此更新设备后每天生产125件产品.【点睛】本题考查分式方程的实际应用,解题的关键是根据所给数量关系正确列出方程. 20.(1)见解析(2)32【分析】(1)选择小星的说法,先证四边形AEDB 是平行四边形,推出AE BD =,再证明四边形AEBC 是矩形,即可得出BE CD ⊥;选择小红的说法,根据四边形AEBC 是矩形,可得CE AB =,根据四边形AEDB 是平行四边形,可得DE AB =,即可证明CE DE =; (2)根据BD CB =,23CB AC =可得43CD AC =,再用勾股定理解Rt ACD △即可. 【详解】(1)证明:①选择小星的说法,证明如下:如图,连接BE ,AE BD ,DE BA ∥,∴四边形AEDB 是平行四边形,∴AE BD =,BD CB =,∴AE CB =,又AE BD ,点D 在CB 的延长线上,∴AE CB ∥,∴四边形AEBC 是平行四边形,又90C ∠=︒,∴四边形AEBC 是矩形,∴BE CD ⊥;②选择小红的说法,证明如下:如图,连接CE ,BE ,由①可知四边形AEBC 是矩形,∴CE AB =,四边形AEDB 是平行四边形,∴DE AB =,∴CE DE =.(2)解:如图,连接AD ,BD CB =,23CB AC =,∴()22E ,; (2)解:当直线 y x m =+经过点()22E ,时,则22m +=,解得0m =; 当直线 y x m =+经过点()41D ,时,则41m +=,解得3m =−; ∵一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m −≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.22.(1)600m(2)1049m【分析】(1)根据BAE ∠的余玄直接求解即可得到答案;(2)根据AB 、CD 两段长度相等及CD 与水平线夹角为45︒求出C 到DF 的距离即可得到答案; 【详解】(1)解:∵AB 、两处的水平距离AE 为576m ,索道AB 与AF 的夹角为15︒, ∴576600m cos150.96AE AB ===︒; (2)解:∵AB 、CD 两段长度相等,CD 与水平线夹角为45︒,∴600m CD =,2 1.41cos 45600600423m 22CG CD =︒=⨯=⨯=, ∴576504231049m AF AE BC CG =++=++=;【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数. 23.(1)1∠、2∠、3∠、4∠;BCD △;(2)证明见详解;(3)四边形OAEB 是菱形;【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明; (3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △ ,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒−︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△; (3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △ ,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形;【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.24.(1)29y x =−+(2)点P 的坐标为()0,6(3)4613b ≥【分析】(1)设抛物线的解析式为2y ax k =+,将()09C ,,()3,0A 代入即可求解; (2)点B 关于y 轴的对称点B ',则PA PB PA PB AB ''+=+≥,求出直线AB '与y 轴的交点坐标即可;(3)分05b <≤和5b >两种情况,根据最小值大于等于9列不等式,即可求解.【详解】(1)解:抛物线的对称轴与y 轴重合,∴设抛物线的解析式为2y ax k =+,9OC =,3OA =,∴()09C ,,()3,0A ,将()09C ,,()3,0A 代入2y ax k =+,得:2930k a k =⎧⎨⋅+=⎩, 解得91k a =⎧⎨=−⎩, ∴抛物线的解析式为29y x =−+;(2)解: 抛物线的解析式为29y x =−+,点B 到对称轴的距离是1,当1x =时,198y =−+=,∴()1,8B ,作点B 关于y 轴的对称点B ',则()1,8B '−,B P BP '=,∴PA PB PA PB AB ''+=+≥,∴当B ',B ,A 共线时,拉杆,PA PB 长度之和最短,设直线AB '的解析式为y mx n =+,将()1,8B '−,()3,0A 代入,得038m n m n =+⎧⎨=−+⎩, 解得26m n =−⎧⎨=⎩, ∴直线AB '的解析式为26y x =−+,当0x =时,6y =,∴点P 的坐标为()0,6,位置如下图所示:(3)解:221(0)y x bx b b =−++−>中10a =−<,∴抛物线开口向下,当05b <≤时,在46x ≤≤范围内,当6x =时,y 取最小值,最小值为:262611337b b b −+⨯+−=− 则13379b −≥,解得4613b ≥, ∴46513b ≤≤; 当5b >时,在46x ≤≤范围内,当4x =时,y 取最小值,最小值为:24241917b b b −+⨯+−=−则9179b −≥,解得269b ≥, ∴5b >;综上可知,46513b ≤≤或5b >, ∴b 的取值范围为4613b ≥. 【点睛】本题考查二次函数的实际应用,涉及求二次函数解析式,求一次函数解析式,根据对称性求线段的最值,抛物线的增减性等知识点,解题的关键是熟练掌握二次函数的图象和性质,第3问注意分情况讨论.25.(1)作图见解析;135(2)PA PE =;理由见解析(3)2BA BE BP −=或2BE BA BP =+;理由见解析【分析】(1)根据题意画图即可;先求出190452ABC BAC ∠=∠=⨯︒=︒,根据90ABD ??,求出4590135CBE ABC ABE ∠=∠+∠=︒+︒=︒; (2)根据90APE ∠=︒,90ABE ∠=︒,证明A 、P 、B 、E 四点共圆,得出45AEP ABP ∠=∠=︒,求出AEP EAP ∠=∠,根据等腰三角形的判定即可得出结论;(3)分两种情况,当点P 在线段BC 上时,当点P 在线段BC 延长线上时,分别画出图形,求出,,BA BP BE 之间的数量关系即可.【详解】(1)解:如图所示:∵,90CA CB C =∠=︒,∴190452ABC BAC ∠=∠=⨯︒=︒, ∵BD AB ⊥,∴90ABD ??,∴4590135CBE ABC ABE ∠=∠+∠=︒+︒=︒;故答案为:135.(2)解:PA PE =;理由如下:连接AE ,如图所示:根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、P 、B 、E 四点共圆,∴45AEP ABP ∠=∠=︒,∴904545EAP ∠=︒−︒=︒,∴AEP EAP ∠=∠,∴PA PE =.(3)解:当点P 在线段BC 上时,连接AE ,延长CB ,作EF CB ⊥于点F ,如图所示:根据解析(2)可知,PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=︒,∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴EF PC =,∵18045EBF CBE ∠=︒−∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴2BE EF =,∵ABC 为等腰直角三角形,∴()2222222BA BC BP PC BP PC BP EF BP BE ==+=+=+=+,即2BA BE BP −=;当点P 在线段BC 延长线上时,连接AE ,作EF CB ⊥于点F ,如图所示:根据旋转可知,90APE ∠=︒,∵90ABE ∠=︒,∴A 、B 、P 、E 四点共圆,∴45EAP EBP ∠=∠=︒,∴904545AEP ∠=︒−︒=︒,∴AEP EAP ∠=∠,∴PA PE =,∵90EFP APE ∠=∠=︒,∴90EPF PEF EPF APC ∠+∠=∠+∠=︒,∴PEF APC ∠=∠,∵90EFP ACP ∠=∠=︒,∴PEF APC ≌,∴PF AC =,∵BC AC =,∴PF BC =,∵45EBF ∠=︒,90EFB ∠=︒,∴EBF △为等腰直角三角形,∴()()222BE BF PF BP BC BP ==+=+,即2BE BA BP =+;综上分析可知,2BA BE BP −=或2BE BA BP =+.【点睛】本题主要考查了等腰三角形的判定和性质,三角形全等的判定和性质,圆周角定理,四点共圆,等腰直角三角形的性质,解题的关键是作出图形和相关的辅助线,数形结合,并注意分类讨论.。
2021年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣3×2=﹣6.故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2021年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【点评】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【点评】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n =0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.(4分)化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【点评】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP 的面积.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE 的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2021年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【点评】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2021第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【点评】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B 在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【点评】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.【点评】本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2021年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15 人数y(人)0 170 320 450 560 650 720 770 800 810 810 (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【点评】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD 的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG =∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.【解答】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
