第一章快速凝固技术.
- 格式:ppt
- 大小:4.76 MB
- 文档页数:113
快速凝固技术刘松20130820110 定义:快速凝固技术一般指以大于105 K/s~106 K/s的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。
快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。
一.满足快速凝固(RS)的条件及途径条件(1)金属液分散成液流或者液滴,至少在一个方向上尺寸极小,以便散热。
(2)具有传热的冷却介质。
途径(1)大的冷却速度。
对于尺寸足够小的冷却铸件,界面散热成为控制冷却的主要环节。
增大散热强度,使熔体以极大的速率降温,即可实现快速凝固。
(2)大的生长速度。
提高铸型的导热能力,增加热流导出速度,凝固界面快速推进,熔体与基体为一体,传热主要靠导热。
二.实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。
由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。
2.1动力学急冷快速凝固技术根据熔体分离和冷却方式的不同,可以分为雾化技术、模冷技术和表面熔化及沉淀技术三大类。
①模冷技术。
主要包括:枪法、双活塞法、熔体旋转法、平面流铸造法、电子束急冷淬火法、熔体提取法和急冷模法。
②雾化技术。
具体分为:流体雾化法、离心雾化法和机械雾化法。
③表面熔化与沉积技术。
主要有离子体喷涂沉积法和激光表面重熔法两种。
动力学急冷快速凝固技术简称熔体急冷技术,其原理可以概括为:设法减小同一时刻凝固的熔体体积与其散热表面积之比,并设法减小熔体与热传导性能很好的冷却介质的界面热阻以及主要通过传导的方式散热。
通过提高铸型的导热能力,增大热流的导出速率可以使凝固界面快速推进,从而实现快速凝固。
在忽略液相过热的条件下,单向凝固速率R 取决于固相中的式中:λs:固相热导率;Δh:凝固潜热;Ps:固相密度;ΔT:温度梯度,由凝固层的厚度δ和铸件与铸型的界面温度Ti决定。
快速凝固技术快速凝固技术是目前材料科学与工程领域最活跃的课题之一。
它是通过对合金熔体进行快速冷却(冷却速率大于104~106K/s)或遏制冷却过程中的非均匀形核,使合金在大的过冷度下发生高生长速率(≥1~100cm/s)的凝固。
冷却速率是决定合金凝固组织的关键因素,它不仅决定着凝固组织形态,而且对组织中各相的析出次序、种类及数量都有重要的影响。
所以较好地理解冷却速率对合金凝固组织和性能的影响,在解释同一成分合金铸造出不同形状铸件时微观组织的差异是相当有益的。
传统的铸造工艺,由于凝固速度较低,合金在冷却过程中的过冷度和凝固速度较小,因此常规铸造合金有着晶粒粗大、偏析严重等严重缺陷。
快速过冷技术无论对合金的成分设计还是还是对合金围观组织以及宏观特性都有很大的影响。
一、快速凝固技术快速凝固即由液相到固相的相变过程进行的非常快,从而得到普通铸件和铸锭无法获得的成分、相结构和显微组织结构的过程。
目前快速凝固技术已经在许多方面显示出其优越性,与常规铸锭材料相比,快速凝固材料的偏析程度大幅度降低,而且快速凝固材料的化学成分多比较均匀。
应用快速凝固技术可以制备具有超高强度、高耐蚀性和磁性的材料,非晶、准晶、微晶和纳米晶合金等。
目前,快速凝固技术已成为一种挖掘金属材料潜在性能与发展前景的开发新材料的重要手段。
快速凝固技术已开始应用于研究合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。
二、快速凝固的基本原理和分类从技术原理上讲,快速冷却主要有两种原理:急冷凝固技术和大过冷凝固技术。
1、急冷凝固技术急冷凝固技术又称熔体淬火技术,即提高熔体凝固时的传热速度从而提高凝固时的冷却速度,使熔体的形核时间短、效率高,来不及在平衡熔点附近凝固,只能在远离平衡熔点的较低温度下凝固。
急冷凝固技术的核心是要提高凝固过程中熔体的冷却速度。
一个相对于环境放热的系统的冷却速度取决于该系统在单位时间内产生的热量和传出系统的热量。