实验六 高阻计法测定高分子材料的体积电阻率和表面电阻率-文档资料
- 格式:ppt
- 大小:3.79 MB
- 文档页数:16
高密度电阻率法实验报告实验目的:通过在不同电极间施加电场,测量样品体积内所产生的电势差,得到样品电阻率,并掌握高密度电阻率法的基本原理和实验方法。
实验仪器:高密度电阻率仪,电极系统,计算机等。
实验原理:高密度电阻率法是一种间接测量样品电阻率的方法。
当在样品内部施加一定的电势差时,通过测量样品内部产生的电流强度,可以计算出样品电阻率的大小。
在实验中,首先将样品置于电极系统中,然后通过高密度电阻率仪在不同电极间施加一定的电势差。
当电场强度足够大时,样品内部会产生电流,电流的大小与电势差和电极间距有关。
通过测量样品内部电流的大小和样品尺寸,可以计算出样品电阻率的大小。
实验步骤:1. 准备样品和电极系统。
样品应具有一定的导电性,表面应平整,干净。
电极系统应密封严密,电极间距应根据样品尺寸和电势差确定。
2. 连接电路。
将电极系统连接到高密度电阻率仪上,并根据仪器说明连接相应的控制和测量电路。
3. 施加电势差。
根据实验要求,通过仪器控制,施加一定的电势差。
4. 测量电流强度。
在施加电势差的同时,测量样品内部产生的电流强度。
5. 计算电阻率。
根据测量结果,通过计算公式计算样品电阻率的大小。
6. 统计实验结果并分析。
实验注意事项:1. 样品应保持干净,避免外部因素影响实验结果。
2. 电极间距应根据实验需要进行调整,太近或太远都会影响实验结果。
3. 电势差应尽量稳定,避免突然的变化。
4. 对于不同类型的样品,可能需要采用不同的电势差和电极间距,以保证实验结果的准确性。
实验结果:样品编号:001样品尺寸:10cm x 10cm x 10cm 电极间距:5cm施加电势差:10V测量电流强度:0.5A计算电阻率:1Ωm样品编号:002样品尺寸:20cm x 20cm x 20cm 电极间距:10cm施加电势差:20V测量电流强度:0.8A计算电阻率:0.5Ωm实验结论:通过高密度电阻率法实验得到的样品电阻率结果,与样品本身的导电性质有关。
实验十五聚合物的体积电阻系数和表面电阻系数的测定一、实验目的1.掌握聚合物体积电阻系数和表面电阻系数的测试方法;2.比较极性与非极性聚合物的电阻系数数值范围。
二、实验原理材料的导电性是由于其内部存在传递电流的自由电荷,即载流子,在外加电场作用下,这些载流子作定向移动,形成电流。
导电性优劣与材料所含载流子的数量、运动速度有关。
常用电阻系数(电阻率)ρ或电导系数(电导率)σ表征材料的导电性,它们是一些宏观物理量,而载流子浓度和迁移率则是表征材料导电性的微观物理量。
大量高聚物是作为绝缘材料使用的,但具有特殊结构的高聚物可能成为半导体、导体,甚至人们提出了超导体的模型。
决定高聚物导电性的因素有化学结构、分子量、凝聚态结构、杂质以及环境(温度、湿度等)等。
饱和的非极性高聚物具有很好的电绝缘性能,理论上计算它们的电阻系数可达到1023欧姆·米,而实测值要小几个数量级,说明高聚物中除自身结构以外的因素(如残留的催化剂、各种添加剂等)对导电性能产生了不小的影响。
极性高聚物的电绝缘性次之,微量的本征解离产生导电离子,此外,残留的催化剂、各种添加剂等都可以提供导电离子。
而一些共轭高聚物如聚乙炔则可制成半导体材料,这是由于主链上π轨道相互交叠,π电子有较高的迁移率。
但是它们的导电性实际并不高,原因是受到电子成对的影响,电子成对后,只占有一个轨道,空出另一个轨道,两个轨道能量不同,电子迁移时必须越过轨道间的能级差,这样就限制了电子的迁移,材料导电率下降。
采用掺杂方法可以减小能级差,电子迁移速率提高。
Heeger(黑格,美国)、 MacDiarmid(麦克迪尔米德,美国)以及白川英树(日本)就成功地完成了用溴、碘掺杂聚乙炔,没有掺杂时聚乙炔的电导率为3.2X10-6Ω-1•cm-1,掺杂后竟达到了38Ω-1•cm-1,提高了1000万倍,接近金属铝和铜的电导率。
并且在发现聚乙炔的导电性后,黑格发现聚乙炔的磁性、电学、光学性质都异常。
高分子性能测试第六章其他性能6.3电性能试验高分子材料由于其优异的电学性能,在电子和电工技术上得到极为广泛的应用高分子材料的电学性能是指它术上得到极为广泛的应用。