中考数学试卷一、选择题(每题3分.共30分)1. 当x=﹣1时,代数式3x+1的值是()A. ﹣1B. ﹣2C. 4D. ﹣4【答案】B【解析】【分析】把x的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.2. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A. 线段DEB. 线段BEC. 线段EFD. 线段FG【答案】B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.【点睛】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3. 如图是一个几何体的主视图和俯视图,则这个几何体是()A. 三棱柱B. 正方体C. 三棱锥D. 长方体【答案】A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4. 在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调査【答案】D【解析】【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调査,具有代表性和广泛性,合理,故选D.【点睛】本题考查了抽样调查,样本的确定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.5. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 6. 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. ﹣2B. 0C. 1D. 4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.7. 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B. 1 C. D.【答案】B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A. B. C. D.【答案】A【解析】【分析】先找出符合的所有情况,再得出选项即可.【详解】如图所示,共有12种情况,恰好摆放成如图所示位置的只有1种,所以概率是,故选A.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,能找出符合的所有情况是解本题的关键.9. 一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (﹣5,3)B. (1,﹣3)C. (2,2)D. (5,﹣1)【答案】C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10. 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A. ﹣<m<3B. ﹣<m<2C. ﹣2<m<3D. ﹣6<m<﹣2【答案】D【解析】【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.二、填空題(每小题4分,共20分)11. 某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为_____人.【答案】10【解析】【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【详解】∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10,故答案为:10.【点睛】本题考查了频数与频率,熟练掌握频数与频率间的关系是解题的关键.12. 如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.【答案】【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO =S△APO+S△OPB==,故答案为:.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.13. 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.【答案】72【解析】【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【详解】如图,连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【解析】【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.15. 如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=(4﹣x),由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴,即,则EF=DG=(4﹣x),∴EG===,∴当x=时,EG取得最小值,最小值为,故答案为:.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分)16. 在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【答案】(1)99分,补全表格见解析;(2)270;(3)初二年级掌握禁毒知识的总体水平较好,理由见解析.【解析】【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数乘以其满分率之和即可得;(3)根据平均数和中位数的意义解答可得.【详解】(1)由题意知初二年级的中位数在90≤x≤100分数段中,将90≤X≤100的分数从小到大排列为90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为99分,补全表格如下:年级平均教中位教满分率初一90.1 93 25%初二92.8 99 20%(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共600×(25%+20%)=270人,故答案为:270;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点睛】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17. 如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【答案】(1)矩形的周长为4m;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.18. 如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【答案】==,理由见解析.【解析】【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【详解】==,理由为:如图,过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点睛】本题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.19. 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【答案】(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20. 如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE 与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【答案】(1)证明见解析;(2)S△ADF=.【解析】【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【详解】(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=×.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、含30°角的直角三角形,轴对称的性质,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21. 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【答案】(1);(2)棋子最终跳动到点C处的概率为.【解析】【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点C 处的数字是8,则棋子跳动到点C处的概率是,故答案为:;(2)列表得:9 8 7 69 9,9 8,9 7,9 6,98 9,8 8,8 7,8 6,87 9,7 8,7 7,7 6,76 9,6 8,6 7,6 6,6共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22. 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/cm 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【答案】(1)他需要199.500625s才能到达终点;(2)y=2(x+)2+.【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据函数图象平移“上加下减,左加右减”的原则进行解答即可.【详解】(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式为y=2(x+2+)2﹣+5=2(x+)2+.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23. 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【答案】(1)∠PMO=135°;(2)内心M所经过的路径长为2πcm.【解析】【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【详解】(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°;(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点睛】本题考查了弧长的计算公式、三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹.24. 如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB 能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【答案】(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF 折叠,②沿AE折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.25. 