钛渣冶炼炉新工艺介绍
- 格式:doc
- 大小:99.00 KB
- 文档页数:8
低温还原钛铁矿生产高钛渣的新工艺引言目前世界上9 0%以上的钛矿用于生产钛白,约4%~5%的钛矿用于生产金属钛,其余钛矿用于制造电焊条、合金、碳化物、陶瓷、玻璃和化学品等。
我国的钛资源储量非常丰富,但主要是钛铁矿,金红石矿甚少。
我国钛矿主要由广东、广西、海南、云南和四川攀枝花开采生产,主要产品是钛铁矿精矿,也有少量的金红石精矿。
由于钛铁矿精矿的品位较低,需经过富集处理获得高品位的富钛料一高钛渣或人造金红石,才能进行下一步的处理。
电炉熔炼法是一种成熟的方法,工艺比较简单,副产品金属铁可以直接利用,不产生固体和液体废料,电炉煤气可以回收利用,三废少,工厂占地面积小,是一种高效的冶炼方法。
电炉熔炼法可得到TiO2含量为 80%左右的高钛渣,作为下一步处理(如酸浸法或氯化法) 的原料。
由于电炉熔炼法属于高温冶金,能耗高是其固有的特点,生产1t高钛渣,大约需要3000 kWh的电能,而实际上将铁从钛铁矿中还原出来所需的化学能量仅在 500 kWh左右,即能量的有效利用率仅在17%左右,非常低;其二、电炉熔炼法使用冶金焦或石油焦作还原剂,也存在一定的环境污染。
El-Tawil等人研究了在固态下先将铁从钛精矿中还原出来,然后再通过磁选方式将铁分离出来的方法生产高钛渣。
他们通过添加催化剂等方式,研究了钛铁矿在1000~1200℃的还原性能,结果表明,在1200 ℃恒温180 min,钛铁矿的金属化率达到85%。
因此还原效果不很理想。
Williams等人研究了通过球磨促发方式实现钛精矿的低温还原性能,发现了在760℃条件下恒温30 min基本上将铁从钛精矿中还原出来这一低温反应现象,具有很强的理论意义。
但是实验条件很苛刻,要求钛精矿的颗粒度在1~2μm,一般球磨机难以实现这一目标,即使能够达到,也将耗费大量能量。
赵沛等人提出了煤基低温冶金学和冶金流程,可将铁矿石的冶炼温度降低到700℃以下,甚至更低的温度。
在此基础上,钢铁研究总院低温冶金学课题组经过研究,发现钛精矿粉体的平均粒度在10μm左右时也能将它的还原温度降低到600℃左右,并且研究出一种高效球磨机,这样为钛精矿的低温还原工艺的产业化奠定了理论和实践基础。
钛的冶炼技术致力于传递专业的钛知识,传播全面的钛文化钛在地壳中的含量很丰富,我国的钛资源位居世界之首,探明储量约占38.8%,分布在20多个省区的100多处矿区,主要集中在西南、中南和华北地区。
攀西地区的钒钛磁铁矿是世界知名的综合性矿床,储量十分丰富,占我国钛资源的92%,为我国钛工业提供了雄厚的资源基础。
然而目前生产钛的工艺周期长、能耗高、污染严重等特点造成钛的价格昂贵,很大程度上限制了钛的使用,也由此可见开发新的低成本钛的生产方法,对加速我国由目前世界上钛资源大国向钛生产强国的转变具有极其深远的意义。
[1]传统钛冶金工艺传统的钛冶炼工艺是“克劳尔法”,它利用金属钠或金属镁来还原四氯化钛,得到金属钛。
由于钛是在钛的熔点以下产生的,所产生的钛金属是海绵状的,因此被称为“海绵钛”。
克劳尔法工艺有三个主要过程:富钛材料的制备,四氯化钛的制备和还原蒸馏以生产海绵钛。
富钛材料通常由钛铁矿制备,以尽可能去除铁,丰富钛组分;TiCl4[i]由氯制备,将钛组分从氧化物转化为氯化物,包括氯化和精炼;用金属镁蒸汽还原蒸馏四氯化钛,在900℃左右四氯化钛和镁蒸汽混合反应便可得到海绵钛。
但克劳尔法工艺不连续,流程长,工艺多,而TiCl4在室温下又具有挥发性和腐蚀性,使得海绵钛的生产成本很高,限制了钛在各个行业的应用。
[2]钛冶金新工艺[3-7]为了降低金属钛的生产成本,相关人员探索研究了许多提取钛的新方法,主要有TiCl4电解工艺、ITP( Armstrong)工艺、FFC工艺、OS工艺、预还原成型工艺(PRP)、QT工艺、MER工艺。
1.TiCl4电解制取金属钛的氧化物和钛的氯化物,都可以作为工业生产钛的原料。
但到目前为止,只有氯化钛已被用作钛金属工业生产的前体。
这主要是因为氧气和碳氧、碳钛具有很强的亲和力,产品的氧含量严重影响钛和钛合金的性能。
在早期,氯化被认为是去除钛中氧碳的唯一有效方法。
因此,钛金属的工业生产涉及TiCl4的制备和纯化。
钛渣的冶炼原理1.钛渣冶炼的原理及工艺流程电炉熔炼钛渣的实质是钛铁矿与固体还原剂无烟煤(或石油焦或叫焦炭)等混合加入电炉中进行还原熔炼,矿中铁的氧化物被选择性地还原为金属铁,钛的氧化物被富集在炉渣中,经渣铁分离后,获得钛渣和副产品金属铁。