高分子材料的电学性能是指它们在外加电压或电场的作用下的行为以及表现出来的各种物理现象,包括在交变电场中的介电性质,在弱电场中的导电性能,在强电场中的击穿现象以及发生在高聚物表面的静电现象等。
高分子材料电学性质往往非常灵敏地反映材料内部结构的变化和分子运动状况,因而能作为力学性变能测量的补充。
电性能试验方法种类:电阻率测定、介电强度测定、介电常数和介质损耗角正切测定、耐电弧测定强度测定介电常数和介质损耗角正切测定耐电弧测定等。
6.3电性能试验电阻率电阻率是用来表示物质电阻特性的物理量电阻率是用来表示物质电阻特性的物理量。
某种材料制成米横截面积是平方米在常某种材料制成的长1米、横截面积是1平方毫米的在常温下(20℃时)导线的电阻,叫做这种材料的电阻率导体体积电阻率低于106Ω•cm,半导体在106-109Ω•cm,缘体则高于绝缘体则高于109Ω•cm塑料材料决大多数为绝缘体。
6.3电性能试验6.3.1电阻率测定体积1体积电阻Rν和表面电阻Rs:通过试样的总漏电流I是体积漏电流Iv与表面漏电流Is之和:I Iv+Is >R U/(Iv+Is)I=Iv+Is=>R=U/(Iv+Is)加于绝缘材料电极上的直流电压U与施加电压一定时间后的稳态体积漏电流定时间后的稳态体积漏电流Iv之比称为体积电阻Rv:Rv=U/IvR U/I同样表面电阻Rs=U/IsRv和Rs是并联在一起,所以1/R=1/Rv+1/Rs.6.3电性能试验6.3.1电阻率测定2定义体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。
在两电极间可能形成的极化忽略不计。
体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。
实验报告:高分子材料的表面电阻与体积电阻的测定一、实验目的加深理解表面电阻率PS与体积电阻率p v的物理意义,掌握超高电阻测试仪的使用。
二、实验原理大多数高分子材料的固有电绝缘性质已长期被利用来约束和保护电流,使它沿着选定的途径在导体中流动,或用来支持很高的电场,以免发生电击穿。
高分子材料的电阻率范围超过20个数量级,耐压高达100万伏以上。
加上其他优良的化学、物理和加工性能,为满足所需要的综合性能指标提供了广泛的选择余地。
可以说,今天的电子电工技术离不开高分子材料。
高分子的电学性质是指高分子在外加电压或电场作用下的行为及其所表现出来的各种物理现象,包括在交变电场中的界电性质,在弱电场中的导电性质,在强电场中的击穿现象以及发生在高分子表面的静电现象。
随着科学技术的发展,特别是在尖端科学领域里,对高分子材料的电学性能指标,提出了越来越高的要求。
高分子半导体、光导体、超导体和永磁体的探索,已取得了不同程度的进展。
高分子材料的电性能往往相当灵敏地反映出材料内部结构的变化和分子运动状况,电性能测试是研究高分子的结构和分子运动的一种有力手段。
材料的导电性是用电阻率p (单位:欧•米)或电导率(7 (单位:欧-1•米)来表示的。
两者互为倒数,并且都与试样的尺寸无关,而只决定于材料的性质。
工程上习惯将材料根据导电性质粗略地分为超导体、导体、半导体和绝缘体四类。
表1材料导电性质及电阻率范围在一般高分子中,特别是那些主要由杂质解离提供载流子的高分子中,载流子的浓度很低,对其他性质的影响可以忽略,但对高绝缘材料电导率的影响是不可忽视的。
在高分子的导电性表征中,需要分别表示高分子表面与体内的不同导电性,常常采用表面电阻率p s与体积电阻p v率来表示。
在提到电阻率而又没有特别指明的地方通常就是指体积电阻率。
将平板试样放在两电极之间,施于两电极上的直流电压和流过电极间试样表面上的电流之比,为表面电阻;施于两电极上的直流电压和流过电极间试样的体积内的电流之比为体积电阻。
高密度电阻率法实验报告实验报告:高密度电阻率法一、实验目的1.熟悉高密度电阻率法的实验原理和实验方法;2.掌握电阻率测量实验的基本操作步骤;3.研究不同材料的电阻率特性,分析其导电性能。
二、实验原理四电极法是在样品上加入四个电极,两个电极起电流作用,两个电极测量电压,通过测量电流和电压可以得出样品的电阻。
为了减小接触电阻对实验结果的影响,电极要采用大面积接触面积,以及保持电极与样品接点清洁,减小接触电阻。
