高数偏导数复习
- 格式:pdf
- 大小:311.91 KB
- 文档页数:9
高数大一偏导数知识点在高数学习中,偏导数是一个重要的数学概念,它在多元函数的微积分中起着重要的作用。
以下是关于大一偏导数的一些基础知识点。
一、偏导数的定义偏导数是多元函数对于其中一个自变量的导数,在计算偏导数时,其他自变量视为常数。
对于一个具有n个自变量的函数f(x₁,x₂,…,xn),其中x₁,x₂,…,xn分别表示不同的自变量,函数f对于第i个自变量的偏导数表示为∂f/∂xi。
二、一阶偏导数的计算1. 对于只有一个自变量的函数,其一阶偏导数就是常规的导数。
例如,对于函数f(x) = x²,其一阶偏导数为∂f/∂x = 2x。
2. 对于多元函数,计算一阶偏导数时需将其他自变量视为常数,分别对每个自变量求偏导数。
例如,对于函数f(x,y) = x² + y³,其关于x的一阶偏导数为∂f/∂x = 2x,关于y的一阶偏导数为∂f/∂y =3y²。
三、高阶偏导数的计算1. 高阶偏导数表示在求导过程中,对于同一自变量连续求导的次数。
例如,对于函数f(x) = x⁴,其二阶偏导数为∂²f/∂x² = 12x²。
2. 高阶偏导数的计算与一阶偏导数类似,将其他自变量视为常数,对每个自变量进行多次求导。
例如,对于函数f(x,y) = x²+ y³,其关于x的二阶偏导数为∂²f/∂x² = 2,关于y的二阶偏导数为∂²f/∂y² = 6y。
四、偏导数的几何意义在几何上,偏导数表示函数曲面在某一点上的切线斜率。
对于一个二元函数f(x,y),偏导数∂f/∂x表示曲面在该点沿x轴方向的切线斜率,偏导数∂f/∂y表示曲面在该点沿y轴方向的切线斜率。
五、偏导数的应用偏导数在实际问题中有广泛的应用,例如在最优化问题、经济学、物理学等领域。
偏导数可以帮助我们确定函数极值点、判断函数的变化趋势等。
六、常见函数的偏导数1. 对于多项式函数,求导时可以按照常规的导数法则进行,将其他自变量视为常数进行求导。
高数大一偏导数知识点归纳一、导数的定义和计算方法在高等数学中,偏导数是一个非常重要的概念。
它描述了一个函数在某一点上的变化率,即函数沿特定方向的斜率。
下面将对偏导数的定义和计算方法进行总结。
1.1 导数的定义偏导数的定义是:对于具有多个自变量的函数,当其中的一个自变量发生微小变化时,其他自变量保持不变,函数值相应地发生变化。
偏导数用来表示函数在这一自变量上的变化率。
1.2 偏导数的计算方法偏导数的计算方法与普通的导数计算方法类似,只需将其他自变量看作常数。
对于一个具有两个自变量的函数f(x, y),其偏导数可以表示为∂f/∂x和∂f/∂y。
具体计算时,可以使用以下方法来计算偏导数:- 对于一个单变量函数,求导即可得到偏导数。
- 对于一个多变量函数,可以将其他自变量看作常数,并对每个自变量求导。
二、偏导数的性质和应用2.1 偏导数的性质偏导数具有以下性质:- 线性性质:偏导数满足线性运算法则,即和、差的偏导数等于偏导数之和、差的和。
- 交换性:对于函数f(x, y),其关于x和y的偏导数可以互相交换次序。
- 高阶偏导数:偏导数可以进行多次求导,得到高阶偏导数。
2.2 偏导数的应用- 偏导数可以用于求函数的最大值、最小值等极值问题。
- 在物理学、工程学等领域中,偏导数可以表示变量之间的相互关系和影响。
- 偏导数还可以用于微分方程的求解和函数的泰勒展开等数学问题。
三、常见的偏导数公式3.1 二阶偏导数二阶偏导数是指对一个函数的偏导数再次求导。
在计算二阶偏导数时,需要注意求导的次序,常见的二阶偏导数公式有:- 混合偏导数:对于函数f(x, y),其混合偏导数可以通过先对一个自变量求偏导数,再对另一个自变量求一次偏导数得到。
- 拉普拉斯算子:表示对函数f(x, y)的二阶混合偏导数之和。
3.2 高阶偏导数在实际问题中,有时需要对一个函数进行多次求导,得到高阶偏导数。
