1 冶金热力学基础XXXX
- 格式:pptx
- 大小:2.36 MB
- 文档页数:101
第一章冶金热力学基础1.冶金反应的焓变和吉布斯自由能变计算2.化学反应等温方程式3.溶解组元的活度及活度系数4.有溶液参加反应化学反应等温方程式分析5.熔铁及其合金的结构6.铁液中组分活度的相互作用系数关系式7.铁液中元素的溶解及存在形式8.熔铁及其合金的物理性质绪论冶金过程,尤其是钢铁冶金过程是高温、多相、多组元的复杂物理化学反应体系,一般而言:温度:>1000℃,炼钢温度在1600℃,甚至1700℃;多相:包括气—液—固三相气相:大气、燃气、反应气体、金属及其化合物的蒸气;液相:金属液、渣液;固相:金属矿石、固体燃料、耐火材料;多组元:金属液、炉渣、燃料都不是纯物质,而是多组元物质。
冶金过程物理变化:熔化、溶解、吸附、脱气、分金属夹杂上浮、金属的凝固等;冶金过程化学反应:燃料燃烧反应、生成—离解反应、氧化—还原反应、脱硫反应、脱磷反应、脱氧反应、脱碳反应等。
对这样的复杂体系,冶金物理化学能做什么?运用物理化学基本原理及实验方法,冶金物理化学研究和分析冶金过程的基本规律,为探索高效、优质、绿色的冶金工艺过程提供理论依据。
冶金物理化学大致分为:冶金热力学——主要研究冶金过程(反应)进行的方向和限度,以及在复杂体系中实现意愿反应的热力学条件。
是以体系的状态(平衡态)为基础,以状态函数描述过程的可能性为基本分析方法,不涉及“时间”这个参数。
冶金动力学——主要研究冶金过程(反应)的机理和速率,以及确定过程的限制性环节和强化过程的措施。
工业过程是要在有限时间内完成反应产物的获得,光有“可能性”还不够,要有“实现性”,这就必然涉及过程(反应)的机理和速率。
冶金熔体——高温金属熔体和熔渣结构、性质及模型描述。
冶金电化学——高温电解反应、金属液熔渣多相反应的机理和描述。
应该说,正是冶金物理化学的发展,才使得冶金由“技艺”成为“工程”和含有“科学”分量。
相对而言,冶金热力学发展得较为成熟,但研究高温下多相复杂冶金反应很困难,许多热力学数据还不完整。
XXXX冶金物理化学辅导一、引言XXXX冶金物理化学是一门综合性的学科,它主要研究冶金材料的物理和化学性质,以及它们在冶金工艺中的应用。
在学习这门学科时,我们需要掌握一定的基础知识和实践技能。
本文档将为大家提供一些冶金物理化学的辅导,帮助大家更好地理解和掌握相关的知识和技能。
二、热力学基础2.1 熵的概念和计算熵是热力学中一个重要的概念,它描述了系统的无序程度。
在XXXX冶金物理化学中,熵的计算对于理解和预测各种热力学现象非常重要。
本节将介绍熵的概念和计算方法,并通过一些实例展示其应用。
2.2 热力学平衡条件热力学平衡是冶金物理化学研究中的一个重要问题。
了解热力学平衡条件对于预测物质的相变和化学反应具有重要意义。
本节将介绍热力学平衡条件的基本原理,并通过一些实例演示其应用。
三、物理冶金3.1 结晶原理物理冶金是研究金属材料的物理性质和结构的学科。
了解结晶原理对于理解金属材料的晶体结构和性能具有重要意义。
本节将介绍结晶原理的基本概念和应用,并通过一些实例说明其重要性。
3.2 相图与固溶度相图是研究物质相变和固溶度的重要工具。
了解相图和固溶度对于理解合金的相变规律和性能有着重要作用。
本节将介绍相图的基本概念和应用,并通过一些实例说明其重要性。
四、化学冶金4.1 化学反应动力学化学反应动力学是研究化学反应速率和反应机制的学科。
了解化学反应动力学对于理解和控制冶金过程中的化学反应非常重要。
本节将介绍化学反应动力学的基本原理和计算方法,并通过一些实例说明其应用。
4.2 金属腐蚀与防护金属腐蚀是冶金工艺中一个重要的问题。
了解金属腐蚀原理和防护措施对于保护金属材料的质量和延长其使用寿命具有重要意义。
本节将介绍金属腐蚀的基本原理和防护方法,并通过一些实例说明其应用。
五、实验技术5.1 金属材料化学分析金属材料的化学分析是冶金研究和生产中的一个重要环节。
掌握金属材料的化学分析方法对于分析和判定材料的成分和性质具有重要意义。