钛精矿的主要组成是TiO2和FeO,其余为SiO2、CaO、MgO、Al2O3和V2O5 等,钛渣冶炼就是在高温强还原性条件下,使铁氧化物与碳组分反应,在熔融状态下形成钛渣和金属铁,由于比重和熔点差异实现钛渣与金属铁的有效分离。
期间可能发生的化学反应如下:Fe2O3+C=2FeO+CO (1)FeO+C=Fe+CO (2)以钛精矿为原料,敞口电炉冶炼钛渣的工艺流程如图1所示。
钛渣图1、工艺流程图2. 电炉冶炼的主要特征钛渣是一种高熔点的炉渣,钛渣熔体具有强的腐蚀性、高导电性和其粘度在接近熔点温度时而剧增的特性,而且这些性能在熔炼过程中随其组成的变化而发生剧烈的变化。
2.1钛渣的高电导率和熔炼钛渣的开弧熔炼特征2.1.1钛渣的高电导率钛铁矿在熔化状态具有较大的电导率,在1500℃时为2.0~2.5ks/m,在1800℃为5.5~6.0ks/m,随着还原熔炼钛铁矿过程的进行,熔体组成发生变化,FeO含量减少,而TiO2和低价钛氧化物的含量增加,因此其电导率迅速上升,如加拿大索雷尔钛渣在1750℃电导率为15~20ks/m,而一般的炉渣在1750℃电导率为100s/m,可见钛渣的电导率比普通冶金炉渣的电导率高数十倍甚至几百倍,比普通离子型电解质(如Nacl液体在900℃时的电导率约为400s/m)的电导率都高很多,且温度变化对钛渣电导率影响不大,这些都说明钛渣具有电子型导电体的特征。
2.1.2熔炼钛渣电炉的开弧熔炼特征钛渣的高电导率决定了熔炼钛渣电炉的开弧熔炼特征,即熔炼钛渣的热量来源主要依靠电极末端至熔池表面间的电弧热,这就是所谓的“开弧冶炼”,而在高电阻炉渣的情况下,电极埋入炉渣,熔炼过程的热量来源主要是渣阻热,即所谓的“埋弧熔炼”。
钛渣的冶炼原理1.钛渣冶炼的原理及工艺流程电炉熔炼钛渣的实质是钛铁矿与固体还原剂无烟煤(或石油焦或叫焦炭)等混合加入电炉中进行还原熔炼,矿中铁的氧化物被选择性地还原为金属铁,钛的氧化物被富集在炉渣中,经渣铁分离后,获得钛渣和副产品金属铁。
钛精矿的主要组成是TiO2和FeO,其余为SiO2、CaO、MgO、Al2O3和V2O5 等,钛渣冶炼就是在高温强还原性条件下,使铁氧化物与碳组分反应,在熔融状态下形成钛渣和金属铁,由于比重和熔点差异实现钛渣与金属铁的有效分离。
期间可能发生的化学反应如下:Fe2O3+C=2FeO+CO (1)FeO+C=Fe+CO (2)以钛精矿为原料,敞口电炉冶炼钛渣的工艺流程如图1所示。
钛渣图1、工艺流程图2. 电炉冶炼的主要特征钛渣是一种高熔点的炉渣,钛渣熔体具有强的腐蚀性、高导电性和其粘度在接近熔点温度时而剧增的特性,而且这些性能在熔炼过程中随其组成的变化而发生剧烈的变化。
2.1钛渣的高电导率和熔炼钛渣的开弧熔炼特征2.1.1钛渣的高电导率钛铁矿在熔化状态具有较大的电导率,在1500℃时为2.0~2.5ks/m,在1800℃为5.5~6.0ks/m,随着还原熔炼钛铁矿过程的进行,熔体组成发生变化,FeO含量减少,而TiO2和低价钛氧化物的含量增加,因此其电导率迅速上升,如加拿大索雷尔钛渣在1750℃电导率为15~20ks/m,而一般的炉渣在1750℃电导率为100s/m,可见钛渣的电导率比普通冶金炉渣的电导率高数十倍甚至几百倍,比普通离子型电解质(如Nacl液体在900℃时的电导率约为400s/m)的电导率都高很多,且温度变化对钛渣电导率影响不大,这些都说明钛渣具有电子型导电体的特征。
2.1.2熔炼钛渣电炉的开弧熔炼特征钛渣的高电导率决定了熔炼钛渣电炉的开弧熔炼特征,即熔炼钛渣的热量来源主要依靠电极末端至熔池表面间的电弧热,这就是所谓的“开弧冶炼”,而在高电阻炉渣的情况下,电极埋入炉渣,熔炼过程的热量来源主要是渣阻热,即所谓的“埋弧熔炼”。
钛在地壳中的含量十分丰富,按丰度值算占第九位。
解放前,我国的钛锆铪冶炼工业是空白,虽然资源丰富,但未得到利用。
解放后,开始建立我国的钛锆铪冶炼和加工工业,适应了我国尖端技术和相关工业部门对这些金属和化合物的需要。
现在,我国的钛锆铪工业都在积极发展中。
化学性质钛位于元素周期表中第四周期第IV副族,原子序数为22。
钛的化学性质相当活泼,可与很多元素反应或形成固溶体。
主要物理性质,熔点;钛的熔点为1660℃。
沸点钛的沸点为3302℃。