如图,在平面直角坐标系xOy中,点A是反比例函数y=(x>0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE= ,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F 为顶点的四边形是平行四边形?【答案】(1)点A坐标为(3,6);(2)1,y=(x>2);(3)m=2时,以A、B、D、F为顶点的四边形是平行四边形.【解析】【分析】(1)根据题意代入m值即可求得;(2)利用ED∥y轴,AD=AC构造全等三角形将求DE转化为求FC,再利用三角形相似求出FC;用m表示D点坐标,利用代入消元法得到y与x函数关系.(3)数值上线段中点坐标等于端点坐标的平均数,坐标系中同样可得线段中点横纵坐标分别是端点横纵坐标的平均数,利用此方法表示出F点坐标代入(2)中函数关系式即可.【详解】(1)当m=3时,y=,∴当x=3时,y=6,∴点A坐标为(3,6);(2)如图,延长EA交y轴于点F,∵DE∥x轴∴∠FCA=∠EDA,∠CFA=∠DEA,∵AD=AC,∴△FCA≌△EDA,∴DE=CF,∵A(m,m2﹣m),B(0,﹣m),∴BF=m2﹣m﹣(﹣m)=m2,AF=m,∵Rt△CAB中,AF⊥x轴,∴△AFC∽△BFA,∴AF2=CF•BF,∴m2=CF•m2,∴CF=1,∴DE=1,故答案为:1;由上面步骤可知,点E坐标为(2m,m2﹣m),∴点D坐标为(2m,m2﹣m﹣1),∴x=2m,y=m2﹣m﹣1,∴把m=代入y=m2﹣m﹣1,∴y=(x>2);(3)由题意可知,AF∥BD当AD、BF为平行四边形对角线时,由平行四边形对角线互相平分可得A、D和B、F的横坐标、纵坐标之和分别相等设点F坐标为(a,b)∴a+0=m+2mb+(﹣m)=m2﹣m+m2﹣m﹣1∴a=3m,b=2m2﹣m﹣1代入y=,得2m2﹣m﹣1=,解得m1=2,m2=0(舍去)当FD、AB为平行四边形对角线时,同理设点F坐标为(a,b),则a=﹣m,b=1﹣m,则F点在y轴左侧,由(2)可知,点D所在图象不能在y轴左侧∴此情况不存在,综上当m=2时,以A、B、D、F为顶点的四边形是平行四边形.【点睛】本题为代数几何综合题,考查了反比例函数图象上点的坐标特征、三角形的全等、相似三角形的判定与性质、平行四边形判定及用字母表示坐标等基本数学知识,熟练掌握和灵活应用相关知识、利用数形结合和分类讨论的数学思想是解题的关键.。
绝密★启用前2020年贵州省贵阳市初中毕业学业水平(升学)考试数 学同学你好!答题前请认真阅读以下内容:1.全卷共8页,三个大题,共25小题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试题卷上答题视为无效.3.不能使用科学计算器.一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A .6-B .1-C .1D .6 2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )ABCD3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( ) A .直接观察B .实验C .调查D .测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )(第4题图)A .150︒B .120︒C .60︒D .30︒5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x-D .1x x +6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )AB CD7.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5B .20C .24D .328.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >9.如图,Rt ABC △中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为 ( )(第9题图)A .无法确定B .12C .1D .210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20(0)ax bx c n n m +++=<<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为________.(第12题图)13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是________.14.如图,ABC △是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是________度.(第14题图)15.如图,ABC △中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为________.(第15题图)三、解答题:本大题10小题,共100分.16.(本题满分8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数; (3)在图③中,画一个直角三角形,使它的三边长都是无理数.图①图②图③(第16题图)17.(本题满分10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图(第17题图)(1)本次共调查的学生人数为________,在表格中,m =________;(2)统计的这组数据中,每天听空中黔课时间的中位数是________,众数是________; (3)请就疫情期间如何学习的问题写出一条你的看法.18.(本题满分10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =. (1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.(第18题图)19.(本题满分10分)如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数ky x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.(第19题图)20.(本题满分10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率; (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 21.(本题满分8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12m EF =,EF CB ∥,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈1.7≈) (1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).图①图②(第21题图)22.(本题满分10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效---------------- 毕业学校_____________ 姓名________________ 考生号________________元?23.(本题满分10分)如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(第23题图)(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC ∠的值. 24.(本题满分12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示915x <≤)(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点? 25.(本题满分12分)如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ与BO 的数量关系是________,位置关系是________;(2)问题探究:如图②,AO E '△是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论;(3)拓展延伸:如图③,AO E '△是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB △的面积.图①图②图③(第25题图)2020年贵州省贵阳市初中毕业学业水平(升学)考试数学答案解析一、1.【答案】A【解析】原式利用异号两数相乘的法则计算即可求出值.解:原式326=-⨯=-,故选:A .【考点】有理数的乘法 2.【答案】D【解析】要求可能性的大小,只需求出各袋中红球所占的比例大小即可.解:第一个袋子摸到红球的可能性110=;第二个袋子摸到红球的可能性;第三个袋子摸到红球的可能性51102==;第四个袋子摸到红球的可能性63105==.故选:D .【考点】可能性大小的计算 3.【答案】C【解析】根据得到数据的活动特点进行判断即可.解:因为获取60岁以上人的年龄进行了数据的收集和整理,所以此活动是调查.故选:C . 【考点】数据的获得方式 4.【答案】A【解析】根据对顶角相等求出1∠,再根据互为邻补角的两个角的和等于180︒列式计算即可得解.解:1260∠∠=︒+,12∠=∠(对顶角相等), 130∴∠=︒,1∠与3∠互为邻补角,3180118030150∴∠=︒-∠=︒-︒=︒.故选:A .【考点】对顶角相等的性质,邻补角的定义 5.【答案】B【解析】由分式有意义的条件分母不能为零判断即可.1xx -,当1x =时,分母为零,分式无意义.故选B. 【考点】分式有意义的条件6.【答案】D【解析】根据太阳光下的影子的特点:①同一时刻,太阳光下的影子都在同一方向;②太阳光线是平行的,太阳光下的影子与物体高度成比例,据此逐项判断即可.选项A 、B 中,两棵小树的影子的方向相反,不可能为同一时刻阳光下的影子,则选项A 、B 错误;选项C 中,树高与影长成反比,不可能为同一时刻阳光下的影子,则选项C 错误;选项D 中,在同一时刻阳光下,影子都在同一方向,且树高与影长成正比,则选项D 正确.故选:D . 【考点】太阳光下的影子的特点 7.【答案】B【解析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.解:如图所示,根据题意得1842AO =⨯=,1=632BO ⨯=, 四边形ABCD 是菱形,AB BC CD DA ∴===,AC BD ⊥,AOB ∴△是直角三角形,5AB ∴==,∴此菱形的周长为:5420⨯=.故选:B .【考点】菱形的性质 8.【答案】D【解析】根据不等式的性质解答.解:A 、不等式a b <的两边同时减去1,不等式仍成立,即11a b --<,故本选项不符合题意;B 、不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,故本选项不符合题意;C 、不等式a b <的两边同时乘以12,不等式仍成立,即:1122a b <,再在两边同时加上1,不等式仍成立,即111122a b ++<,故本选项不符合题意;D 、不等式a b <的两边同时乘以m ,当0m >,不等式仍成立,即ma mb <;当0m <,不等号方向改变,即ma mb >;当0m =时,ma mb =;故Rt CDF △不一定成立,故本选项符合题意,故选:D .【考点】不等式的性质 9.【答案】C【解析】当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,再根据角平分线的性质可知,当GP AB ⊥时,1GP CG ==.