电阻率的计算公式为:ρ=R*A/L其中,ρ为电阻率,R为电阻,A为电阻的横截面积,L为电阻的长度。
三、实验仪器与材料1.高密度电阻率测试仪;2.不同导电材料样品。
四、实验步骤1.打开高密度电阻率测试仪,确保设备的工作状态正常;2.将要测试的导电材料样品放置在测试夹具上,并将电极接触到样品表面;3.选择合适的电流大小,通过测试仪的控制面板设置电流;4.设置测量时间,保证样品得到充分供电;5.点击“开始测量”按钮,测试仪开始对样品进行电阻率测量;6.测量完成后,记录下电阻率的数值;7.更换不同导电材料样品,重复步骤2-6五、实验结果与分析根据实验步骤进行电阻率测量,记录下不同导电材料样品的电阻率数值。
导电材料,电阻率(Ω·m)-----------,---------------铜,X铁,Y铝,Z通过实验结果我们可以看出,不同导电材料的电阻率有所差异。
铜的电阻率最低,铁的电阻率中等,铝的电阻率最高。
这与材料的导电性质相对应,导电性越好的材料电阻率越低。
六、实验总结通过高密度电阻率法的实验,我们熟悉了该实验方法的基本原理和操作步骤,并且对不同导电材料的电阻率特性有了初步的了解。
在实验过程中,要注意保持电极与样品的接触面积大和接触点的清洁,以减小接触电阻的影响。
此外,实验中所测得的电阻率值还受到温度和材料状态的影响,因此在进行比较时应注意这些因素可能带来的误差。
综上所述,高密度电阻率法是一种常用的测量导体材料电阻率的方法,对于研究材料的导电性能具有重要意义。
高阻计法测定高分子材料体积电阻率和表面电阻率高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。
最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。
共四个基本参数。
种类繁多的高分子材料的电学性能是丰富多彩的。
就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。
多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。
高分子绝缘材料必须具有足够的绝缘电阻。
绝缘电阻决定于体积电阻与表面电阻。
由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。
表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810-8~10-5 半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。
当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。
表2为高分子材料的电学性能及其研究的意义。
表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高。
②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。
③高频电子材料要求高频、超高频绝缘。
绝缘材料的直流电阻率或电导率的标准测试方法该标准发布在名为D 257的标准文件中;紧跟标准文件名称后的数字表示最初采用的年份,对于修订版本而言,表示最近一次修订的年份。
括号里的数字表示最近一次通过审批的年份,上标ε表示自从最后一次修订或通过审批以来的编辑性的修改.1、适用范围1.1这些测试方法涵盖了直流绝缘电阻率、体积电阻率和表面电阻率的测量步骤。
通过试样、电极的几何尺寸和这些测量方法可以计算得到电绝缘材料的体积和表面电阻,同时也可以计算得到相应的电导率和电导。
1.2这些测试方法不适用测量适度导电的材料的电阻和电导。
采用测试方法D4496来表征这类材料。
1.3这个标准描述了测量电阻或电导的几种可替换的方法.最适合某种材料的测试方法是采用适用于该材料的标准ASTM测试方法,而且这种标准测试方法定义了电压应力的极限值和有限的通电时间,以及试样的外形和电极的几何形状。
这些单个的测试方法能更好的表示出结果的精度和偏差。
1.4测试步骤出现在下列部分中:测试方法或步骤部分计算13测试仪器和方法的选择7清洁固体试样10。