超导性,耐蚀性:不锈钢;机械性质纯钛的机械强度比铁大一倍,比铝大5倍。
钛具有可塑性,钛合金在航天航空工业上的应用,钛具有质轻、强度高,耐热、耐低温性能。
钛合金在化工、冶金上的应用:钛的耐蚀性能好,日常生活领域,钛和钛合金具有质轻、强度高、耐腐蚀并兼有外观漂亮等综合性能。
人造关节,假肢。
超导材料,钛镍合金具有形状记忆功能,在镍含量x Ni为49.5%~51.5%的组成范围内,x Ni每变化0.01,相变温度约变化10℃。
钛镍合金还具有超弹性,它的耐磨性能也很优异。
钛铁合金具有储氢功能,FeTi合金的吸放氢气可在接近常温﹑常压条件下进行,而且,储氢容量也很大。
钛铌合金具有超导性,钾和镁。
钛属于典型的亲岩石元素,存在于所有的岩浆岩中。
钛的分布极广,遍布于岩石、砂土、粘土、海水、动植物,甚至存在于月球和陨石中。
钛的化学活性很强,所以自然界中没有钛的单质存在,总是和氧结合在一起。
在矿物中,钛以氧化物(金红石)形式和钛酸盐形式存在,钛还经常与铁共生(钛铁矿)。
金红石是一种黄色至红棕色的矿物,其主要成分是TiO2,还含有一定量的铁、铌和钽。
铁是由于它与钛铁矿共生的结果。
由于Ti4+与Ni+、Ta5+ 离子的相似性,铌和钽常伴生在钛矿石中。
93%~98%,钛铁矿理论分子式为FeTiO3,其中TiO2理论含量为52.63%。
但钛铁矿的实际组成是与其成矿原因和经历的自然条件有关。
可以把自然界的钛铁矿看成是FeO-TiO2和其他杂质氧化物组成的固溶体。
钛渣冶炼电炉炉体制作、安装工艺摘要:电炉炉体为电炉的电热反应场所,其内部可存储一定容量的铁水和渣液,是整个电炉系统的核心设备和基础。
电炉炉壳由锅炉钢板焊接而成,分为上、中、下3层。
炉壳的中、下层各瓣之间通过膨胀补偿连接板(缓冲板)连接在一起,用以补偿炉衬的热膨胀。
关键词:加工工艺,整体组装,应力消除一.概述:钛渣冶炼电炉炉体要求与炉底板、悬臂梁、炉盖之间绝缘,绝缘值>5 KΩ;电炉炉体在冶炼过程中会因为炉底板不平及垂直中心偏差过大产生飘移现象,严重影响设备的正常运行。
故要求电炉砼基础平台水平差≤5㎜,电炉底板水平差≤10㎜;电炉冶炼采用多点布料、极心圆可调工艺;并具有配料、加料的自动操作,电极升降、压放、炉压自动控制,实时监控配料、加料、电炉冶炼、冷却系统、液压系统的主要工艺参数等自控功能,故对电炉炉体设备制作、安装质量提出了很高的要求。
二、电炉炉体制作工艺:①、样板制作炉壳卡样板(检查用样板),采用δ=2mm冷轧钢板制作,采用内圆卡样板,卡样板外弧R为每带炉壳检查处设计尺寸(因炉壳制作加工过程中考虑了焊接收缩因素,其R 值应与计算值相一致,检查位置一般为离炉壳上下口50mm处),卡样板弧长不得小于2m,偏差不大于1mm。
根据数控切割机要求,可先利用CAD 软件画出炉壳下料及开孔切割轮廓线,并按数控切割机的操作要求进行图形转换。
在进行炉壳切割时,要求预留出下料切割余量及焊接收缩余量,以保证炉壳切割后和焊接收缩完尺寸能满足设计要求。
②、下料前的计算按图纸设计尺寸进行,其中环缝每带考虑焊接收缩余量2mm;每块炉皮竖缝考虑焊接收缩余量4mm,每带环缝(6块)共考虑焊接收缩余量24mm,重新计算每块炉皮实际下料尺寸。
③、炉壳下料在计算机上进行绘图,通过专用程序(FastCAM软件),将图形转化为数控切割机所能识别的图形。
按计算尺寸在钢板上作好炉壳展开图形,然后严格校对上下弦长、弧长、弧弦距、对角线、炉壳立缝边长等是否与设计尺寸符合,所有尺寸偏差要求不大于±1 ㎜;炉壳表面应作出标记或十字中心线,在拆开的接头处或上下圈之间,应用油漆作出明显的对位标志。
密闭直流电炉空心电极连续加料高钛渣生产工艺一、概述高钛渣(High Titania Slag)是经过物理生产过程而形成的钛矿富集物俗称,通过电炉加热熔化钛矿,使钛矿中二氧化钛和铁熔化分离,从而得到二氧化钛高含量的富集物。
高钛渣既不是废渣,也不是副产物,而是生产四氯化钛、钛白粉和海绵钛产品的优质原料。
二、应用领域1. TiO2含量大于90%的高钛渣可以作为氯化法钛白的生产原料。
2. TiO2含量小于90%的高钛渣是硫酸法钛白生产的优质原料。
三、国内高钛渣技术发展概况我国钛资源比较丰富,除少量钛铁砂矿外,主要以钛铁岩矿为主,国内钛铁岩矿的缺点是品位低,杂质含量高,不能直接满足氯化法钛白对原料的要求,仅适宜作硫酸法钛白的原料。
由于硫酸法钛白生产过程中产生大量难以治理、污染环境的“三废”,近年来全球硫酸法钛白产能急剧萎缩。