解:由题意可知,当GP AB ⊥时,GP 的值最小,根据尺规作图的方法可知,GB 是ABC ∠的角平分线,90C ∠=︒,∴当GP AB ⊥时,1GP CG ==,故答案为:C .【考点】角平分线的尺规作图,角平分线的性质 10.【答案】B【解析】由题意可得方程20ax bx c ++=的两个根是3-,1,方程在y 的基础上加m ,可以理解为二次函数的图象沿着y 轴平移m 个单位,由此判断加m 后的两个根,即可判断选项.二次函数2y ax bx c =++的图象经过(3,0)-与DG BD =两点,即方程20ax bx c ++=的两个根是3﹣和1,20ax bx c m +++=可以看成二次函数y 的图象沿着y 轴平移m 个单位,得到一个根3,由1到3移动2个单位,可得另一个根为5-.由于0n m <<,可知方程20ax bx c n +++=的两根范围在5~3--和1~3,由此判断B 符合该范围.故选B .【考点】二次函数图象与一元二次方程的综合二、11.【答案】2x【解析】直接去括号然后合并同类项即可.解:22(1)x x x x x x x -+=-+=,故答案为:2x .【考点】整式运算,单项式乘以多项式,合并同类项 12.【答案】3【解析】根据反比例函数3y x=的图象上点的坐标性得出3xy =,进而得出四边形OBAC 的面积.解:如图所示:可得3OB AB xy k ⨯===,则四边形OBAC 的面积为:3,故答案为:3. 【考点】反比例函数()0ky xk =≠系数k 的几何意义 13.【答案】16【解析】随着试验次数的增多,变化趋势接近与理论上的概率.解:如果试验的次数增多,出现数字“6”的频率的变化趋势是接近16.故答案为:16.14.【答案】120【解析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS 定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题. 解:连接OA ,OB ,作OH AC ⊥,OM AB ⊥,如下图所示: 因为等边三角形ABC ,OH AC ⊥,OM AB ⊥, 由垂径定理得:AH AM =,又因为OA OA =,故OAH OAM HL △≌△(.OAH OAM ∴∠=∠.又OA OB =,AD EB =,OAB OBA OAD ∴∠=∠=∠,()ODA OEB SAS ∴△≌△,DOA EOB ∴∠=∠,DOE DOA AOE AOE EOB AOB ∴∠=∠+∠=∠+∠=∠.又60C ∠=︒以及同弧AB ,120AOB DOE ∴∠=∠=︒.故本题答案为:120.【考点】圆与等边三角形的综合 15.【答案】【解析】如图,延长BD 到点G ,使DG BD =,连接CG ,则由线段垂直平分线的性质可得CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,根据等腰三角形的性质和三角形的内角和定理可得2EFC A CBE ∠=∠=∠,再根据三角形的外角性质和等腰三角形的判定可得FC FG =,设CE EF x ==,则可根据线段间的和差关系求出DF 的长,进而可求出FC 的长,然后根据勾股定理即可求出CD 的长,再一次运用勾股定理即可求出答案.解:如图,延长BD 到点G ,使DG BD =,连接CG ,则CB CG =,在EG 上截取EF EC =,连接CF ,则EFC ECF ∠=∠,G CBE ∠=∠,EA EB =,A EBA ∴∠=∠,AEB CEF ∠=∠,22EFC A CBE G ∴∠=∠=∠=∠, EFC G FCG ∠=∠+∠, G FCG ∴∠=∠, FC FG ∴=,设CE EF x ==,则11AE BE x ==-,8113DE x x ∴=--=-(), 33DF x x ∴=--=(),8DG DB ==, 5FG ∴=,5CF ∴=,在Rt CDF △中,根据勾股定理,得4CD ==,BC ∴===故答案为:【考点】等腰三角形的判定和性质,三角形的内角和定理,三角形的外角性质,勾股定理以及线段垂直平分线的性质三、16.【答案】(1)图①(或其他合理答案)(2)图②(或其他合理答案)(3)图③(或其他合理答案)【解析】(1)画一个边长为3,4,5的三角形即可.具体解题过程参照答案.(2)利用勾股定理,找长为4的线段,画三角形即可.具体解题过程参照答案.(3、.具体解题过程参照答案.【考点】勾股定理的应用 17.【答案】(1)50 22 (2)3.5h3.5h(3)认真听课,独立思考.(或其他合理答案)【解析】(1)根据已知人数和比例算出学生总人数,再利用所占比例求出m 的值.学生人数2560ax x +-=.2x =.故答案为:50,22.(2)根据中位数和众数的概念计算即可.50225÷=,所以中位数为第25人所听时间为3.5h ,人数最多的也是3.5h ,故答案为:3.5h ,3.5h .(3)任写一条正能量看法即可.具体解题过程参照答案. 【考点】扇形统计图,统计基础运算18.【答案】(1)解:四边形ABCD 是矩形,AD BC ∴∥,AD BC =. CF BE =,CF EC BE EC ∴+=+,即EF BC =. EF AD ∴=,∴四边形AEFD 是平行四边形.(2)解:如图,连接ED ,四边形ABCD 是矩形,90B ∴∠=︒,在Rt ABE ∆中,4AB =,2BE =,∴由勾股定理得,216420EA =+=,即EA =AD BC ∥, DAE AEB ∠=∠∴.EH x =,ABE DEA ∴△∽△.BE EAEA AD =∴10AD =. 由(1)得四边形AEFD 是平行四边形, 又10EF =,高4AB =,10440AEFDS EF AB =⋅=⨯=∴.【解析】(1)直接利用矩形的性质结合BE CF =,可得EF AD =,进而得出答案.具体解题过程参照答案.(2)在a中利用勾股定理可计算EA =ABE DEA △∽△得BE EAEA AD=,进而求出AD 长,由AEFDSEF AB =⋅即可求解.具体解题过程参照答案. 【考点】矩形和平行四边形的性质以及判定,相似三角形的判定和性质,勾股定理,熟练运用勾股定理和相似三角形性质求线段长是解题的关键. 19.【答案】解:(1)一次函数1y x =+的图象与反比例函数ky x=的图象的一个交点的横坐标是2,∴当2x =时,3y =,∴其中一个交点是(2,3).236k ∴=⨯=.∴反比例函数的表达式是6y x=.(2)解:一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-.联立6y x=及1y x =-,可得一元二次方程260x x --=,解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3)--,(3,2).(3)设一次函数为()0y ax b a =+≠, 经过点(0,5),则5b =,5y ax ∴=+,联立5y ax =+以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点, 则25240a ∆=+<,解得:2524a <-, 25y x ∴=-+(或其他合理答案). 【解析】(1)将2x =代入一次函数,求出其中一个交点是(2,3),再代入反比例函数ky x=即可解答.具体解题过程参照答案.(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答.具体解题过程参照答案.(3)设一次函数为()0y ax b a =+≠,根据题意得到5b =,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.具体解题过程参照答案.【考点】一次函数与反比例函数图象交点问题,函数图象平移问题20.【答案】解:(1)先将《消防知识手册》《辞海》《辞海》分别记作A ,1B ,2B ,然后列表如下:2张卡片都是《辞海》的有2种:21(,)B B ,12(,)B B所以,P (2张卡片都是《辞海》)2163==; (2)解:设再添加x 张和原来一样的《消防知识手册》卡片,由题意得:1537x x +=+,解得,4x =,经检验,4x =是原方程的根,答:应添加4张《消防知识手册》卡片.【解析】(1)根据题意画出列表,由概率公式即可得出答案.具体解题过程参照答案. (2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可.具体解题过程参照答案. 【考点】列表法,概率公式21.【答案】(1)解:房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF CB ∥,AG EF ∴⊥,162EG EF ==,35AEG ACB ∠=∠=︒.在Rt AGE △中,90AGE ∠=︒,35AEG ∠=°,tan GAE GG A E ∠=,6EG =,tan350.7︒≈. 6tan3542AG ∴=≈°(米)答:屋顶到横梁的距离AG 约是4.2米. (2)过点E 作EH CB ⊥于点H ,设EH x =, 在Rt EDH △中,90EHD ∠=︒,60EDH ∠=︒,tan EH EDH DH ∠=,tan60xDH ∴=︒, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=︒,tan EH ECH CH ∠=,tan35xCH =︒∴. 8CH DH CD -==,8tan35tan60x x-=︒︒∴, tan350.7︒≈1.7≈,解得9.52x ≈.4.29.5213.7214AB AG BG =+=+=≈∴(米)答:房屋的高AB 约是14米.【解析】(1)EF CB ∥可得35AEG ACB ∠=∠=︒,在Rt AGE △中由tan AGEGAEG ∠=即可求AG .具体解题过程参照答案.(2)设EH x =,利用三角函数由x 表示DH 、CH ,由8DH CH -=列方程即可求解.具体解题过程参照答案.【考点】仰角的定义,解直角三角形的应用22.【答案】(1)解:设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100x -)支,根据题意,得610(100)1300378x x +-=-,解得:19.5x =.因为钢笔的数量不可能是小数,所以学习委员搞错了.(2)解:设笔记本的单价为a 元,根据题意,得610(100)1300378x x a +-+=-, 整理,得13942x a =+, 因为010a <<,x 随a 的增大而增大,所以19.522x <<, x 取整数,20x ∴=,21.当20x =时,420782a =⨯-=, 当21x =时,421786a =⨯-=, 所以笔记本的单价可能是2元或者6元.【解析】(1)根据题意列出方程解出答案判断即可.具体解题过程参照答案(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.具体解题过程参照答案 【考点】方程及不等式的列式和计算23.【答案】解:(1)在O 中,ABD ∠与ACD ∠都是AD 所对的圆周角,ABD ACD ∠=∠∴, CAD ABD ∠=∠, ACD CAD ∴∠=∠. AD CD ∴=.数学试卷 第21页(共26页) 数学试卷 第22页(共26页)(2)解:AF 是O 的切线,AB 是O 的直径,90FAB ACB ADB ADF ∴∠=∠=∠=∠=︒. 90FAD BAD ∠+∠=︒,90ABD BAD ∠+∠=︒, FAD ABD ∴∠=∠.又ABD CAD ∠=∠,CAD FAD ∴∠=∠. AD AD =,Rt Rt ()ADE ADF ASA ∴△≌△,AE AF ∴=,ED FD =.在Rt BAF ∆中,4AB =,5BF =,3AF ∴=,即3AE =.1122AB AF BF AD ⋅=⋅, 125AD ∴=. 