第一章 冶金热力学基础1.基本概念:状态函数,标准态,标准生成自由能及生成焓,活度、活度系数和活度相互作用系数,分解压和分解温度,表面活性物质和表面非活性物质,电极电势和电池电动势,超电势和超电压。
2.△H 、△S 和△G 之间有何关系,它们的求算方法有什么共同点和不同点?3.化合物生成反应的ΔG °-T 关系有何用途?试根据PbO 、NiO 、SiO2、CO 的标准生成自由能与温度的关系分析这些氧化物还原的难易。
4.化学反应等温式方程联系了化学反应的哪些状态?如何应用等温方程的热力学原理来分析化学反应的方向、限度及各种 因素对平衡的影响?5.试谈谈你对活度标准态的认识。
活度标准态选择的不同,会影响到哪些热力学函数的取值?哪些不会受到影响?6.如何判断金属离子在水溶液中析出趋势的大小?7.试根据Kelvin 公式推导不同尺寸金属液滴(半径分别为r1、r2)的蒸汽压之间的关系。
8.已知AlF 3和NaF 的标准生成焓变为ΔH °298K,AlF3(S)=-1489.50kJ ·mol -1, ΔH °298K,NaF(S)=-573.60kJ ·mol -1,又知反应AlF 3(S)+3NaF (S)=Na 3AlF 6(S)的标准焓变为ΔH °298K=-95.06kJ ·mol -1,求Na 3AlF 6(S)的标准生成焓为多少?(-3305.36 kJ ·mol -1)9.已知炼钢温度下:(1)Ti (S)+O 2=TiO 2(S) ΔH 1=-943.5kJ ·mol -1(2)[Ti]+O 2=TiO 2(S) ΔH 2=-922.1kJ ·mol -1 (3)Ti (S)=Ti(l) ΔH 3=-18.8kJ ·mol -1求炼钢温度下,液态钛溶于铁液反应Ti(l)=[Ti]的溶解焓。
目录1 湿法冶金热力学基础1.1 热力学的基础知识1.1.1 内能1.1.2 焓1.1.3 热容1.1.4 物质的摩尔焓和反应热1.1.5 熵和自由能1.1.6 偏摩尔量1.1.7 相对摩尔量1.1.8 混合热力学性质1.1.9 化学势1.1.10 过剩函数1.1.11 标准溶解自由能及相互作用系数1.2 水溶液热力学1.2.1 电解质的离解1.2.2 金属盐溶液1.2.3 溶解热和冲淡热1.2.4 水溶液中的反应热1.2.5 水溶液中离子的生成热1.2.6 离子的标准生成自由焓1.2.7 离子的标准熵及离子熵的对应原理1.2.8 半电池反应及电子热力学性质1.2.9 在有离子参与时反应的△GT求法1.3 水溶液中溶解物质活度系数1.3.1 单一电解质溶液的渗透系数及活度系数1.3.2 混合电解质溶液活度系数的计算1.3.3 单一离子的活度系数参考文献2 热力学平衡图2.1 二元系的P-T(压强-温度)图2.2 金属化合物的标准生成自由能与温度的关系图2.2.1 MGO的△FGM-T线2.2.2 氧化物的△FGM-T图2.2.3 专用标尺的作用2.3 优势图2.4 电位-PH图2.4.1 电位-PH图说明2.4.2 电位-PH图的结构原理与方法2.4.3 CU-H2O系电位-PH图2.4.4 CU-NH3-H2O系电位-PH图2.4.5 绘制的同时平衡电位-PH图的新方法2.4.6 相律对电位-PH图的应用2.5 高温下的电位-PH图2.5.1 高温下水溶液体系热力学性质的计算2.5.2 高温下NI-H2O系的电位-PH图2.6 热力学平衡图拓扑学2.6.1 热力学平衡图平衡2.6.2 含有假二元相的三元系参考文献3 化学平衡3.1 化学反应的等温方程式3.2 质量作用定律及平衡常数3.3 单相化学反应平衡计算3.4 复杂体系的化学平衡3.4.1 反应进度及转化率3.4.2 反应条件对反应进度的影响3.4.3 同时平衡3.4.4 原子矩阵3.4.5 化学计量系数矩阵3.4.6 迭代法计量化学平衡3.4.7 最小自由能法计算化学平衡参考文献4 基础动力学5 溶解度6 预处理的理论7 浸出过程的原理8 液固分离的原理9 浸出液脱铁、脱硅的原理10 溶剂萃取11 离子交换12 膜分离的理论13 净化除杂和制取金属、金属粉体材料的原理14 微生物湿法冶金原理15 湿法冶金电化学及电积过程的理论后记。