高阶偏导数的计算需要依次对各个变量求导,按照求导的顺序,可以得到各个阶数的偏导数。
高数大一偏导数知识点汇总在大一的高等数学学习中,偏导数是一个重要且必须掌握的概念。
偏导数主要用来描述函数在多个变量中,针对其中一个变量的变化率。
下面将对大一偏导数的相关知识进行汇总,并进行分类介绍。
一、偏导数的概念和计算方法偏导数是多元函数关于其中一个变量的导数,并将其它变量视为常数。
可以用符号∂表示它的差分。
对于二元函数,偏导数可以表示为∂z/∂x或∂z/∂y,表示z关于x或y的变化率。
对于高维函数,偏导数可以类似地进行求解。
计算偏导数的方法主要有两种:隐函数法和参数法。
隐函数法是通过将多元函数转化为隐函数,然后求解对应的偏导数。
参数法则是将多元函数表示为参数方程的形式,再对每个参数求偏导数。
这两种方法根据具体问题的不同,可以选择合适的方法进行计算。
二、偏导数的几何意义偏导数在几何上有直观的解释。
对于二元函数而言,偏导数可以理解为二元曲面在某一点上的切线斜率。
如果将函数的自变量取为平面上的坐标轴,则偏导数可以表示平面上曲线在某一点的切线斜率。
类似地,对于更高维度的函数,偏导数可以表示为多元曲面的切平面的斜率。
三、高阶偏导数和混合偏导数高阶偏导数是指对一个函数的偏导数再次求导,可以用符号∂²z/∂x²表示。
高阶偏导数描述了函数的变化率的变化率。
对于二阶偏导数,可以通过二阶混合偏导数来判断函数的凸凹性。
如果二阶混合偏导数满足一定的条件,即Hessian矩阵的主特征值都大于0,则函数为凸函数;反之,如果主特征值都小于0,则函数为凹函数;否则,函数为非凸非凹函数。
四、偏导数的应用偏导数在各个领域有广泛的应用。
在物理学中,偏导数可以用于描述物理量的变化率,例如速度、加速度等。
在经济学中,偏导数可以用于描述需求变化对价格的影响。
在工程学中,偏导数可以用于优化问题的求解,例如最小化路径长度等。
此外,偏导数还可以用于描述曲线的切线方程和法线方程等。
总结:偏导数是描述多元函数关于其中一个变量的变化率的重要工具。
偏导数知识点公式总结一、偏导数的概念1.1 偏导数的定义偏导数是多元函数对其中一个自变量的导数。
对于一个函数 $f(x_1, x_2, ..., x_n)$,它的偏导数 $\frac{\partial f}{\partial x_i}$ 表示在$x_i$方向上的变化率。
偏导数的定义可以表示为:$$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, ..., x_i + \Delta x_i, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{\Delta x_i}$$1.2 偏导数的图示解释偏导数可以通过函数曲面的切线来解释。
对于函数 $z = f(x, y)$,在点$(x_0, y_0, z_0)$处的偏导数 $\frac{\partial f}{\partial x}$可以理解为曲面在$x$方向的斜率,即曲面在$x$方向上的变化率。
同样地,$\frac{\partial f}{\partial y}$表示曲面在$y$方向上的变化率。
这样的解释有助于我们更直观地理解偏导数的含义。
二、偏导数的性质2.1 对称性对于二元函数 $f(x, y)$,它的偏导数满足对称性,即$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$。
这一性质表明,在计算混合偏导数时,可以不必考虑自变量的顺序。
2.2 连续性在函数的定义域内,若偏导数存在且连续,则函数规定可微。
这一性质是偏导数与函数连续性的关系,对于函数的导数性质有着重要的影响。
2.3 性质总结:和与积对于函数 $u = u(x, y)$ 和 $v = v(x, y)$,它们的偏导数具有和与积的运算法则。
偏导数复习题偏导数复习题在微积分学中,偏导数是研究多元函数的重要工具。