在Rt ADF ∆中,95FD =, 975255BE =-⨯=∴.BEC AED ∠=∠,且ECB EDA ∠=∠,BEC AED ∴△∽△,BE BC AE AD =∴,即2825BC =. BDC ∠与BAC ∠都是BC 所对的圆周角, BDC BAC ∠=∠∴.在Rt ACB △中,90ACB ∠=︒,7sin 25BC BAC AB ∠==∴,即7sin 25BDC ∠=. 【解析】(1)利用同弧所对的圆周角相等可得ABD ACD ∠=∠,由CAD ABD ∠=∠得ACD CAD ∠=∠,根据等角对等边可得结论.具体解题过程参照答案.(2)先证明FAD ABD ∠=∠,CAD FAD ∠=∠,由ASA 证明Rt Rt ADE ADF △≌△,得AE AF =,ED FD =;再求125AD =,75BE =,再证明BEC AED △∽△得2825BC =,利用BDC BAC ∠=∠可得结论.具体解题过程参照答案.【考点】切线的性质,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形24.【答案】(1)解:根据表中数据的变化趋势可知: ①当09x ≤≤时,y 是x 的二次函数. 当0x =时,0y =,∴二次函数的关系式可设为2y ax bx =+.当1x =时,170y =;当3x =时,450y =.将它们分别代入关系式得17045093a ba b =+⎧⎨=+⎩,解得10180a b =-⎧⎨=⎩.∴二次函数的关系式为210180y x x =-+.将表格内的其他各组对应值代入此关系式,均满足. ②当915x <≤时,810y =.y ∴与x 的关系式为210180,09810,915x x x y x ⎧-+=⎨⎩≤≤<≤.(2)设第x 分钟时的排队人数是W ,根据题意,得21018040,09,4081040,915x x x x W y x x x ⎧-+-≤≤=-=⎨-<≤⎩, ①当09x ≤≤时,221014010(7)490W x x x =-+=--+.∴当7x =时,490W =最大.数学试卷 第23页(共26页) 数学试卷 第24页(共26页)②当915x <≤时,81040W x =-,W 随x 的增大而减小,210450W ∴≤<.∴排队人数最多时是490人.要全部考生都完成体温检测,根据题意, 得81040=0x -, 解得20.25x =.∴排队人数最多时是490人,全部考生都完成体温检测需要20.25分钟.(3)设从一开始就应该增加m 个检测点, 根据题意,得1220(2)810m ⨯+≥,解得318m ≥.m 是整数,318m ∴≥的最小整数是2.∴一开始就应该至少增加2个检测点.【解析】(1)先根据表中数据的变化趋势猜想:①当09x ≤≤时,y 是x 的二次函数.根据提示设出抛物线的解析式2y ax bx =+,再从表中选择两组对应数值,利用待定系数法求函数解析式,再检验其它数据是否满足解析式,从而可得答案.具体解题过程参照答案.(2)设第x 分钟时的排队人数是W ,列出W 与第x 分钟的函数关系式,再根据函数的性质求排队的最多人数,利用检测点的检测人数列方程求解检测时间.具体解题过程参照答案.(3)设从一开始就应该增加m 个检测点,根据题意列出不等式,利用不等式在正整数解可得答案.具体解题过程参照答案.【考点】根据实际的数据探究各数据符合的函数形式,待定系数法求解函数解析式,二次函数的实际应用,二次函数的性质,一元一次方程的应用,一元一次不等式的应用25.【答案】(1)解:点P 和点Q 分别为CB ,BO 的中点,PQ ∴为BOC △的中位线,四边形ABCD 是正方形,AC BO ∴⊥,12PQ BO ∴=,PQ BO ⊥; 故答案为:12PQ BO =,PQ BO ⊥; (2)解:PQB △的形状是等腰直角三角形.理由如下: 连接O P '并延长交BC 于点F ,由正方形的性质及旋转可得AB BC =,90ABC =︒∠,AO E '△是等腰直角三角形,O E BC '∥,O E O A '='.O EP FCP ∴∠'=∠,'PO E PFC ∠=∠.又点P 是CE 的中点,CP EP ∴=.()O PE FPC AAS ∴'△≌△.''O E FC O A ∴==,'O P FP =. AB O A CB FC ∴-'=-,BO BF ∴'=.'O BF ∴△为等腰直角三角形.'BP O F ∴⊥,'O P BP =.BPO ∴'△也为等腰直角三角形.又点Q 为'O B 的中点,'PQ O B ∴⊥,且PQ BQ =.PQB∴△的形状是等腰直角三角形.(3)解:延长O E'交BC边于点G,连接PG,'O P.四边形ABCD是正方形,AC是对角线,45ECG∴∠=︒.由旋转得,四边形O ABG'是矩形,O G AB BC∴'==,90EGC∠=︒.EGC∴△为等腰直角三角形.点P是CE的中点,PC PG PE∴==,90CPG∠=︒,45EGP∠=︒.'()O GP BCP SAS∴△≌△.O PG BPC∴∠'=∠,O P BP'=.90O PG GPB BPC GPB∴∠'-∠=∠-∠=︒.'90O PB∴∠=︒.O PB∴'△为等腰直角三角形.Q是O B'的中点,∴12PQ O B BQ='=,PQ O B⊥'.1AB =,2O A ∴'=,O B'==4BQ∴=.1132216PQBS BQ PQ∆=⋅==∴.【解析】(1)根据题意可得PQ为BOC△的中位线,再根据中位线的性质即可求解.具体解题过程参照答案.(2)连接O P'并延长交BC于点F,根据题意证出O PE FPC'△≌△,'O BF△为等腰直角三角形,BPO'△也为等腰直角三角形,由'PQ O B⊥且PQ BQ=可得PQB△是等腰直角三角形.具体解题过程参照答案.(3)延长O E'交BC边于点G,连接PG,'O P.证出四边形O ABG'是矩形,EGC△为等腰直角三角形,'O GP BCP△≌△,再证出O PB'△为等腰直角三角形,根据图形的性质和勾股定理求出O A',O B'和BQ的长度,即可计算出PQB△的面积.具体解题过程参照答案.【考点】正方形的性质,等腰直角三角形的判定与性质,旋转图形的性质,三角形中位线定理,全等三角形的判定与性质,勾股定理数学试卷第25页(共26页)数学试卷第26页(共26页)。
2023年贵州省贵阳市中考数学试卷(含详细答案)一、选择题1. 以下哪个数是整数?A. 5/2B. 3/4C. √2D. -3答案:D2. 下列图形中,不是正方形的是()A. [图1]B. [图2]C. [图3]D. [图4]答案:C3. 已知函数 y = f(x) 的图像如下图所示,则该函数在区间 [-3, 1] 上的单调递减区间为()A. [-3, -2]B. [-1, 0]C. [0, 1]D. [-2, 0]答案:B4. 若 a = 2^3 × 5^2 ,则 a 的所有正因数的个数是()A. 10B. 15C. 20D. 25答案:C5. 已知sin θ = 1/2 ,则θ 的值是()A. 30°B. 45°C. 60°D. 90°答案:C二、填空题1. 已知一组数据:3,6,9,12,15,18,21,24,27,30,33,则这组数据的众数是______。
答案:无众数2. 设 a = 2^3 × 3^2 ,将 a 分解为质因数的形式是______。
答案:a = 2^3 × 3^23. 在单位圆中,角 C 的终边与单位圆的交点为 P(-√3/2, -1/2) ,则角 C 的参考角是______。
答案:120°三、解答题1. 已知正方体 ABCDEFGH 的棱长为 10 cm,点 M 为 AB 边上的中点,点 N 为 AD 边上的三等分点,连接 MN,并求线段 MN 的长度。
解答:由题可知,AM = MB = 5 cm,AD = 10 cm。
根据题意可得,AN = ND = 10/3 cm。
利用勾股定理可求得 MN 的长度:MN^2 = AM^2 + AN^2MN^2 = 5^2 + (10/3)^2MN^2 = 25 + 100/9MN^2 = 325/9MN ≈ 18.03 cm2. 已知函数 y = f(x) 的图像如下所示,请写出 f(x) 在区间 [-2, 2] 上的解析式。
2020年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(3)2-⨯的结果是()A.6-B.1-C.1D.62.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.(3分)如图,直线a,b相交于点O,如果1260∠+∠=︒,那么3∠是()A.150︒B.120︒C.60︒D.30︒5.(3分)当1x=时,下列分式没有意义的是()A.1xx+B.1xx-C.1xx-D.1xx+6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是() A.5B.20C.24D.32 8.(3分)已知a b<,下列式子不一定成立的是()A.11a b-<-B.22a b->-C.111122a b+<+D.ma mb>9.(3分)如图,Rt ABC∆中,90C∠=︒,利用尺规在BC,BA上分别截取BE,BD,使BE BD=;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在CBA∠内交于点F;作射线BF交AC于点G.若1CG=,P为AB上一动点,则GP的最小值为()A.无法确定B.12C.1D.210.(3分)已知二次函数2y ax bx c=++的图象经过(3,0)-与(1,0)两点,关于x的方程20(0)ax bx c m m+++=>有两个根,其中一个根是3.则关于x的方程20ax bx c n+++= (0)n m<<有两个整数根,这两个整数根是()A.2-或0B.4-或2C.5-或3D.6-或4二、填空题:每小题4分,共20分.11.(4分)化简(1)x x x-+的结果是____.12.(4分)如图,点A是反比例函数3yx=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为____.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是____.14.(4分)如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.15.(4分)如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为____.三、解答题:本大题10小题,共100分.16.(8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题: 部分初三学生每天听空中黔课时间的人数统计表(2)统计的这组数据中,每天听空中黔课时间的中位数是____,众数是____;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.19.(10分)如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x=+的图象向下平移2个单位,求平移后的图象与反比例函数kyx=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数kyx=的图象没有公共点.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35︒,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60︒,房屋的顶层横梁12EF m=,//EF CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈ 1.7)≈(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1)m.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.(10分)如图,AB为O的直径,四边形ABCD内接于O,对角线AC,BD交于点E,O的切线AF交BD的延长线于点F,切点为A,且CAD ABD∠=∠.