随着我国氯化法钛白以及海锦钛工业的快速发展,对高品位富钛料的需求日益增加。
因此,寻求经济合理的钛原料处理方法,将我国丰富的钛铁矿资源加工成富钛料是我国钛白和钛材产业发展的当务之急。
国内钛渣生产自50年代起,至今已有半个世纪,原主要生产厂家是遵义钛厂、阜新冶炼厂,厦门冶炼厂以及宣化冶炼厂等。
近年来云南武定、禄丰、富民、楚雄以及攀枝花地区陆续建设了许多中小钛渣冶炼厂,其中多数钛渣厂的电炉由铁合金炉和电石炉改建而成。
我国钛渣整体生产技术落后,冶炼设备的特点是小型炉子多,大型炉子少,没有特大型炉子。
炉型以敞口式电弧炉为主,渣和铁从同一出口排出,生铁不经处理即出售。
原料选用钛精矿直接入炉冶炼,人工捣炉,间断加料,间断出炉,煤气点火排空。
变压器功率介于400~7000kV A之间。
国内钛渣冶炼工艺水平决定了钛渣生产规模小、效率低、能耗高、环境差、冶炼操作不稳定。
目前国内大多数钛渣生产厂采用的是敞口电炉一次加料冶炼工艺。
这种冶炼工艺存在着炉况不稳、翻渣结壳、经常塌料、电流波动大、劳动条件差、粉尘飞扬、物料损失严重、收率低等缺点,与国外钛渣生产工艺相比,无论在规模、产量、质量方面都有很大差距。
预处理——电炉联合冶炼高钛渣新工艺王祥丁;郑汝宁;王青【摘要】文章在总结分析现有富钛料生产技术的基础上,提出一种利用改造回转窑预还原钛精矿的新工艺.此工艺既可以直接生产钛含量低的钛铁产品,也可以联合电炉生产高钛渣,从而改善电炉炉况,并以较低的改造成本提升高钛渣产能.【期刊名称】《有色金属设计》【年(卷),期】2018(045)002【总页数】4页(P82-85)【关键词】钛精矿;高钛渣;预还原;电炉;回转窑【作者】王祥丁;郑汝宁;王青【作者单位】昆明有色冶金设计研究院股份公司,云南昆明650051;昆明有色冶金设计研究院股份公司,云南昆明650051;昆明有色冶金设计研究院股份公司,云南昆明650051【正文语种】中文【中图分类】TD8530 引言钛金属因其具有的一系列优异特性而被用于众多领域,人们将其称为“21世纪金属”。
我国的钛资源居世界首位,国内外已发现钛资源总储量近20亿t,我国约占48 %[1]。
全国有20个省市自治区有钛矿,其中98.9 %是钛铁矿。
富钛料一般指TiO2含量不小于85 %的电炉冶炼钛渣或人造金红石,而且富钛料也是氯化法生产高档金红石型钛白粉和海绵钛的重要原料。
生产富钛料常用的方法是盐酸浸出法、硫酸浸出法、还原锈蚀法、电炉熔炼法等,鉴于我国钛矿资源的实际情况,电炉熔炼钛渣在我国生产的富钛料中占重要地位[2]。
结合近几年电炉熔炼钛渣生产中出现的原料适应性弱、产品品质波动大等问题,文章提出一种预还原-电炉联合冶炼高钛渣新工艺。
1 现有富钛料生产工艺特点生产富钛料常用的方法是盐酸浸出法、硫酸浸出法、还原锈蚀法、电炉熔炼法等[9]。
结合目前均有工业生产实践,以上方法各有优缺点,存在可提升改进空间。
1.1 盐酸浸出法生产特点[2,6]盐酸浸出法的工艺多种多样,既有稀盐酸的美国BCA 法,又有浓盐酸的华昌法,稀酸浸出法又分为常压浸出法和高压浸出法。
尽管方法多种多样,但其基本原理是相同的。
2008年东区储备项目—高钛型高炉渣钛资源回收及综合利用新技术目录一、项目背景 (2)二、项目可行性研究 (6)三、经济效益核算 (10)四、环境保护 (13)五、结论 (14)一、项目背景攀枝花是世界著名的钒钛之都,其钛储量占国内已探明的储量的90.54%,世界已探明的储量的35.17%,潜在经济价值达8万亿美元。
但是,由于现有钢铁生产工艺的因素,只能利用钒钛磁铁矿中钛含量的20%,铁精矿中的二氧化钛经高炉冶炼,基本进入高炉渣中,最后随渣一起弃为废物。
攀钢高炉渣中的二氧化钛含量达22~23%,以攀钢年产400万吨铁计,每年产出的高炉渣320万吨,其中约有90万吨的TiO2,按目前市场价算直接经济损失达50多亿元,攀钢至今已累计排放5000多万吨含钛高炉渣,除其中一小部分用于作建筑材料外,其余部分都堆积在两个渣场内,目前钛资源的综合利用率还不到15%,应该说,攀钢钛资源主要在高炉渣中,潜在经济价值就这么白白的流失掉了,大量的含钛高炉渣堆积成山,既浪费了资源又污染了环境。
因此,合理有效地利用攀钢含钛高炉渣,将具有重大的经济价值和社会效益。