它用于描述函数在某一点上沿着不同方向的变化率。
在本文中,我们将通过一些复习题来巩固对偏导数的理解。
1. 设函数 f(x, y) = x^2 + 2xy + y^2,求 f(x, y) 在点 (1, 2) 处关于 x 的偏导数。
解答:对于 f(x, y) = x^2 + 2xy + y^2,我们可以将 y 视为常数,然后对 x 求导。
因此,f(x, y) 在点 (1, 2) 处关于 x 的偏导数为:∂f/∂x = 2x + 2y = 2(1) + 2(2) = 62. 设函数 g(x, y, z) = x^3 + 2xyz + yz^2,求 g(x, y, z) 在点 (1, 2, 3) 处关于 y 的偏导数。
解答:对于 g(x, y, z) = x^3 + 2xyz + yz^2,我们将 x 和 z 视为常数,然后对 y求导。
因此,g(x, y, z) 在点 (1, 2, 3) 处关于 y 的偏导数为:∂g/∂y = 2xz + z^2 = 2(1)(3) + (3)^2 = 12 + 9 = 213. 设函数 h(x, y, z) = e^x + ln(y) + sin(z),求 h(x, y, z) 在点(0, 1, π/4) 处关于 z的偏导数。
解答:对于 h(x, y, z) = e^x + ln(y) + sin(z),我们将 x 和 y 视为常数,然后对 z求导。
因此,h(x, y, z) 在点(0, 1, π/4) 处关于 z 的偏导数为:∂h/∂z = cos(z) = cos(π/4) = √2/24. 设函数 f(x, y) = x^2 + y^2,求 f(x, y) 在点 (2, 3) 处的梯度。
解答:梯度是一个向量,由函数的偏导数组成。
对于 f(x, y) = x^2 + y^2,梯度为:∇f = (∂f/∂x, ∂f/∂y) = (2x, 2y)在点 (2, 3) 处,梯度为:∇f(2, 3) = (2(2), 2(3)) = (4, 6)5. 设函数 g(x, y, z) = x^2 + y^2 + z^2,求 g(x, y, z) 在点 (1, 1, 1) 处的梯度。
偏导数知识点总结一、偏导数的定义1.1 偏导数的定义在一元函数的导数中,我们知道函数在某一点上的导数是该点上切线的斜率,表示函数的变化速率。
而对于多元函数而言,其变量不再只有一个,而是有多个自变量。
因此,多元函数的变化速率也需要沿着各个自变量方向来进行分析。
这就引出了偏导数的概念。
设函数z=f(x,y)表示一个二元函数,如果z在点(x0,y0)处的偏导数存在,那么这个偏导数就表示函数z在点(x0,y0)处对自变量x或y的变化率。
1.2 偏导数的符号表示一般来说,对于函数z=f(x,y)而言,其偏导数有以下表示方法:∂f/∂x 表示f对x的偏导数∂f/∂y 表示f对y的偏导数其中,∂代表“偏”,表示“对于某一变量的偏导数”。
1.3 偏导数的几何意义对于二元函数z=f(x,y)而言,其偏导数在点(x0,y0)处有着直观的几何意义。
对于∂f/∂x来说,其表示函数z=f(x,y)在点(x0,y0)处,对于x的变化率。
换句话说,就是当x在点(x0,y0)处做微小的增量Δx时,函数z在这一点的斜率。
这也为我们理解偏导数提供了直观的图形化方式。
二、偏导数的计算方法2.1 偏导数的计算步骤在计算偏导数时,需要按照以下步骤进行:(1)首先确定函数的变量和导数所对应的自变量。
(2)对于多元函数z=f(x,y)来说,在计算偏导数时,只需将其他自变量视为常数进行计算。
(3)分别对每一个自变量进行求偏导数,从而得出偏导数的值。
2.2 偏导数的计算规则在计算偏导数时,有以下几个基本的计算规则:(1)常数求导规则:对于常数c,其偏导数为0,即∂c/∂x=0,∂c/∂y=0。
(2)一元函数求导规则:对于多元函数f(x,y)=g(x)h(y),其偏导数可用一元函数求导法则计算。