(1)求证:AD CD=;(2)若4AB=,5∠的值.BF=,求sin BDC24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示915)x<求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是____,位置关系是____;(2)问题探究:如图②,△AO E'是将图①中的AOB∆绕点A按顺时针方向旋转45︒得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断PQB∆的形状,并证明你的结论;(3)拓展延伸:如图③,△AO E'是将图①中的AOB∆绕点A按逆时针方向旋转45︒得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求PQB∆的面积.2020年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题1.【分析】原式利用乘法法则计算即可求出值.【解答】解:原式32=-⨯6=-.故选:A .2.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D 选项袋子中红球的个数最多,所以从D 选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D .3.【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C .4.【分析】根据对顶角相等求出1∠,再根据互为邻补角的两个角的和等于180︒列式计算即可得解.【解答】解:1260∠+∠=︒,12∠=∠(对顶角相等),130∴∠=︒,1∠与3∠互为邻补角,3180118030150∴∠=︒-∠=︒-︒=︒.故选:A .5.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A 、1x x+,当1x =时,分式有意义不合题意; B 、1x x -,当1x =时,10x -=,分式无意义符合题意; C 、1x x-,当1x =时,分式有意义不合题意; D 、1x x +,当1x =时,分式有意义不合题意; 故选:B .6.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A 、B 进行判断;利用在同一时刻阳光下,树高与影子成正比可对C 、D 进行判断.【解答】解:A 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B 选项错误;C 、在同一时刻阳光下,树高与影子成正比,所以C 选项正确.D 、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D 选项错误; 故选:C .7.【分析】根据题意画出图形,由菱形的性质求得4OA =,3OB =,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:四边形ABCD 是菱形,8AC =,6BD =,AB BC CD AD ∴===,142OA AC ==,132OB BD ==,AC BD ⊥,5AB ∴==,∴此菱形的周长4520=⨯=;故选:B .8.【分析】根据不等式的基本性质进行判断.【解答】解:A 、在不等式a b <的两边同时减去1,不等号的方向不变,即11a b -<-,原变形正确,故此选项不符合题意;B 、在不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,原变形正确,故此选项不符合题意;C 、在不等式a b <的两边同时乘以12,不等号的方向不变,即1122a b <,不等式1122a b <的两边同时加上1,不等号的方向不变,即111122a b +<+,原变形正确,故此选项不符合题意;D 、在不等式a b <的两边同时乘以m ,不等式不一定成立,即ma mb >,或ma mb <,或ma mb =,原变形不正确,故此选项符合题意.故选:D .9.【分析】如图,过点G 作GH AB ⊥于H .根据角平分线的性质定理证明1GH GC ==,利用垂线段最短即可解决问题.【解答】解:如图,过点G 作GH AB ⊥于H .由作图可知,GB 平分ABC ∠,GH BA ⊥,GC BC ⊥,1GH GC ∴==,根据垂线段最短可知,GP 的最小值为1,故选:C .10.【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程20ax bx c n +++= (0)n m <<的两个整数根,从而可以解答本题. 【解答】解:二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,∴当0y =时,20ax bx c =++的两个根为3-和1,函数2y ax bx c =++的对称轴是直线1x =-, 又关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.∴方程20(0)ax bx c m m +++=>的另一个根为5-,函数2y ax bx c =++的图象开口向下, 关于x 的方程20ax bx c n +++= (0)n m <<有两个整数根,∴这两个整数根是4-或2,故选:B .二、填空题:11.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:(1)x x x -+2x x x =-+2x =,故答案为:2x .12.【分析】根据反比例函数3y x=的图象上点的坐标性得出||3xy =,进而得出四边形OQMP 的面积. 【解答】解:过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,||3AB AC k ∴⨯==, 则四边形OBAC 的面积为:3.故答案为:3.13.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是16.故答案为:16.14.【分析】连接OA,OB,根据已知条件得到120AOB∠=︒,根据等腰三角形的性质得到30OAB OBA∠=∠=︒,根据全等三角形的性质得到DOA BOE∠=∠,于是得到结论.【解答】解:连接OA,OB,ABC∆是O的内接正三角形,120AOB∴∠=︒,OA OB=,30OAB OBA∴∠=∠=︒,60CAB∠=︒,30OAD∴∠=︒,OAD OBE∴∠=∠,AD BE=,()OAD OBE SAS∴∆≅∆,DOA BOE∴∠=∠,120DOE DOA AOE AOB AOE BOD∴∠=∠+∠=∠=∠+∠=︒,故答案为:120.15.【分析】延长BD到F,使得DF BD=,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF BD=,CD BF⊥,BCF∴∆是等腰三角形,BC CF∴=,过点C点作//CH AB,交BF于点H22ABD CHD CBD F∴∠=∠=∠=∠,HF HC∴=,8BD =,11AC =,3DH BH BD AC BD ∴=-=-=, 835HF HC ∴==-=,在Rt CDH ∆,∴由勾股定理可知:4CD =,在Rt BCD ∆中,BC ∴==,故答案为:三、解答题:16.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为4的直角三角形即可(答案不唯一).(3)构造三边分别为 【解答】解:(1)如图①中,ABC ∆即为所求. (2)如图②中,ABC ∆即为所求. (3)ABC ∆即为所求.17.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可; (3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:612%50÷=(人), 5044%22m =⨯=,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4, 第25个数和第26个数都是3.5h ,∴中位数是3.5h ;3.5h 出现了22次,出现的次数最多,∴众数是3.5h ,故答案为:3.5h ,3.5h ;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一). 18.【分析】(1)先根据矩形的性质得到//AD BC ,AD BC =,然后证明AD EF =可判断四边形AEFD 是平行四边形;(2)连接DE ,如图,先利用勾股定理计算出AE =ABE DEA ∆∆∽,利用相似比求出AD ,然后根据平行四边形的面积公式计算. 【解答】(1)证明:∠四边形ABCD 是矩形, //AD BC ∴,AD BC =,BE CF =,BE EC EC EF ∴+=+,即BC EF =,AD EF ∴=,∴四边形AEFD 是平行四边形;(2)解:连接DE ,如图, 四边形ABCD 是矩形, 90B ∴∠=︒,在Rt ABE ∆中,AE ==, //AD BC ,AEB EAD ∴∠=∠,90B AED ∠=∠=︒,ABE DEA ∴∆∆∽,::AE AD BE AE ∴=,10AD ∴==,4AB =,∴四边形AEFD 的面积41040AB AD =⨯=⨯=.19.【分析】(1)将2x =代入13y x =+=,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数1y x =+的图象向下平移2个单位得到1y x =-②,联立①②即可求解; (3)设一次函数的表达式为:5y kx =+③,联立①③并整理得:2560kx x +--,则△25240k =+<,解得:2524k <-,即可求解. 【解答】解:(1)将2x =代入13y x =+=,故其中交点的坐标为(2,3), 将(2,3)代入反比例函数表达式并解得:236k =⨯=, 故反比例函数表达式为:6y x=①; (2)一次函数1y x =+的图象向下平移2个单位得到1y x =-②, 联立①②并解得:2332x x y y =-=⎧⎧⎨⎨=-=⎩⎩或, 故交点坐标为(2,3)--或(3,2);(3)设一次函数的表达式为:5y kx =+③, 联立①③并整理得:2560kx x +--,两个函数没有公共点,故△25240k =+<,解得:2524k <-, 故可以取2k =-(答案不唯一),故一次函数表达式为:25y x =-+(答案不唯一). 20.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x 张《消防知识手册》卡片,由概率公式得出方程,解方程即可. 【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A 、B 、C , 画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为2163=; (2)设应添加x 张《消防知识手册》卡片, 由题意得:1537x x +=+, 解得:4x =,经检验,4x =是原方程的解;答:应添加4张《消防知识手册》卡片.21.【分析】(1)根据题意得到AG EF ⊥,1352EG AEG ACB =∠=∠=︒,解直角三角形即可得到结论;(2)过E 作EH CB ⊥于H ,设EH x =,解直角三角形即可得到结论.