国外高炉冶炼使用的钛铁矿石,含钛量均较低,一般含TiO2量不超过3%~4%,其高炉渣中所含的TiO2量,一般都低于10%,因此,国外含钛高炉渣类似于普通高炉渣,在使用上没有多大的困难,不需要特殊的加工和处理,完全按普通的高炉渣加以利用。
国外没有类似攀钢含二氧化钛如此高的高炉渣,仅苏联卡契卡纳尔的高炉渣含TiO2达17%,但其对从高炉渣中提取二氧化钛的方法也没作过多研究。
德、美、日等国的一些专家曾对从攀钢高炉渣提钛进行过研究,结果几乎一致认为难度大,未形成有效的解决方案。
因此,从攀钢高炉渣中分离钛属世界性难题。
国家对攀枝花资源开发利用的最大期望是实现钛的提取和利用,对于提取二氧化钛国内作了大量的研究,开辟了一系列新方法。
1、用攀钢熔融状态的高炉渣加碳粉将渣中的二氧化钛(22%左右)还原碳化成碳化钛、碳氧化钛,冷却,破碎后,在氯化炉进行选择氯化,得到四氯化钛。
低温还原钛铁矿生产高钛渣的新工艺引言目前世界上9 0%以上的钛矿用于生产钛白,约4%~5%的钛矿用于生产金属钛,其余钛矿用于制造电焊条、合金、碳化物、陶瓷、玻璃和化学品等。
我国的钛资源储量非常丰富,但主要是钛铁矿,金红石矿甚少。
我国钛矿主要由广东、广西、海南、云南和四川攀枝花开采生产,主要产品是钛铁矿精矿,也有少量的金红石精矿。
由于钛铁矿精矿的品位较低,需经过富集处理获得高品位的富钛料一高钛渣或人造金红石,才能进行下一步的处理。
电炉熔炼法是一种成熟的方法,工艺比较简单,副产品金属铁可以直接利用,不产生固体和液体废料,电炉煤气可以回收利用,三废少,工厂占地面积小,是一种高效的冶炼方法。
电炉熔炼法可得到TiO2含量为 80%左右的高钛渣,作为下一步处理(如酸浸法或氯化法) 的原料。
由于电炉熔炼法属于高温冶金,能耗高是其固有的特点,生产1t高钛渣,大约需要3000 kWh的电能,而实际上将铁从钛铁矿中还原出来所需的化学能量仅在 500 kWh左右,即能量的有效利用率仅在17%左右,非常低;其二、电炉熔炼法使用冶金焦或石油焦作还原剂,也存在一定的环境污染。
El-Tawil等人研究了在固态下先将铁从钛精矿中还原出来,然后再通过磁选方式将铁分离出来的方法生产高钛渣。
他们通过添加催化剂等方式,研究了钛铁矿在1000~1200℃的还原性能,结果表明,在1200 ℃恒温180 min,钛铁矿的金属化率达到85%。
因此还原效果不很理想。
Williams等人研究了通过球磨促发方式实现钛精矿的低温还原性能,发现了在760℃条件下恒温30 min基本上将铁从钛精矿中还原出来这一低温反应现象,具有很强的理论意义。
但是实验条件很苛刻,要求钛精矿的颗粒度在1~2μm,一般球磨机难以实现这一目标,即使能够达到,也将耗费大量能量。
赵沛等人提出了煤基低温冶金学和冶金流程,可将铁矿石的冶炼温度降低到700℃以下,甚至更低的温度。
在此基础上,钢铁研究总院低温冶金学课题组经过研究,发现钛精矿粉体的平均粒度在10μm左右时也能将它的还原温度降低到600℃左右,并且研究出一种高效球磨机,这样为钛精矿的低温还原工艺的产业化奠定了理论和实践基础。
钛渣生产新技术—中国钒钛之都的生产、市场与产业的知识元素原创邹建新等近年钛渣生产技术的发展方向体现在三方面,一是合理发展大型密闭矩形电炉,二是采用大型圆形密闭电炉,三是针对现有的圆形电炉进行局部各环节的改进。
比如,近年云南新立公司引进了南非、德国及乌克兰的大型直流空心电极电弧炉技术,并进行了优化改进,运行效果较好。
近年具有代表性的钛渣生产新技术如下。
(1)高杂质钛铁矿精矿制取富钛料的方法中国地质科学院矿产综合利用研究所提出了一种高杂质钛铁矿精矿制取富钛料的方法,涉及富钛料的制取方法技术领域,其技术路线为:原矿—磁选—铁精矿—尾矿—浮选—钛铁矿精矿—焙烧—磁选—还原熔炼—钛渣—提纯—富钛料,该法集电炉熔炼法和酸浸法之优势,克服了两法之不足,既能处理高杂质含量的岩矿型钛铁矿精矿,又能生产高质量的钛渣产品。
(2)一种环形炉或转底炉冶炼钛渣的方法攀钢提供了一种冶炼钛渣的方法,该方法包括下述步骤:将钛精矿、粘结剂和碳质还原剂的混合物制成球团矿或压团矿;将球团矿或压团矿烘干;使用环形炉或转底炉预还原球团矿或压团矿,从而制得金属化球团或金属化压团;将金属化球团或金属化压团装入电炉进行熔化分离,得到半钢和钛渣,其中,使用球团矿或压团矿的预还原产生的烟气为球团矿或压团矿的烘干提供热量,并使用熔化分离过程中产生的烟气为球团矿或压团矿的预还原提供热量。
(3)利用钒钛铁精矿融态还原冶炼酸溶性钛渣的方法攀钢提供了一种利用钒钛铁精矿融态还原冶炼酸溶性钛渣的方法。