(3)和差积商的偏导数计算:对于以上引用的复合函数,其偏导数的计算可利用和差积商的法则计算,具体可参考一元函数的求导法则。
(4)高阶偏导数的计算:与一元函数的高阶导数一样,多元函数的高阶偏导数也可以递归地计算,即先求一阶偏导数,然后再计算其偏导数的偏导数,直至得出所求的高阶偏导数。
561§9. 2 偏 导 数内容提要:偏导数的定义、计算、几何意义;高阶偏导数 重点分析:偏导数的计算难点分析:多元函数偏导数与一元函数导数之间的联系与区别因为多元函数的自变量不止一个,因变量与自变量的关系要比一元函数复杂得多。
在本节中,我们首先考虑多元函数关于其中一个自变量的变化率。
一、偏导数的定义及其计算法 1、定义一元函数()y f x = ,00()()()limlim x x y f x x f x f x x x→→+-'==二元函数 000(,),(,),(,)z f x y x y D P x y D =∈∈考虑0y y =,x 从00x x x →+ ,000100(,)(,)P x y P x x y →+ 偏增量 0000(,)(,)x z f x x y f x y =+-(p12)定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆时,相应地函数有增量),(),(0000y x f y x x f -∆+,如果xy x f y x x f x ∆-∆+→∆),(),(lim00000存在,则称此极限为函数),(y x f z =在点),(00y x 处对x 的偏导数,记为0y y x x xz ==∂∂,0y y x x xf ==∂∂,00y y x x xz ==或),(00y x f x 。
(也可记作,x x z f '')即 0000000(,)(,)(,)limx x f x x y f x y f x y x∆→+∆-=∆。
注:偏导记号为一整体记号,不能拆分。
562同理,yy x f y y x f y ∆-∆+→∆),(),(lim00000为函数),(y x f z =在点),(00y x 处对y 的偏导数,记为0y y x x yz ==∂∂,0y y x x yf ==∂∂,00y y x x yz ==或),(00y x f y 。
偏导数知识点总结方法一、偏导数的定义偏导数是多变量函数在某一点上的导数。
对于一个多变量函数f(x, y),其在点(x0, y0)处的偏导数可以表示为∂f/∂x和∂f/∂y。
其中,∂f/∂x表示在y固定的条件下,f对x的变化率;∂f/∂y表示在x固定的条件下,f对y的变化率。
在数学上,可以用以下的极限定义来表示偏导数:∂f/∂x = lim(Δx→0) [f(x+Δx, y) - f(x, y)] / Δx∂f/∂y = lim(Δy→0) [f(x, y+Δy) - f(x, y)] / Δy其中,Δx和Δy分别表示x和y的增量。
这样,我们就可以得到一个多变量函数在某一点上的偏导数值。
二、偏导数的性质偏导数具有一些特有的性质,这些性质可以帮助我们更好地理解和计算偏导数。
下面是一些偏导数的性质:1. 常数乘法法则:如果f(x, y)是一个多变量函数,k是一个常数,那么∂(kf)/∂x = k∂f/∂x,∂(kf)/∂y = k∂f/∂y。
2. 和差法则:如果f(x, y)和g(x, y)是两个多变量函数,那么∂(f+g)/∂x = ∂f/∂x + ∂g/∂x,∂(f+g)/∂y = ∂f/∂y + ∂g/∂y。
3. 乘积法则:如果f(x, y)和g(x, y)是两个多变量函数,那么∂(fg)/∂x = g∂f/∂x + f∂g/∂x,∂(fg)/∂y = g∂f/∂y + f∂g/∂y。
4. 商法则:如果f(x, y)和g(x, y)是两个多变量函数,那么∂(f/g)/∂x = (g∂f/∂x - f∂g/∂x) /g^2,∂(f/g)/∂y = (g∂f/∂y - f∂g/∂y) / g^2。
