9-1-图像分割-概述
- 格式:ppt
- 大小:4.48 MB
- 文档页数:21
图像数字处理图像分割图像分割是图像数字处理中的一项重要技术,它将图像中的像素点划分成多个区域,以便更好地理解和分析图像。
在本文中,我将介绍图像分割的原理、常用方法及其应用领域。
一、图像分割的原理图像分割的目标是将图像划分成一系列具有相似特征的区域,使得每个区域内的像素点具有相同或相似的属性。
它的基本原理是通过寻找像素点之间的差异来确定区域边界。
常用的图像分割方法包括阈值分割、边缘检测和区域生长等。
阈值分割是最简单的分割方法,它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
边缘检测通过检测图像中的边缘信息来进行分割,常用的方法有Sobel算子和Canny算子。
区域生长是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
二、常用的图像分割方法1. 基于阈值的分割方法:阈值分割是最简单且常用的分割方法之一。
它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
常用的阈值分割方法有全局阈值分割和自适应阈值分割。
2. 基于边缘检测的分割方法:边缘检测是一种常用的图像分割方法,它通过检测图像中的边缘信息来进行分割。
常用的边缘检测方法有Sobel算子、Canny算子等。
3. 基于区域生长的分割方法:区域生长方法是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
它常用于分割具有明显纹理特征的图像。
三、图像分割的应用领域图像分割在计算机视觉、医学影像处理、遥感图像分析等领域具有广泛的应用。
以下列举几个典型的应用领域:1. 目标检测与识别:图像分割可以帮助检测和识别图像中的目标物体,如人脸识别、车辆检测等。
2. 医学影像处理:在医学影像中,图像分割可以帮助医生准确地定位和分析病变区域,如肿瘤检测、血管分割等。
3. 遥感图像分析:遥感图像通常包含大量的地物信息,通过图像分割可以将不同类型的地物区分开来,如土地利用分类、城市区域划分等。
4. 视频分析:图像分割在视频分析中扮演重要角色,可以提取视频中的运动目标,如行人检测、行为分析等。
图像分割方法概述图像分割是一种基本的计算机视觉任务,旨在将图像划分成不同的区域或对象。
图像分割在许多应用领域中都有重要的应用,如医学影像分析、目标检测与识别等。
本文将概述几种常用的图像分割方法。
一、阈值分割法阈值分割法是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像按照灰度值的高低进行分类。
通过设定一个或多个阈值,将图像的像素划分为前景和背景。
根据不同的阈值选择方法,阈值分割法可以分为全局阈值分割和局部阈值分割两种。
二、基于边缘的分割法基于边缘的分割法是另一种常见的图像分割方法。
它利用图像中明显的边缘信息将图像分割成不同的区域。
常用的边缘检测方法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像中的物体从背景中分离出来。
三、区域生长法区域生长法是一种基于相似性的图像分割方法。
它从某个种子像素开始,逐渐将与其相似的像素聚合到同一区域中。
相似性度量可以基于像素的灰度值、颜色、纹理等特征来定义。
区域生长法适用于分割相对均匀的区域,但对于高噪声或复杂纹理的图像效果可能不理想。
四、基于聚类的分割法基于聚类的分割法通过将图像像素聚类成不同的类别来实现图像分割。
常用的聚类算法有K均值聚类、高斯混合模型等。
聚类分割法适用于分割具有明显不同特征的目标,如自然景观图像中的不同物体。
综上所述,图像分割方法有多种多样,每种方法都有其适用的场景和局限性。
在实际应用中,我们需要根据图像的特点和任务需求选择合适的方法。
此外,还可以通过组合多个方法或使用深度学习等方法来提高图像分割的精度和鲁棒性。
随着计算机视觉技术的不断进步,图像分割将在更多领域发挥重要作用。
