第七节一阶常系数线性差分方程
- 格式:ppt
- 大小:828.00 KB
- 文档页数:19
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
第七节 一阶常系数线性差分方程一阶常系数齐次线性差分方程的一般形式()001≠=-+a ay y x x(1)一阶常系数非齐次线性差分方程的一般形式)x f ay y x x =-+1(2)一、一阶常系数齐次线性差分方程的求解1. 迭代法)001≠=-+a ay y x x (1)设0y 已知,由方程(1)依次可得,01ay y =,0212y a ay y ==, 0323y a ay y ==,……,01y a ay y x x x ==-,……,令0y 为任意常数C ,得通解为xx Ca y =例1 求差分方程021=++x x y y 的通解。
解21-=a ,通解为 xx C y ⎪⎭⎫ ⎝⎛-=21 2. 特征根法)001≠=-+a ay y x x (1)设()0≠=λλxx y ,代入(1)得 01=-+x x a λλ特征方程为0=-a λ ,特征根为a =λ得(1)的解 x x a y = ,得(1)的通解x x Ca y =例2 求差分方程031=--x x y y 满足 20=y 的特解。
解 特征方程为 013=-λ ,特征根为 31=λ ,得通解 xx C y ⎪⎭⎫ ⎝⎛=31由20=y 得C =2,特解为 xx y ⎪⎭⎫ ⎝⎛=312二、一阶常系数非齐次线性差分方程的求解)x f ay y x x =-+1(2)由上节定理3知道,差分方程(2)的通解应由对应齐次差分方程的通解(前面已学过)和非齐次差分方程的特解两部分组成。
我们只学习后部分。
一阶常系数非齐次线性差分方程的特解求法——待定系数法。
1. 非齐次项()()x P x f n = 型(1)1不是特征方程的根,即1-a ≠0, 设n n x x b x b x b b y +⋅⋅⋅+++=*2210(2)1是特征方程的根,即1-a =0, 设()x xb x b x b b y n n x +⋅⋅⋅+++=*2210 例3 求差分方程231-=-+x x y y 的通解。
微积分Calculus一阶常系数线性差分方程一一阶常系数线性差分方程概念1一般形式:1()x x y py f x +−=其中为不等于零的常数,为已知函数。
p ()f x ()f x 若不恒等于零,称以上方程为一阶常系数非齐次线性差分方程。
()f x 若恒等于零,称以上方程为一阶常系数齐次线性差分方程。
齐次线性差分方程的解法1yx =pyx−1=p ∙py x−2=p ∙p ∙py x−3=⋯=p x y 010x x y py +−=一阶齐次线性差分方程:将上述方程变形为:则有:记得一阶齐次线性差分方程的通解:0C y =xx y Cp = (为任意常数)C 二一阶常系数线性差分方程的解法y x+1=py x求差分方程130x x y y ++=的通解。
因为,将其代入通解公式得:3p =−(3)x x y C =− (为任意常数)C 13x xy y +=−将原方程变形为:例解一阶非齐次线性差分方程:1()x x y py f x +−=下面介绍对的三种特殊形式求非齐次差分方程特解的方法。
()f x 非齐次线性差分方程的解法2(1)(为常数,)()f x k =k 0k ≠差分方程变为:1x xy py k +−= 设其特解形式为:s x y Ax *=(其中为待定常数),A s1,p ≠①取即:0s =x y A*=1,p =②取即:1s =x y Ax*=x y A *=将代入差分方程求得A将代入差分方程求得Ax y Ax *=21716x x y y +++=求差分方程的通解.对应齐次差分方程:的通解为:217x x y y +++=0(7)xx y C =− (为任意常数)C p =−7≠1,设特解为y x ∗=A代入原方程得:2A =故原差分方程通解为:2(7)x x y C =+−(为任意常数)C 例解(2)(其中为常数,且)()xf x ka =k a ,0a >0a ≠非齐次差分方程变为:1x x x y py ka +−= 设特解形式为:x sx y Aa x*=①时,取即p a ≠0s =x x y Aa *=②p a =1s =x x y Axa *=时,取即求差分方程的通解11242x x x y y ++−=原方程化简为122xx x y y +−=对应齐次差分方程通解为2xx y C = (为任意常数)C 2p a ==由于,所以原方程得特解形式为:2xx y Ax =代入原方程得:1(1)2222x x xA x Ax ++−=12A =例解原方程特解为:11222x x x y x x *−==所以原方程通解为:12(2)x x x y x C −=+(为任意常数)C。
差分方程的一般表达式嘿,朋友们!今天咱们来唠唠差分方程那点事儿。
差分方程就像是时间长河里的一个个小脚印,记录着事物的变化规律呢。
一般来说,一阶常系数线性差分方程长这样:\(y_{n + 1}-ay_{n}=f(n)\)。
这就好比是一个小火车在轨道上跑,\(y_{n}\)是火车在第\(n\)站的状态,\(a\)呢就像是这个火车的速度调整系数。
如果\(f(n) = 0\),那就像是火车在一条平坦的轨道上匀速行驶,没有什么额外的干扰。
再说说二阶常系数线性差分方程\(y_{n + 2}+ay_{n+1}+by_{n}=f(n)\)。
这就像一场双人舞蹈,\(y_{n}\)、\(y_{n + 1}\)和\(y_{n+2}\)就像是舞者在不同节拍下的姿势。
\(a\)和\(b\)呢,就像是舞蹈的规则参数,决定着舞者如何从一个姿势转换到另一个姿势。
要是\(f(n)=0\),就像是舞者在一个没有外界干扰的舞台上,按照自己的节奏翩翩起舞。
还有那种齐次差分方程,就像是一群小伙伴整齐划一地做着同一件事。
比如说\(y_{n + 1}-ay_{n}=0\),这就像一群小蚂蚁,每一只小蚂蚁的行动都和前一只有着固定的比例关系,\(a\)就是这个比例的关键。
非齐次差分方程呢,就像是平静的湖水里突然扔进了一颗小石子。
比如\(y_{n + 1}-ay_{n}=g(n)\),\(g(n)\)就像是那颗小石子激起的涟漪,打破了原本齐次方程那种和谐又规律的状态。
差分方程有时候还能像魔法咒语一样预测未来呢。
就拿简单的人口增长模型来说,如果人口数量满足差分方程\(P_{n+1}=(1 + r)P_{n}\),这里\(r\)是人口增长率,就像一个魔法数字。
这个方程就像一个神奇的水晶球,告诉我们未来人口的大致情况。
对于差分方程组,那就像是一场多角色的戏剧。
每个方程都是一个角色的行动指南,它们之间相互关联又相互影响,就像戏剧里的人物关系一样复杂又有趣。