5. 复合函数法则:如果z=f(x, y),x=g(u, v),y=h(u, v),那么∂z/∂u = (∂z/∂x)(∂x/∂u) +(∂z/∂y)(∂y/∂u),∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v)。
高考数学中的偏导数运算技巧在高中数学学科中,偏导数是一个非常重要的概念。
在高考中,偏导数的考查频率也很高。
因此,我们必须掌握偏导数的运算技巧。
对于广大学生来说,掌握这些技巧不仅有利于在高考中获得高分,还可以在未来的学习和工作中提高自己的数学能力。
一. 偏导数的基本概念首先,我们来回顾一下偏导数的基本概念。
偏导数是多元函数在一个点上对于其中一个自变量的导数。
也就是说,如果一个函数有两个自变量,我们就可以求出该函数在某个点关于其中一个自变量的导数。
其数学符号表示为∂,例如:$$\frac{\partial f}{\partial x}$$其中,f是多元函数,x是自变量。
上式表示f关于x的偏导数。
二. 偏导数的运算规则有了偏导数的基本概念后,我们需要掌握偏导数的运算规则。
下面是一些常见的偏导数运算规则:1. 多元函数的偏导数运算可以交换次序,即:$$\frac{\partial^2f}{\partial x\partial y}=\frac{\partial^2f}{\partial y\partial x}$$2. 若多元函数f是由两个函数g和h相加得到,则f关于x的偏导数等于g和h关于x的偏导数之和,即:$$\frac{\partial(f(x,y))}{\partial x}=\frac{\partial(g(x,y))}{\partial x}+\frac{\partial(h(x,y))}{\partial x}$$3. 若多元函数f是由两个函数g和h相乘得到,则f关于x的偏导数等于g在该点的值乘以h关于x的偏导数,再加上h在该点的值乘以g关于x的偏导数,即:$$\frac{\partial(f(x,y))}{\partialx}=g(x,y)\frac{\partial(h(x,y))}{\partialx}+h(x,y)\frac{\partial(g(x,y))}{\partial x}$$4. 对于多元函数的幂函数,其偏导数可以用链式法则求得,即:$$\frac{\partial(f(x,y)^n)}{\partial x}=n f^{n-1}(x,y) \frac{\partialf(x,y)}{\partial x}$$三. 几个常见的例题下面,我们来看几个常见的例题,通过这些例题来更好地掌握偏导数运算技巧。
高数大一偏导数知识点总结在高数大一的学习中,偏导数是一个非常重要的知识点。
它在计算多元函数的变化率、切平面方程、极值和最值等方面有广泛的应用。
本文将对大一偏导数的基本概念、计算方法和应用进行总结。
1. 偏导数的定义在多元函数中,偏导数表示函数在某个指定变量上的变化率。
对于一个具有n个变量的函数,其对第i个变量的偏导数可以记为∂f/∂xi。
其中,∂表示偏导数的符号。
例如,对于函数z=f(x,y),它的偏导数可以表示为∂z/∂x和∂z/∂y。
2. 偏导数的计算方法2.1 偏导数的基本计算法则如同普通的导数计算一样,偏导数也有相应的计算法则,包括常数倍法则、和差法则、乘积法则和商法则等。
这些法则可以帮助我们更快、更准确地计算偏导数。
2.2 偏导数的高阶导数除了一阶偏导数外,我们还可以计算二阶、三阶以及更高阶的偏导数。
二阶偏导数表示对一阶偏导数再次求导的结果,以此类推。
高阶偏导数的计算需要使用到多元函数的链式法则或者直接对一阶偏导数进行多次求导。
3. 偏导数的几何意义偏导数在几何上有着重要的意义。
对于二元函数来说,∂z/∂x表示函数在平面上沿着x轴方向的变化率,即斜率;∂z/∂y表示函数在平面上沿着y轴方向的变化率,同样也是斜率。
利用这些斜率可以推导出函数在某点的切平面方程,帮助我们更好地理解函数的特性。