图像分割胡辑伟信息工程学院图像分割●概述●间断检测●边缘连接和边界检测●阈值处理●基于区域的分割●分割中运动的应用图像分割●分割的目的:将图像划分为不同区域●三大类方法✓根据区域间灰度不连续搜寻区域之间的边界,在间断检测、边缘连接和边界检测介绍✓以像素性质的分布进行阈值处理,在阈值处理介绍✓直接搜寻区域进行分割,在基于区域的分割中介绍图像分割●概述✓在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分一般称为目标或前景✓为了辨识和分析目标,需要将有关区域分离提取出来,在此基础上对目标进一步利用,如进行特征提取和测量✓图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程图像分割●概述(续)✓特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域✓图像分割算法是基于亮度值的不连续性和相似性不连续性是基于亮度的不连续变化分割图像,如图像的边缘根据制定的准则将图像分割为相似的区域,如阈值处理、区域生长、区域分离和聚合图像分割举例PR=0.718PR=0.781#249061#253036#169012PR=0.800PR=0.607PR=0.758PR=0.759PR=0.933PR=0.897PR=0.763PR=0.933PR=0.897PR=0.953PR=0.951PR=0.670PR=0.865PR=0.710#134052Image MDL MML ERL1ERL2#3096#85048#175043#182053#219090pr=0.521 pr=0.480 pr=0.861pr=0.740pr=0.375pr=0.613pr=0.822 pr=0.565pr=0.401pr=0.858pr=0.820 pr=0.850pr=0.789pr=0.890pr=0.914Row 1: Image Row 2: RPCL Row 3: CAC Row 4: ERL基于边缘生长的图像分割算法结果参考文献:林通,“基于内容的视频索引与检索方法的研究”,北京大学数学科学学院,博士论文,2001。
图像分割的基础知识⼀、分割的基本了解1. 图像分割是⼀个定义不明确问题(ill defined ),⼀副图像的最有分割结果往往是根据实际的应⽤任务⽽确定的。
现有的图像算法,也是针对某⼀个具体的应⽤⽽设计的。
图像分割理论没有实质性的突破,所以,没有通⽤的分割理论。
2. 主要的研究⽅向是:交互式分割:是否需要⽤户交互。
主流的有两种⽅案:基于边界(boundary )的交互⽅式。
⽤户画出⼀条⼤致的边界曲线。
算法就是优化这条曲线,逼近物体边界。
代表算法是snake 算法。
基于种⼦(seed )的交互⽅式。
⽤户只需要在前景或者背景区域粗略地标记⼀些种⼦点,通常是⿏标点击的区域,标记为种⼦区域,分割出前景物体。
代表算法是Graph Cut 算法。
特定类图像分割语义图像分割:分割出图像中的物体并识别出它们的类别。
场景理解。
协同图像分割:协同分割的典型定义是指根据⼀组给定的图像集共同分割出其中“相似的东西”。
⼆、测地距离(geodesic distance )测地距离是地理上的概念,就是地球表⾯的两点的最短距离。
显然,和欧⼏⾥德距离(Euclidean distance )还是有区别的。
后来这个概念被推⼴到数学空间,例如在图论中,测地距离就是图中两个节点之间的最短距离。
如下图,d 15是欧⽒距离,d 12+d 23+d 34+d 45是测地距离。
三、图论分割算法基本原理⼀幅图像可以被映射成⼀个加权的⽆向图,其中像素点被当作图中的顶点,⽽相邻的像素之间的视觉性质(⽐如灰度级别,颜⾊或者纹理)的相似度当作相应的边的权值,于是图像的分割结果就可以通过对图的分割处理来获得。
把每个像素点认为成图的顶点,图的每个顶点(除边界点外)有四个邻接顶点,邻接顶点之间两两相连接,边长有权重,⽐如直接⽤像素值的差值。
这⾥不采⽤简单的欧⽒距离,相邻像素点的欧⽒距离是1。
四、基于测地距离的交互式分割算法流程1. 给定⼀张有待分割的图⽚,算法根据图论分割算法的基本原理,⽣成⼀张对应的距离图。
图像分割总结图像分割就是把图像中有意义的特征部分提取出来,例如,图像中的边缘、区域等,通过特征部分的提取将图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标。
图像分割是由图像处理到图像分析以及其他操作的关键步骤。
现有的图像分割方法主要分以下几类:基于阈值的分割方法(可以分为全局阈值方法和局部阈值方法)、基于区域的分割方法(区域生长算法、分裂合并算法、分水岭算法等)、基于边缘的分割方法(分为串行边缘检测技术和并行边缘检测技术)以及基于统计模式分类的分割方法等。
1、智能剪刀智能剪刀是一个新的,交互式的,用于图像分割和合成的工具。
数字图像分割技术用来从周围的背景中提取图像成分。
但是当时基于计算机的分割工具非常粗糙,并且和手工跟踪相比没有太大的优势。
然而,智能剪刀可以通过鼠标的移动快速和精确地提取图像中的物体。
当鼠标确定的位置接近一个物体的边缘的时候,一个live-wire边界捕捉并且包围了我们感兴趣的物体。
live-wir e是一种交互式分割方法,其基本思想是利用动态规划方法产生图像中给定两点间的最优路径,合理地构造代价函数和选择起始点和目标点,用以提取物体的边缘。