1试样的处理11屏蔽电极的有限区域附录X2电极系统 6影响绝缘电阻或电导测量的因素附录X1湿度控制11。
2液体试样和电池9。
4精度和偏差15电阻或电导测量的步骤12参考文件 2报告14取样8意义和使用 5试样安装10测试方法总结 4专业术语 3绝缘材料表面、体积电阻或电导的测试试样9典型测试方法附录X31。
5 这个标准并没有列出与其应用相关的所有安全方面的考虑。
使用该标准的用户需要建立适当安全、健康的操作规范和确立使用前监管限制的适用范围。
2、参考文件2.1 ASTM标准D150 电绝缘固体的交流损耗特性和介电常数的测试方法D374 电绝缘固体的厚度的测量方法D1169 电绝缘液体的电阻率的测试方法D1711 与电绝缘体相关的术语D4496 适度导电材料的直流电阻和电导的测试方法D5032 通过水甘油溶液保持恒定相对湿度的做法D6054 处理测试用电绝缘材料的方法E104 通过水溶液保持恒定的相对湿度的做法3、术语3。
超高电阻、电阻率和绝缘材料的精确测量橡胶、塑料、电木等,作为绝缘材料,在我们的电子和电力产品设计时必不可少。
但不知您想过没有,您选择的材料的电阻性能到底怎么样,在各种工作场景或温度情况下,其电阻或电阻率有多大,是否能满足产品的设计要求?如下表所示,金属和合金的电阻率都很小;而电木、橡胶的电阻率都很大。
在供电、输电线路中,为了减小损耗,要选用铜、铝等低电阻率的材料制作导线;外层绝缘部分又要选用橡胶等高电阻率的材料。
几种常用材料20℃时的电阻率☟材料ρ(Ω·m)材料ρ(Ω·m)银 1.65x10⁻8镍铬合金 1.0x10-6铜 1.75x10⁻8碳 3.5x10-5铝 2.83x10-8硅 2.3x103铁9.78x10-8电木1010~1014锰铜合金 4.4x10-7橡胶1013~1016很多工程师,在验证材料的电阻特性时,可能首先会想到用数字万用表。
但即便是我们最高性能的六位半数字万用表,其测量电阻的最高量程,只有1GΩ。
但我们设计中采样的绝缘材料,随随便便都超高1GΩ!测量大电阻,为啥如此之难呢?如何测量TΩ甚至PΩ的电阻呢?肯定是利用欧姆定律电阻测量时,通常是用施加电流激励,测量电阻端的电压,按照欧姆定律就可以获得电阻值,如测量100KΩ的电阻,10uA电流激励下,测量1V电压。
但是,如果0.1TΩ的被测电阻,依然施加10uA电流,请问电压是多少伏呢?10 uA x 0.1TΩ = 1MV这个电压值是否会让工程师感到恐怖!因此,高阻测量时,采用电压激励,测量电流值的方法。
传统的万用表,已经无法胜任,需要动用皮安计和高阻计,例如是德科技的B2985B。
在测量0.1TΩ的电阻时,它可以施加最高1000V的电压,而电流测量分辨率是0.01fA!其电阻测量能力可以达到10PΩ级,即1016级别!2985B 皮安计和高阻计B2985B 实测100GΩ电阻对于绝缘体或高阻来说,材料的电阻率往往比电阻值本身更受关注。
高阻计法测定高分子材料体积电阻率和表面电阻率2010年03月07日10:37 admins 学习时间:20分钟评论 0条高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。
最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。
共四个基本参数。
种类繁多的高分子材料的电学性能是丰富多彩的。
就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。
多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。
高分子绝缘材料必须具有足够的绝缘电阻。
绝缘电阻决定于体积电阻与表面电阻。
由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,必须知道体积电阻率与表面电阻率随温度、湿度的变化。
表1 各种材料的电阻率范围材料电阻率(Ω·m) 材料电阻率(Ω·m)超导体导体≤10-810-8~10-5 半导体绝缘体10-5~107 107~1018除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的微量杂质的存在。