4. 偏导数的应用4.1 极值和最值在函数求解中,偏导数可以帮助我们找到函数的极值和最值。
通过求解偏导数为零的点,可以确定函数的临界点。
根据临界点及二阶偏导数的正负情况,可以判断其为极值点还是最值点。
4.2 泰勒展开式泰勒展开式是将一个函数表示为以某个点为中心的幂级数形式的展开。
在实际应用中,对于多元函数,我们可以利用偏导数求解泰勒展开式,从而在给定点附近近似计算函数值。
4.3 最小二乘法最小二乘法是一种用于拟合(Fitting)数据的常用方法,在回归分析、数据拟合等领域有广泛应用。
通过偏导数的计算,可以得到最小二乘法中的拟合方程参数的具体表达式,进而计算出最优解。
1. 偏导数求解方法:例题:求22z=3x xy y ++在(1,2)处的偏导数. 解:把y 看作常量,得23zx y x∂=+∂ 把x 看作常量,得32zx y y∂=+∂ 将(1,2)带入上述结果,就得12|21328x y z x==∂=⋅+⋅=∂ 12|31227x y z y==∂=⋅+⋅=∂ 2. 高阶偏导数求解方法.设函数z (x,y)f =在区域D 内具有偏导数(x,y)x zf x∂=∂(x,y)y z f y ∂=∂ 按照对变量求导次序不同有下列四个二阶偏导数:22()(x,y)xx z z f x x x∂∂∂==∂∂∂, 2()(x,y)xy z zf y x x y ∂∂∂==∂∂∂∂2()(x,y)yx z z f x y y x ∂∂∂==∂∂∂∂, 22()(x,y)yy z zf y y y∂∂∂==∂∂∂3. 全微分.(求偏导数后加上,dx dy ) 函数(x,y)z f =的全微分: z z dz dx dy x y∂∂=+∂∂. 例题:计算函数xy z e =在点(2,1)处的全微分. 解: ,x y x yz z ye xe x y∂∂==∂∂222211|,|2x x y y z ze e x y ====∂∂==∂∂ 所以222dz e dx e dy =+ 4. 多元复合函数求导法则(先求偏导数,再对复合函数求偏导数).例题1:设z uv sin t =+,而t u e =,cos v t =,求全导数dydt。
解:sin cos t dz z du z dv zve u t t dt u dt v dt t∂∂∂=++=-+∂∂∂ cos sin cos (cos sin )cos t t te t e t t e t t t =-+=-+例题2:求22(xy ,x y)z f =的22zx∂∂(其中f 具有二阶连续偏导数).解:22''122'2'1222'''''2''2''1112221224''3''22''111222()(2)2()(y 2)2(2)y 44z z y f f yx x x x xf y y f x x xy f xyf y f xy f x yf f xy f x y f ∂∂∂∂==+∂∂∂∂∂∂=+∂∂=++++=++5. 隐函数求导公式.定理1:设函数F(x,y)在点00P(x ,y )的某一领域内具有连续偏导数,且00F(x ,y )0=,00F (x ,y )0y ≠在点00(x ,y )的某一领域内恒能唯一确定一个连续且具有连续导数的函数(x)y f =,它满足条件00(x )y f =,并有x ydy Fdx F =-. 定理2:设函数F(x,y,z)在点000P(x ,y ,z )的某一领域内具有连续偏导数,且000F(x ,y ,z )0=,000F (x ,y ,z )0z ≠在点000(x ,y ,z )的某一领域内恒能唯一确定一个连续且具有连续导数的函数(x,y)z f =,它满足条件000(x ,y )z f =,并有xz z F x F ∂=-∂,y zF z y F ∂=-∂.例题:设方程xyz +=(x,y)z z =,求(1,0,1)dz |-.解:令(x,y,z)F xyz =+-Fx yz =+,Fy xz =+Fz xy =+z Fx x Fz ∂=-=∂yz F y y F z z ∂=-=∂(1,0,1)(1,0,1)|1,|z zx y --∂∂==∂∂(1,0,1)dz |dx -=-.6. 空间曲线的切线和法平面。