【解答】解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,//EF BC , AG EF ∴⊥,12EG EF =,35AEG ACB ∠=∠=︒, 在Rt AGE ∆中,90AGE ∠=︒,35AEG ∠=︒, tan tan35AGAEG EG∠=︒=,6EG =, 60.7 4.2AG ∴=⨯=(米);答:屋顶到横梁的距离AG 为4.2米; (2)过E 作EH CB ⊥于H , 设EH x =,在Rt EDH ∆中,90EHD ∠=︒,60EDH ∠=︒, tan EHEDH DH∠=, tan 60xDH ∴=︒, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=︒, tan EHECH CH∠=, tan35xCH ∴=︒, 8CH DH CD -==,∴8tan35tan 60x x-=︒,解得:9.52x≈,13.7214AB AG BG∴=+=≈(米),答:房屋的高AB为14米.22.【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100)x-支,根据总共的费用为(1300378)-元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300378)-元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100)x-支,根据题意,得:610(100)1300378x x+-=-,解得19.5x=,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:610(100)1300378x x a+-+=-,整理,得:13942x a=+,因为010a<<,x随a的增大而增大,所以19.522x<<,x取整数,20x∴=,21.当20x=时,420782a=⨯-=;当21x=时,421786a=⨯-=,所以笔记本的单价可能是2元或6元.23.【分析】(1)根据圆周角定理得ABD ACD∠=∠,进而得ACD CAD∠=∠,便可由等腰三角形判定定理得AD CD=;(2)证明ADF ADE∆≅∆,得AE AF=,DE DF=,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明BEC AED∆∆∽,得BC,进而求得sin BAC∠便可.【解答】解:(1)证明:CAD ABD ∠=∠, 又ABD ACD ∠=∠, ACD CAD ∴∠=∠,AD CD ∴=;(2)AF 是O 的切线,90FAB ∴∠=︒,AB 是O 的直径,90ACB ADB ADF ∴∠=∠=∠=︒, 90ABD BAD BAD FAD ∴∠+∠=∠+∠=︒,ABD FAD ∴∠=∠,ABD CAD ∠=∠,FAD EAD ∴∠=∠, AD AD =,()ADF ADE ASA ∴∆≅∆,AF AE ∴=,DF DE =, 4AB =,5BF =,3AF ∴==, 3AE AF ∴==, 1122ABF S AB AF BF AD ∆==, ∴431255AB AF AD BF ⨯===,95DE ∴=, 725BE BF DE ∴=-=,AED BEC ∠=∠,90ADE BCE ∠=∠=︒, BEC AED ∴∆∆∽,∴BE BCAE AD=, ∴2825BE AD BC AE ==, ∴7sin 25BC BAC AB ∠==, BDC BAC ∠=∠,∴7sin 25BDC ∠=.24.【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当7x =时,w 的最大值490=,当915x <时,210450w <,可得排队人数最多时是490人,由全部考生都完成体温检测时间⨯每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知, ①当09x 时,y 是x 的二次函数, 当0x =时,0y =,∴二次函数的关系式可设为:2y ax bx =+,由题意可得:17045093a b a b =+⎧⎨=+⎩,解得:10180a b =-⎧⎨=⎩,∴二次函数关系式为:210180y x x =-+,②当915x <时,810y =,y ∴与x 之间的函数关系式为:210180(09)810(915)x x x y x ⎧-+=⎨<⎩; (2)设第x 分钟时的排队人数为w 人,由题意可得:210140(09)4081040(915)x x x w y x x x ⎧-+=-=⎨-<⎩,①当09x 时,221014010(7)490w x x x =-+=--+,∴当7x =时,w 的最大值490=,②当915x <时,81040w x =-,w 随x 的增大而减小,210450w ∴<,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810400x -=, 解得:20.25x =,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)设从一开始就应该增加m 个检测点,由题意得:1220(2)810m ⨯+, 解得118m, m 是整数,118m∴的最小整数是2, ∴一开始就应该至少增加2个检测点.25.【分析】(1)由正方形的性质得出BO AC ⊥,BO CO =,由中位线定理得出//PQ OC ,12PQ OC =,则可得出结论;(2)连接O P '并延长交BC 于点F ,由旋转的性质得出△AO E '是等腰直角三角形,//O E BC ',O E O A ''=,证得O EP FCP '∠=∠,PO E PFC '∠=∠,△()O PE FPC AAS '≅∆,则O E FC O A ''==,O P FP '=,证得△O BF '为等腰直角三角形.同理BPO '∆也为等腰直角三角形,则可得出结论;(3)延长O E '交BC 边于点G ,连接PG ,O P '.证明△()O GP BCP SAS '≅∆,得出O PG BPC '∠=∠,O P BP '=,得出90O PB '∠=︒,则△O PB '为等腰直角三角形,由直角三角形的性质和勾股定理可求出O A '和O B ',求出BQ ,由三角形面积公式即可得出答案. 【解答】解:(1)点O 为对角线AC 的中点, BO AC ∴⊥,BO CO =,P 为BC 的中点,Q 为BO 的中点,//PQ OC ∴,12PQ OC =,PQ BO ∴⊥,12PQ BO =; 故答案为:12PQ BO =,PQ BO ⊥. (2)PQB ∆的形状是等腰直角三角形.理由如下: 连接O P '并延长交BC 于点F ,四边形ABCD 是正方形, AB BC ∴=,90ABC ∠=︒,将AOB ∆绕点A 按顺时针方向旋转45︒得到△AO E ',∴△AO E '是等腰直角三角形,//O E BC ',O E O A ''=,O EP FCP '∴∠=∠,PO E PFC '∠=∠,又点P 是CE 的中点, CP EP ∴=,∴△()O PE FPC AAS '≅∆,O E FC O A ''∴==,O P FP '=,AB O A CB FC '∴-=-, BO BF '∴=,∴△O BF '为等腰直角三角形.BP O F '∴⊥,O P BP '=, BPO '∴∆也为等腰直角三角形.又点Q 为O B '的中点, PQ O B '∴⊥,且PQ BQ =, PQB ∴∆的形状是等腰直角三角形;(3)延长O E '交BC 边于点G ,连接PG ,O P '.四边形ABCD 是正方形,AC 是对角线,45ECG ∴∠=︒,由旋转得,四边形O ABG '是矩形,O G AB BC '∴==,90EGC ∠=︒,EGC ∴∆为等腰直角三角形.点P 是CE 的中点,PC PG PE ∴==,90CPG ∠=︒,45EGP ∠=︒, ∴△()O GP BCP SAS '≅∆,O PG BPC '∴∠=∠,O P BP '=,90O PG GPB BPC GPB '∴∠-∠=∠-∠=︒, 90O PB '∴∠=︒,∴△O PB '为等腰直角三角形,点Q 是O B '的中点,12PQ O B BQ '∴==,PQ O B '⊥, 1AB =,O A '∴=,O B '∴=BQ ∴=1132216PQB S BQ PQ ∆∴==⨯=.。
选择题在直角坐标系中,点A(3, -4)关于x轴对称的点的坐标是:A. (-3, 4)B. (3, 4)(正确答案)C. (-3, -4)D. (4, -3)下列哪个数是无理数?A. 3.14B. √4C. π(正确答案)D. 22/7已知等腰三角形的两边长分别为3和5,则它的周长为:A. 8B. 10C. 11D. 11或13(正确答案)函数y = 2x + 1与y = 2x - 3的图象:A. 平行(正确答案)B. 相交于一点C. 重合D. 垂直解方程2x2 - 5x + 2 = 0,得到的解为:A. x = 1, x = 2B. x = -1, x = -2C. x = 1/2, x = 2(正确答案)D. x = -1/2, x = -2若a > b > 0,c < d < 0,则一定有:A. ac > bdB. ac < bd(正确答案)C. ac = bdD. 无法确定ac与bd的大小关系一个几何体的主视图、左视图、俯视图都是圆,这个几何体是:A. 长方体B. 正方体C. 球(正确答案)D. 圆柱下列不等式中,解集为x > 2的是:A. 2x > 3B. x + 2 > 5(正确答案)C. 3x - 1 > 8D. -2x > -4在△ABC中,△A = 60°,△B = 40°,则△C的度数为:A. 50°B. 60°C. 70°D. 80°(正确答案)。
2017年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.生态文明贵阳国际论坛作为以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.×104D.7×1044.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.某学校在进行防溺水安全教育下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.6.若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.贵阳市“阳光小区”开展“节做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量(m3)家庭数(个)22411那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.和B.和C.和4 D.和48.如图,在?ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED 的周长为6,则?ABCD的周长为()A.6 B.12 C.18 D.249.已知二次函+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④10.如图,四边形ABCDC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48二、填空题(每小题4分,共20分)11.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为.12.方程(x﹣3)(x﹣9)=0的根是.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.14.袋子中有红球、白这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.如图,在矩形纸片AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF 沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.2017年6月2日,贵阳市《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=,b=;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.201日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.