包括步骤:将钒钛铁精矿与钛精矿混合,加入碳质还原剂和粘结剂,形成混合料;对所述混合料进行还原,然后进行渣铁分离处理,以得到半钢和钛渣;对经渣铁分离处理得到钛渣的表面进行喷水,以使钛渣的温度在降温过程中迅速跨越600℃~850℃温度区间,形成酸溶性钛渣。
该方法能够高效利用钒钛铁精矿中的Fe和TiO且具有融态还原过程反应平稳、熔化分离过程效果好、炉况稳定、冶炼周期2短、电耗水平低和生产成本低等优点。
钛合金冶炼工艺与设备钛合金冶炼工艺与设备,这听起来是不是有点高大上?钛合金就像一位超级英雄,光芒四射,但背后的故事却常常被忽略。
钛合金是我们日常生活中没少碰到的,比如说飞机、汽车,甚至是一些运动器材,它们都需要用到这个神奇的金属。
嘿,别小看钛合金,它可是以其轻巧、强韧和耐腐蚀的特点而著称,真是太厉害了!咱们先聊聊钛的冶炼工艺。
说实话,冶炼钛可不简单,真得有点“上天入地”的感觉。
一般来说,冶炼钛的过程可以分为几个大步骤。
得从矿石开始,这个过程就像是寻找宝藏,得费点心思。
钛的矿石主要是钛铁矿或者是钛铝矿,这些矿石得经过一系列的处理,才能提取出钛的成分。
像这种初步处理,真是个力气活,工人们得像个磨刀小子,得心应手才能搞定。
咱们进入冶炼的阶段。
这里就需要一些高大上的设备了,比如电弧炉。
这玩意儿可是冶炼钛的明星之一,能把钛矿石加热到几千度,简直是个“火焰喷射器”。
不过,别看它威猛,操作起来可得小心翼翼。
因为一旦温度控制不当,钛可能会和氧气结合,变得脆弱不堪,简直是白忙活。
所以,操作者得像个老练的厨师,火候掌握得恰到好处。
说到设备,不得不提一些先进的熔炼技术。
比如说,真空熔炼,听起来就很酷吧。
这个技术是把熔融的钛放在真空环境中,这样就能避免与空气中的杂质发生反应,保证钛的纯度。
想想看,钛就像是个娇贵的公主,得在最安全的环境中才能保持它的美丽。
这种熔炼方式虽然技术含量高,但效果绝对一流,产出的钛合金就像“人间精品”。
冶炼完了,咱们还得处理一下成品。
钛合金的锻造也是一门学问,得把它锻造成各种形状。
有些钛合金还得经过热处理,让它们更坚固,就像给钢铁打了一针强心剂。
想象一下,经过这样一番折腾,钛合金就像是一位从磨难中走出来的英雄,闪闪发光,稳稳当当。
说到这里,可能有人会问,钛合金到底有什么用途呢?可多了!咱们的航空航天,汽车制造,甚至医疗器械,都少不了它的身影。
比如,飞机的机身、发动机的部件,都是用钛合金来打造的,轻巧又耐用,真是一举两得。
关于钛渣冶炼炉的新工艺介绍目前,发达国家中的钛渣炉,容量都比较大,多采用全封闭,湿法除尘和回收煤气,并向干法除尘转变。
这些大型电炉采用计算机进行控制,从原料准备到产品出炉全过程自动化,生产效率高,产品质量稳定,环保设施完善,有利于资源的综合利用,也是中国钛渣生产发展的方向。
国内某企业从南非引进的3万kVA全密闭直流高钛渣炉,已经将高钛渣的吨产电耗从国内普遍的3500kwh/t~4500 kwh/t降至2600kwh/t~ 2800kwh/t,大大降低了生产成本(注:由于该企业对引进技术吸收消化严重不足,加之过份神秘化的保密隔绝,导致试生产周期特长,生产时断时续。
不久前,此高钛渣炉炉底熔穿目前正停产维修。
该企业的负责人在接待国家工信部考察人员时介绍说:技术指标是非常先进的,政治上丰收,经济效益趋于零)。
国内钛渣冶炼通常采用三相交流敞口电炉或半密闭电炉,一次性加料生产工艺,污染严重、热辐射高、操作环境恶劣。
炉膛热量直接从炉口或烟道散出,电炉热损失大,容易造成除尘器布袋的烧蚀。
三相交流电炉的三根电极之间的电流为平面流动形式,由于炉料的导电性,而不能选用较高的二次电压,否则会出现电极不能深插,炉底温度低的现象,使得SiC沉积造成炉底上涨。
交流电炉炉膛的深、径比小,每次排渣或出铁水后,炉内温度下降快,当下一炉的生料加入后,需要焙烧一段时间以提高炉温,增大了耗电量。
综合上述几个原因,使得国内钛渣、工业硅、铁合金及电石等冶炼成本居高不下,市场竞争力低。
目前世界上最为先进的冶炼方法,是密闭直流电炉空心电极连续加料冶炼方式。
密闭直流电炉空心电极粉料连续入炉冶炼工艺具有如下优点:⑴炉膛密闭,无外部空气进入,烟气量小,除尘设备负担小。
⑵密闭电炉无外部空气进入,冶炼操作在密闭的高还原性气氛下进行,降低了电极的高温氧化和还原剂的氧化烧损。
可以节省电极消耗达50%以上。