设曲线Γ的参数方程为(t),y (t),z (t)x ϕψω===(t αβ≤≤,三个函数在[,]αβ上可导).取曲线Γ上一点000M(x ,y ,z ),则曲线在M 点处的切线方程为000'''x y y z z (t)(t)(t)x ϕψω---== 切线方向向量成为切向量,向量 '''((t),(t),(t))T ϕψω= 就是曲线Γ在点M 的一个切向量.法平面过000M(x ,y ,z ),且以T 为法向量,法平面方程为'''000(t)(x )(t)(y y )(t)(z z )0x ϕψω-+-+-=例题:求曲线23,,x t y t z t ===在点(1,1,1)处的切线及法平面.解:因为'''2x 1,2,3t t t y t z t ===。
而点(1,1,1)所对应的参数t=1,所以 (1,2,3)T = 切线方程为111123x y z ---== 法平面方程为(x 1)2(y 1)3(z 1)0-+-+-= 即 236x y z ++=.7. 曲面的切平面与法线.设曲面∑由(x,y,z)0F =给出,000M(x ,y ,z )是曲面∑上的一点. 垂直于曲面上切平面的向量称为曲面的法向量,向量0000000((x ,y ,z ),(x ,y ,z ),(x ,y ,z ))x y z n F F F = 就是曲面∑在点M 处的一个法向量。
曲面的切面方程是000000000000(x ,y ,z )(x )(x ,y ,z )(y y )(x ,y ,z )(z z )0x y z F x F F -+-+-=曲面的法线方程是000000000000x y y z z (x ,y ,z )(x ,y ,z )(x ,y ,z )x y z x F F F v---==.例题:求旋转抛物面221z x y =+-在点(2,1,4)的切平面及法线方程.解: 22(x,y)x 1f y =+-(2,1,4)(,,1)=(2x,2y,-1)|(4,2,1)x y n f f n =-=-所以在点处的切平面方程是 4(x 2)2(y 1)(z 4)0-+---= 即 4x+2y-z-6=0 法线方程为214421x y z ---==- 求切平面的步骤:已知函数(x,y,z)F ,求其在000(x ,y ,z )处的切平面. (1)求一阶偏导数,,x y z F F F ; (2)法向量(,,)x y z n F F F = ;(3)切平面为: 000(x )(y y )(z z )0x y z F x F F -+-+-=. 8. 方向导数.如果函数(x,y)f 在点000(x ,y )p 可微分,那么函数在该点沿任一方向l 的方向导数存在,且有00(x ,y )00y 00|(x ,y )cos +(x ,y )sin x ff f lαβ∂=∂ 其中cos sin αβ,是方向l 的方向余弦. 例题:求函数2y z xe =在点(1,0)处沿着从点P (2,3)到点Q (1,2)-的方向导数.解:这里方向l 即(3,1)PQ =--的方向,与l同向的单位向量为e =. 因为函数可微分,且22(1,0)(1,0)|1,|22y y z ze xe x y∂∂====∂∂ 故所求方向导数为(1,0)|12z l ∂=+=∂ 9. 梯度.函数(x,y)f 在点000(x ,y )p 处的梯度记作00(x ,y )grad f ,即 0000y 00(x ,y )(x ,y )+(x ,y )x grad f f i f j = 10. 多元函数的极值和其求法.