live-wir e边界检测将离散的动态规划问题规划为一个二维图像的搜索问题。
动态规划提供了数学意义上最佳的边界,同时也极大的减少了局部噪声和其他干扰结构的影响。
该算法选择的边界不是邻接边中的最强壮的边,而是与现在正在被跟踪的边的特定类型相符合的边,这一过程我们成为on-the-fly training,增强了算法的可靠性和智能剪刀工具的健壮性。
通过智能剪刀提取出来的物体可以被放大或者缩小,旋转,以及利用live-wire掩模和空间频率等值性组合成新的图像。
空间频率等值是利用巴特沃斯低通滤波器实现的。
智能剪刀提供了一个用于物体提取和图像合成的精确并且高效的交互性工具,它不仅可以用于灰度图像,同时也可适用于任意复杂度的彩色图像,并且基于这个工作还有很多扩展应用。
图像分割的基础知识与应用一、引言图像分割是指将一幅图像分割成多个子区域,并且每个子区域能够描述该区域内的特性。
图像分割技术在许多领域中得到了广泛的应用,例如医学图像分析、计算机视觉、遥感图像处理和自动驾驶等。
本文将详细介绍图像分割的基本原理、算法和应用。
二、图像分割的基础知识1.图像分割的定义图像分割是将一副图像分割成不同的区域,每个区域内的像素具有相似的特性。
图像分割通常基于像素级别、区域级别或基于深度学习等方法。
2.图像分割的基本步骤图像分割的基本步骤包括预处理、特征提取、分割阈值的选取和后处理等。
其中,预处理包括图像去噪、归一化、亮度和对比度调整等。
特征提取是指从图像中提取有用的信息,例如颜色、纹理、形状等。
分割阈值的选取是指寻找合适的阈值来分割图像。
后处理步骤包括噪声去除、区域合并等处理。
3.图像分割的评估指标图像分割的评估指标通常包括正确率、准确率、灵敏度和特异性等。
其中,正确率指分类正确的像素占总像素数的比例;准确率指分类正确的像素占分类结果里所有像素数的比例;灵敏度指分类为正类的像素占所有实际正类像素数的比例;特异性指分类为负类的像素占所有实际负类像素数的比例。
三、图像分割的应用领域1.医学图像分割医学图像分割是指将医学图像分割为不同的组织、器官等部位。
它可以帮助医生进行疾病的诊断和治疗规划。
医学图像分割通常采用基于灰度值、形状、纹理等信息的算法,例如基于阈值的方法、基于边缘的方法、基于区域的方法等。
2.计算机视觉计算机视觉是指让计算机能够读懂和理解图像信息。
图像分割是计算机视觉中的基本技术之一。
它可以帮助计算机识别、跟踪和检测物体。
计算机视觉中常用的图像分割方法包括基于聚类、基于图论和基于深度学习等。
3.遥感图像处理遥感图像处理是指利用航空、航天等方式获得地面的图像信息,并对这些图像进行处理和分析,以便更好地了解和研究地理环境。
图像分割是遥感图像处理中的一个重要步骤。
它可以帮助识别土地覆盖、地形、自然灾害等信息。
图像编码是数字图像处理中的重要技术之一,它可以将图像转化为数字信号并进行压缩,从而减少存储空间和传输带宽的占用。
图像分割是图像编码的关键步骤之一,是将图像分成若干个不相交的区域或对象的过程。
在图像编码中,图像分割方法的选择与图像质量、编码效率和算法复杂度之间存在着紧密的关联。
本文将对图像编码中常用的一些图像分割方法进行介绍。
1. 阈值分割阈值分割是一种简单且广泛应用的图像分割方法。
其基本原理是将图像中的像素按照灰度值与设定的阈值进行比较,大于或小于阈值的像素被分为不同的区域。
这种方法适用于图像具有明显的灰度分布特征的场景,但对于灰度变化较强的图像效果较差。
2. 区域生长分割区域生长分割是一种基于像素相似度的图像分割方法。
它从种子点开始,将与之相似的像素逐步加入到同一区域中,直到相似度不再满足设定条件或所有像素被访问完。
该方法能够应对图像中灰度不均匀或颜色复杂的情况,但对于种子点的选取较为敏感。
3. 边缘检测分割边缘检测分割是一种通过检测图像中明显边缘位置进行分割的方法。
常用的边缘检测算法有Sobel、Canny和Laplacian算子等。
这些算法通过对图像进行梯度计算或二阶导数计算,找到灰度变化较大的位置作为图像分割的边界。
这种方法适用于需要保留物体边界信息的场景,但对于边界不清晰或噪声较多的图像效果较差。
4. 基于图割的分割基于图割的分割是一种基于图像像素之间的相似度进行分割的方法。
该方法将图像转化为图形模型,通过最小割算法将图像分为不同的区域。
其优点是能够充分考虑像素间的关联性,但算法复杂度较高,对于大规模图像处理不适用。
5. 基于聚类的分割基于聚类的分割是一种将图像中的像素按照其相似性进行聚类的方法。
常用的聚类算法有K-means和Mean Shift等。
这些算法根据像素间的距离或密度进行聚类,将相似的像素归为同一类别。
该方法的优点是效率高且易于实现,但对于聚类中心的选择较为敏感。
综上所述,图像编码中的图像分割方法各有优缺点,在实际应用中需要根据图像的特点和编码要求选择适合的方法。