贵阳市某消防支队在一行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.“2017年张学友演3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).23.如图,直线y=2例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(1)阅读理解:如图①BCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在D中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2017年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.2.如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【考点】JA:平行线的性质.【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.3.生态文明贵阳国际论坛作为我生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102 B.7×103C.×104D.7×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.4.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.5.某学校在进行防溺水安全将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.6.若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【考点】FF:两条直线相交或平行问题.【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.7.贵阳市“阳光小区”开展从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量(m3)家庭数(个)22411那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.和B.和C.和4 D.和4【考点】W4:中位数;W2:加权平均数.【分析】找中位数要把数据按从排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=,中位数为=,故选:A8.如图,在?ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED 的周长为6,则?ABCD的周长为()A.6 B.12 C.18 D.24【考点】L5:平行四边形的性质;KG:线段垂直平分线的性质.【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周长=2×6=12;故选:B.9.已知二次函数y=ax2+bx)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.10.如图,四边形ABCDC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,二、填空题(每小题4分,共20分)11.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2.【考点】C4:在数轴上表示不等式的解集.【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.12.方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9.【考点】A8:解一元二次方程﹣因式分解法.【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为3.【考点】MM:正多边形和圆.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB?cos∠BOM=6×=3;故答案为:3.14.袋子中有红球、白这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有3个.【考点】X8:利用频率估计概率.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×=3个,故答案为:3.15.如图,在矩形纸片AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF 沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】连接CE,根据折叠′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.三、解答题(本大题共10小题,共100分)16.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【考点】4A:单项式乘多项式;4C:完全平方公式.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.17.2017年阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a=14,b=125;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈%,∵94%<%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.18.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【考点】L9:菱形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)由三角形中位线定AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.19.2017年5月25日,中国业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【考点】X6:列表法与树状图法.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1234561(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结出现的可能性相同,其中,两天中4号展厅被选中的结果有10 ==.种,所以,P(4号展厅被选中)20.贵阳市某消居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【考点】T8:解直角三角形的应用.【分析】延长AD交B点E.解Rt△ACE,得出CE=AE?tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE?tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.21.“2017年张学友演唱会在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【考点】B7:分式方程的应用.【分析】(1)设小张跑步的米/分钟,则小张骑车的平均速度为米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.22.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD ,OC ,∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE ⊥AB ,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2,∵DE ⊥AO ,∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×2=π﹣.23.如图,直线y=比例函数y=(k >0)的图象交于点A (1,m ),与x 轴交于点B ,平行于x 轴的直线y=n (0<n <6)交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的表达式;(2)直线y=n 沿y 轴方向平移,当n 为何值时,△BMN 的面积最大?【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴S△BMN∴n=3时,△BMN的面积最大.24.(1)阅读理解:如图ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC;(2)问题探究:如图②,CD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE 是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).25.我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.【考点】HF:二次函数综合题.【分析】(1)把点(﹣2,0)和(﹣1,3)分别代入y=ax2+bx,得到关于a、b的二元一次方程组,解方程组即可;(2)根据二,得出抛物线y=ax2+bx的顶点坐标是(﹣,﹣),把顶点坐标代入y=﹣2x,得出﹣=﹣2×(﹣),即可求出b的值;(3)由于这组抛物线的2、…,A n在直线y=﹣2x上,根据(2)的结论可知,b=4或b=0.①当b=0时,不合题意舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),因为以A n为顶点的抛物线不可能经过点D n,设第n+k(k(﹣n﹣k,2n+2k),根据﹣为正整数)条抛物线经过点D n,此时第n+k条抛物线的顶点坐标是A n+k=﹣n﹣k,得出a==﹣,即第n+k条抛物线的表达式为y=﹣x2﹣4x,根据D n(﹣3n,2n)在第n+k条抛物线上,得到2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,进而求解即可.【解答】解:(1)∵抛物线y=ax2+bx经过点(﹣2,0)和(﹣1,3),∴,解得,∴抛物线的表达式为y=﹣3x2﹣6x;(2)∵抛物线y=ax2+bx的顶点坐标是(﹣,﹣),且该点在直线y=﹣2x上,∴﹣=﹣2×(﹣),∵a≠0,∴﹣b2=4b,解得b1=﹣4,b2=0;(3)这组抛物线的顶点A1、A2、…,A n在直线y=﹣2x上,由(2)可知,b=4或b=0.①当b=0时,抛物线的顶点在坐标原点,不合题意,舍去;②当b=﹣4时,抛物线的表达式为y=ax2﹣4x.由题意可知,第n条抛物线的顶点为A n(﹣n,2n),则D n(﹣3n,2n),∵以A n为顶点的抛物点D n,设第n+k(k为正整数)条抛物线经过点D n,此时第n+k条抛物线的顶(﹣n﹣k,2n+2k),点坐标是A n+k∴﹣=﹣n﹣k,∴a==﹣,∴第n+k条抛物线的表达式为y=﹣x2﹣4x,∵D n(﹣3n,2n)在第n+k条抛物线上,∴2n=﹣×(﹣3n)2﹣4×(﹣3n),解得k=n,∵n,k为正整数,且n≤12,∴n1=5,n2=10.当n=5时,k=4,n+k=9;当n=10时,k=8,n+k=18>12(舍去),∴D5(﹣15,10),∴正方形的边长是10.2017年8月2日。