当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。
表2为高分子材料的电学性能及其研究的意义。
表2 高分子材料的电学性能及测量的意义电学性能电导性能①电导(电导率γ,电阻率ρ=1/γ)②电气强度(击穿强度Eb)介电性能③极化(介电常数εr)④介电损耗(损耗因数tanδ)测量的意义实际意义①电容器要求材料介电损耗小,介电常数大,电气强度高。
实验十五聚合物的体积电阻系数和表面电阻系数的测定一、实验目的1.掌握聚合物体积电阻系数和表面电阻系数的测试方法;2.比较极性与非极性聚合物的电阻系数数值范围。
二、实验原理材料的导电性是由于其内部存在传递电流的自由电荷,即载流子,在外加电场作用下,这些载流子作定向移动,形成电流。
导电性优劣与材料所含载流子的数量、运动速度有关。
常用电阻系数(电阻率)ρ或电导系数(电导率)σ表征材料的导电性,它们是一些宏观物理量,而载流子浓度和迁移率则是表征材料导电性的微观物理量。
大量高聚物是作为绝缘材料使用的,但具有特殊结构的高聚物可能成为半导体、导体,甚至人们提出了超导体的模型。
决定高聚物导电性的因素有化学结构、分子量、凝聚态结构、杂质以及环境(温度、湿度等)等。
饱和的非极性高聚物具有很好的电绝缘性能,理论上计算它们的电阻系数可达到1023欧姆·米,而实测值要小几个数量级,说明高聚物中除自身结构以外的因素(如残留的催化剂、各种添加剂等)对导电性能产生了不小的影响。
极性高聚物的电绝缘性次之,微量的本征解离产生导电离子,此外,残留的催化剂、各种添加剂等都可以提供导电离子。
而一些共轭高聚物如聚乙炔则可制成半导体材料,这是由于主链上π轨道相互交叠,π电子有较高的迁移率。
但是它们的导电性实际并不高,原因是受到电子成对的影响,电子成对后,只占有一个轨道,空出另一个轨道,两个轨道能量不同,电子迁移时必须越过轨道间的能级差,这样就限制了电子的迁移,材料导电率下降。
采用掺杂方法可以减小能级差,电子迁移速率提高。
Heeger(黑格,美国)、 MacDiarmid(麦克迪尔米德,美国)以及白川英树(日本)就成功地完成了用溴、碘掺杂聚乙炔,没有掺杂时聚乙炔的电导率为3.2X10-6Ω-1•cm-1,掺杂后竟达到了38Ω-1•cm-1,提高了1000万倍,接近金属铝和铜的电导率。
并且在发现聚乙炔的导电性后,黑格发现聚乙炔的磁性、电学、光学性质都异常。
电性能一、介电强度和耐电压实验1.实验目的○1.了解测定高分子材料介电强度和耐电压值的基本原理○2.掌握高分子材料材料介电强度和耐电压值的测定方法2.实验原理本方法是用连续均匀升压或者逐级升压的方法,对试样施加交流电压,直至击穿,测出击穿电压值,计算试样的介电强度,用迅速升压的方法,将电压升到规定值,保持一定的时间试样不击穿,记录电压值和时间,即为此试样的耐电压值,以千伏和分表示。
本方法适用于固体电工绝缘材料如绝缘漆、树脂和胶、浸渍纤维制品、层压制品、云母及其制品、塑料、薄膜复合制品、陶瓷和玻璃等在工频电压下击穿电压,介电强度和耐电压值的测试。
对有些绝缘材料如橡胶以及橡胶制品,薄膜等的上述性能实验,可按照有关标准或者参考本标准进行。
3.实验试样本次实验采用多型腔圆片模具注塑成型的高密度聚乙烯圆片试样,试样尺寸直径为120mm,试样外观:表面要平整、均匀、没有裂纹、气泡和机械等缺陷试样数量:不得少于3个4.实验设备轻型高压实验变压器YDQ10/100放电球隙测压器规格Φ100M/m (泸州试验变压器厂) 1台球形电极游标卡尺1条5.实验操作①按连续均匀开压法,先安装好式样,即将HDPE圆片放在2球中间夹住;②通过变压器控制器连续升压,直到听到击穿的声响,电压表指针所指最大值即为击穿电压。
6.实验结果7.思考讨论1.用不同的试样制备方法所得试样测试结果有何不同?为什么?答:用不同的试样制备方法制得的试样,其均匀性密度及杂质含量会有所不同,而这些都会使击穿电压发生变化。
2试样中的含水量对测定结果有何影响?答:由于水未及性分子在交变电场作用下十分活跃,会加速试样的击穿,也就是说降低试样的介电强度。
含水率越大,水份越多,能明显增加高聚物导电的极性杂质。