定理1:设函数(x,y)z f =在点00(x ,y )具有偏导数,且在点00(x ,y )处有极值,则有00y 00(x ,y )=0(x ,y )=0x f f ,定理2:设函数(x,y)z f =在点00(x ,y )的某一领域连续且有一阶及二阶连续偏导数00y 00(x ,y )=0(x ,y )=0x f f ,,令x 00x y00y y 00(x ,y )=A (x ,y )=B ,(x ,y )=C ,x f f f ,则(x,y)z f =在00(x ,y )处是否取得极值的条件如下:(1) 2AC-B 0>时具有极值,且当A<0或C<0时00(x ,y )f 是极大值,当A>0或C>0时00(x ,y )f 是极小值; (2) 2AC-B 0<时,00(x ,y )f 不是极值;(3) 2AC-B 0=时,可能有极值,也可能没有极值.(以上方法失效,需进一步判定)例题:求函数3322(x,y)x 339f y x y x =-++-的极值. 解:先解方程组22(x,y)3690(x,y)360x yf x x f y y ⎧=+-=⎪⎨=-+=⎪⎩ 求得驻点为(1,0)(1,2)(3,0)(3,2)--、、、. 再求二阶偏导数x (x,y)6x 6x f =+, x y (x ,y )0f =, yy (x,y)6y 6f =-+ 在点(1,0)处,2AC-B 1260=⋅>,又A>0,所以函数在(1,0)处有极小值(1,0)5f =-;在点(1,2)处,2AC-B 12(6)0=⋅-<,所以(1,2)f 不是极值; 在点(3,0)-处,2AC-B 1260=-⋅<,所以(3,0)f -不是极值; 在点(3,2)-处,2AC-B 12(6)0=-⋅->,又A<0,所以函数在(3,2)-处有极大值(3,2)31f -=.11. 条件极值 拉格朗日乘数法.(必考)要找函数(x,y)z f =在附加条件(x,y)0ϕ=下的可能极值点,可以先作拉格朗日函数:(x,y)(x,y)(x,y)L f λϕ=+其中λ为参数.求其对x 和y 的一阶偏导数,并使之为零,然后与(x,y)0ϕ=联立起来:(x,y)(x,y)0(x,y)(x,y)0(x,y)0x x yy f f λϕλϕϕ+=⎧⎪+=⎨⎪=⎩由方程组解出x ,y 及λ,这样得到的(x,y)就是函数(x,y)z f =在附加条件(x,y)0ϕ=下的可能极值点.例题1:求函数222(,y,z)23f x x y z =++在条件222100x y z ++=下的最大值和最小值. 解:作拉格朗日函数:222222(,y,z)23(100)L x x y z x y z λ=+++++- 令:222220*********x yz L x x L y y L z z x y z λλλ=+=⎧⎪=+=⎪⎨=+=⎪⎪++=⎩⇒0010x y z =⎧⎪=⎨⎪=±⎩0100x y z =⎧⎪=±⎨⎪=⎩ 1000x y z =±⎧⎪=⎨⎪=⎩因为(10,0,0)100,(0,10,0)200,(0,0,10)300f f f ±=±=±= 所以(10,0,0)100,(0,0,10)300min max f f f f =±==±= 例题2:抛物面22z x y =+被平面1x y z ++=截成一椭圆,求原点到这一椭圆的最长与最短距离.解:在椭圆上任取一点(x,y,z),其到原点的距离是d =2222(x,y,z)f d x y z ==++.作拉格朗日函数:22222(,y,z)()(1)L x x y z x y z x y z λμ=++++-+++- 令:22220220201x y z L x x L y y L z z x y x y z λμλμλμ=++=⎧⎪=++=⎪⎪=-+=⎨⎪=+⎪⎪++=⎩112222x y x y z z ⎧⎧--====⎪⎪⇒⎨⎨⎪⎪=-=+⎩⎩1111(,,29,(,,292222f f --=-+=+ 由题目本身可知,最长和最短距离一定存在,所以,min max d d ==。