⑶富含一氧化碳的高温烟气,显热直接用来干燥矿粉,降低矿粉中的水分,充分利用烟气的热量,比半密闭/敞口炉的潮矿入炉减少了电能消耗。
降温除尘后的一氧化碳气体可以用来驱动燃气发电机发电,能源得到综合利用。
⑷粉料连续入炉,原料和还原剂均为粉末,物料反应的表面积增大。
物料直接进入熔池,在液态下进行还原反应,还原反应充分、速度快——“瞬间还原”。
⑸粉料连续入炉,省去繁重的捣炉作业,减轻了劳动强度,改善了工作环境。
⑹直流电炉炉膛的深/径比大于交流电炉的深/径比,即相同容量直流电炉的炉膛比交流电炉深,直径比交流电炉小,热量集中,热损失小。
⑺直流电炉炉膛深/径比大,炉膛表面积小,比交流电炉节省炉衬材料。
⑻直流电炉炉底作为导电电极,使电弧引向炉底,直流电流对熔池具有上下运动的电磁搅拌作用,使熔池上下层温度均匀,大大改善金属氧化物高温还原反应的热力学和动力学条件,消除了炉底上涨的可能。
⑼直流电炉的顶电极位于炉膛中心,产生的电弧对炉衬的高温辐射烧损小,故炉衬材料的消耗降低,使用寿命延长。
⑽直流电炉二次侧短网和熔池内无感抗影响,且无电流集肤效应和邻近效应,电网供给的交流电通过24脉整流,电压脉动系数减少,产生的高次谐波极弱,对电网干扰小,功率因数高。
⑾直流电炉,炉盖只有一个电极孔,易于密封和除尘。
⑿直流电弧无电流过零息弧,噪音小,电弧稳定。
⒀直流电炉在炉膛内为垂直导电方式,不受炉料电阻率的影响,易于实现高电压长弧冶炼操作,提高冶炼速度。
仅直流供电一项即可比交流电炉节电10%以上。
⒁停炉、修炉后起弧方便,易于操作。
密闭直流电炉与半密闭交流电炉性能对比见表1。
高钛渣冶炼过程中烟气带走的热量(包括可燃性气体的化学能)几乎相当于输入炉内的电能转化的热量。
因此,充分利用此能源是钛渣生产降耗的出路之一。
利用密闭电炉的高浓度CO气体进行发电,同时,适当增加投资,亦可回收利用液态铁水的显热等,都是二次能源利用。
密闭直流电炉空心电极粉料连续入炉生产工艺能够利用密闭炉气的显热来干燥炉料,降温、除尘、净化后的炉气,用来驱动燃气发电机产生电力,反馈为电炉电能的补充,使得电能的消耗大大降低。
仅此一项即可节能15%~20%。
综合起来,密闭直流电炉空心电极粉料连续入炉生产工艺综合节电效果可以达到25 %~35%。
表1直流密闭空心电极电炉与交流半密闭/敞口电炉性能对比高钛渣冶炼工艺流程以钛精矿为主要原料、炭为还原剂,密闭直流电炉空心电极粉料连续入炉,生产工艺流程图如图一所示。
经粉碎后符合粒度要求的粉状原料经装载机分别倒运装入配料站的各储料仓。
根据冶炼制度确定炉料的组成及其配比。
各种符合粒度要求的粉状原料经电子秤精确称量混合后经矿粉预热干燥机送至炉顶料仓,再由气力给料机通过空心电极直接将混合后的粉料加入电炉,被输入到炉内的电能冶炼,连续发生一系列物化反应后生成液态的钛渣和半钢,积于炉底并利用其密度差异自动分离,俗称“熔分”。
每隔约4~6小时,打开一次出渣口和出铁口,将渣和铁分别放出,熔状钛渣经水喷射后成为水淬渣(便于破碎时的渣铁分离,提高产品质量),在鳞板输送机上利用自身余热干燥,再破碎、除铁、筛分、均化、钛渣产品包装;铁水包运到浇铸间浇入锭模内,或由出铁咀直接流入铸铁机,凝固后脱模,经过精整运入成品库。
炉中产生的高温炉气,温度在1000℃以上,CO含量高达80%。
高温炉气经隔热烟道送至余热锅炉第一次降温。
余热锅炉产生的蒸汽动力,驱动汽轮发电机发电。
经余热锅炉降温后炉气,送至矿粉预热干燥机第二次降温、计算机控喷雾(确保收尘布袋不结露)炉气温度可降至200℃以下。
最后经过脱硫除尘,富含CO的低温洁净炉气送至燃气发电机发电。
直流电炉车间主要设备特点直流电炉车间的电炉采用空心单电极密闭式炉型。
可把生产中产生的废气(主要成分是一氧化碳)回收利用。
冶炼过程全封闭微正压操作,煤气发生过程连续稳定,煤气体积只有敞口电炉烟气体积的10~20%。
因此煤气净化设备小,组合简单,净化操作便利。
密闭炉的炉盖为混合式结构,采用水冷骨架,其间打结耐火混凝土或铺以水冷盖板,在水冷盖板内侧打结耐火混凝土。
骨架使用钢管制作以减少焊缝,靠近电极处采用防磁材料制作,以减少涡流和磁滞损失。
炉盖呈锥台形,中部的水平面装有电极密封孔和料管密封孔,侧壁装有带防爆盖的密封炉门,用以取出折断的电极头和进行炉内检修,还装设1~2个烟囱以引导炉气排入除尘系统或大气中。
为便于操作检修,并保证安全运行,封闭电炉炉盖上设置若干个带盖的窥视、检修和防爆孔。