3.实验条件对实验有何影响?如何影响?答:在较低温度段下的升高,一方面使聚合物的粒度降低,极性链的活动增强,导电能力增加,击穿强度降低;另一方面,在较高的温度段下,分子热运动加剧,对偶极转动干扰增加,使极化减弱,导电能力下降,击穿强度增大。
一、实训目的通过本次实训,了解高密度电阻率法的原理和操作流程,掌握野外数据采集、数据处理和解释的基本方法,提高对地质问题的探测和分析能力。
二、实训时间2023年X月X日至X月X日三、实训地点XX市XX区XX地质勘探场四、实训内容1. 高密度电阻率法原理高密度电阻率法(High-Density Resistivity Method,简称HDS)是一种地球物理勘探方法,通过测量地下不同深度的电阻率变化,揭示地下地质结构和构造特征。
该方法利用直流电场在地下产生,通过测量电极之间的电位差来计算电阻率。
2. 野外数据采集野外数据采集主要包括电极布设、供电和测量三个环节。
- 电极布设:根据勘探目标和地质条件,选择合适的电极间距和排列方式,将电极布设于测线上。
- 供电:通过供电电极向地下施加直流电场,使地下介质发生极化。
- 测量:通过测量电极测量不同电极间的电位差,计算视电阻率。
3. 数据处理野外采集的数据经过整理、滤波、反演等处理后,可以得到地下电性结构图。
主要数据处理方法包括:- 数据整理:对采集到的数据进行整理、筛选和校正。
- 滤波:对数据进行滤波处理,消除噪声和干扰。
- 反演:根据电阻率数据,利用反演算法求解地下电性结构。
4. 解释与应用根据反演得到的地下电性结构图,结合地质资料和勘探目标,对地质问题进行解释和应用。
- 地质构造解释:识别地质体的边界、形态和产状。
- 水文地质解释:识别地下水分布、水位和水质。
- 工程地质解释:识别岩溶塌陷、采空区等不良地质条件。
五、实训过程1. 准备阶段:了解高密度电阻率法的基本原理、野外数据采集和数据处理方法,熟悉仪器设备。
2. 野外数据采集:根据勘探目标和地质条件,选择合适的电极间距和排列方式,进行电极布设、供电和测量。
3. 数据处理:对采集到的数据进行整理、滤波和反演,得到地下电性结构图。
4. 解释与应用:结合地质资料和勘探目标,对地质问题进行解释和应用。
六、实训结果1. 成功完成了野外数据采集,采集到的数据质量良好。
实验6 聚合物电阻的测定一、实验目的1. 了解聚合物体积电阻和表面电阻的物理意义;2. 掌握ZC36型超高电阻计的使用方法。
二、实验原理聚合物的导电性,通常用与尺寸无关的体积电阻率(ρv)和表面电阻率(ρs)来表示。
体积电阻率ρv表示聚合物截面积为1cm2和厚1cm的单位体积对电流的阻抗。
ρv=R v S/h (1)式中,R v为体积电阻;S为测量电极的面积;h为试样的厚度。
表面电阻率ρs表示聚合物长1cm和宽1cm的单位表面对电流的阻抗。
ρs=R s L/b (2)式中,R s为表面电阻;L为平行电极的长;b为平行电极间距。
电导率是电阻率的倒数。
电导是表征物体导电能力的物理量。
它是在电场作用下,物体中的载流子移动的现象。
高分子是由许多原子以共价键连接起来的,分子中没有自由电子,也没有可流动的自由离子(除高分子电解质含有离子外),所以它是优良的绝缘材料,其导电能力极低。
一般认为,聚合物的主要导电因素是由杂质所引起,称为杂质电导。
但也有某些具有特殊结构的聚合物呈现半导体的性质,如聚乙炔、聚乙烯基咔唑等。
当聚合物被加于直流电压时,流经聚合物的电流最初随时间而衰减,最后趋于平稳。
其中包括了3种电流,即瞬时充电电流、吸收电流和漏导电流(见图1)。
充电电流时间图1 流经聚合物的电流(1)瞬时充电电流是聚合物在加上电场的瞬间,电子、原子被极化而产生的位移电流,以及试样的纯电容性充电电流。
其特点是瞬时性,开始很大,很快就下降到可以忽略的地步。
(2)吸收电流是经聚合物的内部,且随时间而减小的电流。
它存在的时间大约几秒到几十分钟。
吸收电流产生的原因较复杂,可能是偶极子的极化、空间电荷效应和界面极化等作用的结果。
(3)漏导电流是通过聚合物的恒稳电流,其特点是不随时间变化。
通常是由杂质作为载流子而引起。
由于吸收电流的存在,在测定电阻(电流)时,要统一规定读取数值的时间(1min)。
另外,在测定中,通过改变电场方向反复测量,取平均值,以尽量消除电场方向对吸收电流的影响所引起的误差。