炉内底部炉衬设置安装数只热电偶,信号进入计算机,实时监控、报警,确保生产安全。
电炉结构形式直流电炉为全封闭矿热炉的结构形式为:全封闭、空心单电极、固定式圆形炉体。
电炉装备除烟罩使用全封闭式和气封系统使用氮气外均与交流炉类似。
2万KVA(单台)钛渣炉主要技术经济指标编制:沈阳东大科技有限责任公司佟玉鹏戴小平江苏百斯特热能工程有限公司单总工程师(重庆分公司经理)2015-03-20 附:沈阳东大科技、直流炉优势、百斯特能源回收简介沈阳东大科技有限责任公司成立于2000年,依托东北大学在冶金领域雄厚的科研、实验背景,成果突出。
一.沈阳东大科技有限责任公司总经理:佟玉鹏教授(2013年6月退休于东北大学)。
将可控硅整流成功地应用于直流冶炼炉上,国内首创!实践已充分证实:给冶炼工作带来了一系列显著的便利和益处。
对大容量用电设备的危害——谐波问题,在电器设计上,已从根本上给予杜绝,无需再考虑谐波治理。
独特的底电极设计,简单、实用、可靠。
借鉴国内成熟的交流电炉炉底技术,简化了炉底电极结构型式,消除了直流炉炉底熔穿的隐患,确保直流电炉安全、长期、高效使用。
巧妙利用直流电炉的供电特点,简化了电炉煤气发电的技术原理,解决了电炉煤气发电直接利用的难题,使得被电力行业称为“垃圾电”的炉气发电得到有效利用。
学者理念:“务实!尽可能地把复杂的问题吃透后,简单化设计”。
总经理助理:戴小平工程师(在职)。
在贵州、攀枝花、昆明、云南文山,成功对数台黄磷炉、电石炉、钛合金炉施工技术的组织,及自主完成三个钛渣冶炼厂设计并施工;自2012年起,配合佟玉鹏教授,完成了四川弘源钛业4台9000KVA直流炉及系统的设计,随后进行了3台36000KVA、2台65000KVA直流炉初设。
二.关于直流矿热炉1.噪音特别小冶炼炉噪音小,不只是“人性化”改善了操作环境,同时反应出减少了噪音的能量损失,最直观地体现是:降噪节电。
2.全密闭、保温、能源回收(与江苏百斯特联手)减少热能流失。
第1步:将热烟气余热发电(螺杆膨胀动力机)、烘干原料;第2步:烟气净化后(若CO含量≧55%),直接引入燃气发电机组发电(目前国产机组直接输出电压MAX:10.5KV),很容易反馈到电炉变。
此两步方案可回收的电能,不低于炉变电耗的15~20%。
3.除尘器体积小,功耗和投资低由于密闭冶炼,不让烟气中的CO遇空气燃烧,烟气体积未膨胀,造就了除尘器小型化,引风机功率也只需过去传统除尘的1/8。
虽然全过程(含密封装置、氮气保护等)有额外装置,但环保的总投资仍降低40%以上;尤其是引风机所需的小功率,将长期受益。
4.可实现炉料连续入炉、产品连续出炉对大容量电炉来说,运用此方式特别简化。
优点①产品规格化;②无需反复开堵炉眼,延长炉龄,减轻了劳动强度;③由于连续工作制,没有出炉的冶炼间歇,效率得以提高。
5.节能、环保因为直流炉没有电流方向改变时的电弧熄灭,效率无疑!实践证实:比传统的交流炉节电15%以上。
产品质量相对稳定、易控。
[但是,纵观国内外矿热炉,先进国家使用直流技术较多,收效无疑。
但国内,受技术难度、技术封锁的约束,使用直流技术虽已开始,但起步却很艰难!如:云南某公司花高价引进南非技术,建成后反复改造、试验了一年多,总算达到了自认为满意的技术指标,但因为对事物的理解认识不足(我们看出其技术上的明显缺陷)还盲目封闭,致使经济效益趋于零]。
6.炉底不易上涨、可在凝炉状态下启动采用可控硅整流技术,很容易将顽固的沉积物熔出;在凝炉状态下的也可启动!无需经常清炉、甚至炸炉。
7.电炉多功能,实施转换产品可控硅整流,二次电压的可调幅度特别宽,适应性特强。
8.炉台作业面人数少生产流程全密闭,计算机控制,全过程自动化,炉台上的生产人员可减半!9.设备故障率特别低直流炉的机械部分全外露低温环境,比交流炉简单、易维护;容易出问题的是电器可控硅整流部分,但本公司在东北,已针对多种产品的直流炉探讨,经多年的研究,已总结出一套成熟方案。
10.对有条件实行粉末化的矿种快速冶炼采用中空电极,利用气体(净化炉烟气)作射流载体,将配制好的粉状炉料,实行连续喷射入炉,流经电弧时,在等离子状态下进行快速瞬间还原,大大提高冶炼速度,达到高产、高效目的!三.江苏百斯特热能公司单总工程师(原某设计院多项专利发明人)研发创新了:对还原过程中产生的一氧化碳气体,从冷却、除尘、充分回收的整个系列过程,科学、安全、效益显著,被中科院列为推荐项目。