骨组织工程的发展趋势
- 格式:pdf
- 大小:1.38 MB
- 文档页数:7
软骨组织工程发展历史
软骨组织工程的发展历史可以追溯到20世纪80年代,当时美国国家科学基金会提出了组织工程这一概念,旨在开发具有正常生理结构与功能的各种病损组织的替代物,是再生医学的重要组成部分。
而组织工程软骨则是组织工程领域最早的一个研究分支。
我国在组织工程软骨方面的研究也已经进行了二十多年。
早在1997年,中国组织工程学科带头人曹谊林教授在哈佛大学实验室中成功培育出一只“人耳鼠”,这张裸鼠背上长着人耳的图片,引发了许多人对于未来医学技术的无限遐想。
2017年,曹谊林教授又在上海国家组织工程中心成功完成了大动物试验。
实验中,先从山羊的耳朵上切取一块指甲盖大小的软骨,在体外培养细胞一个月,形成细胞膜片后放回山羊体内。
两个月后,他们从山羊身上获取了一整块人耳大小的软骨。
随后,曹谊林教授和郭树忠教授联手完成了第一个完全由组织工程软骨为原料的耳支架。
如今,“人耳”已经被重新植入山羊体内数月,根据目前的反映可以初步得出结论,这个耳支架对人体是安全无害的。
经历了成功的裸鼠试验、大动物试验后,这项技术终于开展了临床试验。
日前,曹谊林教授在联合丽格第一医疗美容医院开展了一场组织工程软骨的临床试验志愿者招募活动。
骨组织工程方案摘要:骨组织工程是一种利用生物学、生物材料学、细胞生物学和工程学等多学科的知识和技术,制备生物医学材料,生长因子和细胞等,应用于促进骨组织再生和修复的新型技术。
本文将介绍骨组织工程的基本概念、发展历程和应用前景,并结合实例说明骨组织工程方案的设计和实施。
关键词:骨组织工程;生物医学材料;生长因子;细胞生物学;骨组织再生一、引言骨折和骨缺损是骨科常见的临床问题,尤其是老年人和骨质疏松患者,骨折愈合时间长,效果差,导致严重的生活质量下降。
传统的治疗方法包括外科手术和骨移植等,但效果并不理想,且存在术后感染、移植源不足等问题。
因此,开发一种新型的治疗方法,能够促进骨组织再生和修复,对于解决这一难题具有重要意义。
骨组织工程技术应运而生,它通过利用生物学、生物材料学、细胞生物学和工程学等多学科的知识和技术,制备生物医学材料,生长因子和细胞等,应用于促进骨组织再生和修复。
本文将介绍骨组织工程的基本概念、发展历程和应用前景,并结合实例说明骨组织工程方案的设计和实施。
二、骨组织工程的基本概念骨组织工程是一种将生物材料、细胞和生物活性因子等构建成三维结构,用于促进骨组织再生和修复的技术。
其主要原理是利用生物材料作为骨组织的支架,提供空间和力学支撑,同时搭载生长因子和干细胞等,促进骨组织的再生。
骨组织工程技术的关键在于合理设计支架材料、选择合适的细胞和生长因子,并确保它们在体内的稳定性和生物相容性。
骨组织工程技术不仅可以应用于骨缺损的修复,还可以用于促进骨折的愈合和骨质疏松的治疗等,具有广阔的应用前景。
三、骨组织工程的发展历程骨组织工程技术起源于20世纪80年代,最初是为了修复骨缺损和骨折而开发的。
最早的骨组织工程产品是由合成材料制成的,但由于生物相容性和力学性能的限制,其临床效果并不理想。
随着细胞生物学和生物材料学等学科的不断发展,科学家们开始尝试使用生物材料、生长因子和干细胞等,来构建更符合人体生理特性的骨组织。
骨组织工程研究的新进展:修复骨缺损的完美技术李凯【摘要】骨组织工程自20世纪80年代诞生以来,取得了飞速的发展,为临床上骨缺损的治疗带来新的希望.纵观骨组织工程研究的二十多年里,其构成的三大要素:种子细胞方面、支架材料方面和组织构建方面都取得了一定的进展.但是距离组织工程骨在临床中正式使用尚有一定距离,有待进一步的研究.本文就目前骨组织工程研究的现状及最新进展作一综述.%Bone tissue engineering has developed rapidly since the 1980s and brought new hope for the treatment of bone defects. Throughout twenty years, the three major elements of bone tissue engineering: seed cells, scaffolds and organizations to build have made great progress. However, there is still certain distance for tissue engineered bone to be used officially in clinic. In this paper, the current status of bone tissue engineering research and the latest developments are reviewed.【期刊名称】《中国医药导报》【年(卷),期】2012(009)018【总页数】3页(P15-17)【关键词】骨组织工程;骨缺损;研究进展【作者】李凯【作者单位】哈尔滨医科大学附属第三医院骨科,黑龙江哈尔滨150081【正文语种】中文【中图分类】R681.2临床上由于各种原因导致的骨缺损很常见,然而修复骨缺损的惟一方法是通过骨移植来实现。
组织工程学在医学领域的应用前景随着医疗技术的发展,组织工程学作为一种新型的医学技术受到越来越多的关注。
组织工程学是一种应用生物学、力学、材料学和工程学等多个学科的综合科学,旨在通过体外培养、构建和植入具有特定功能的体内组织,实现人类组织的修复和重建。
它具有很高的理论探索价值和实际应用价值,其在医学领域的应用前景十分广阔。
一、组织工程学在器官重建方面的应用前景器官重建是组织工程学中的一个重要领域,在器官衰竭、肿瘤等方面有着广阔的应用前景。
目前,组织工程学在人类肝脏、心脏、肺部等器官的体外培养和体内移植方面已有了很多进展。
例如,利用支架材料和干细胞培养出来的肝细胞、心脏细胞和肺细胞已经成功地移植到动物体内,取得了良好的效果。
近年来,组织工程学在肾功能替代治疗方面也取得了重要的进展。
通过使用纳米技术,在纳米材料的基础上构建出高度仿真的肾组织,对肾脏衰竭患者进行肾脏替代治疗,治疗效果得到了显著提高。
二、基于组织工程学的再生医学再生医学是组织工程学的一个分支学科。
它是通过干细胞或其他细胞的培养和植入来实现组织修复和再生的过程。
再生医学是一个相对新兴的学科,但是其疗效在治疗某些疾病方面已经得到了证明。
例如,干细胞移植已经成为诸多疾病的一种有效治疗方法,比如血液系统疾病、免疫系统疾病、肝病等。
有研究表明,干细胞移植可以刺激机体内的自我修复机制,并促进细胞的增殖和分化。
三、组织工程学在骨组织工程学方面的应用骨组织工程学是组织工程学中的一个重要领域。
骨组织工程学可以通过体外培养和体内移植等方式将人工骨移植到受损处,实现骨组织的修复和再生。
骨组织工程学在创伤修复、骨病治疗、骨肿瘤治疗等方面具有广泛的应用前景。
目前,利用生物材料和细胞培养技术制备的人工骨已经成功地移植到动物体内,并显示出了优异的生物学和力学性能。
同时,还可以将生物陶瓷等多种材料应用于骨组织工程学当中,极大地扩展了该领域的研究范围。
四、组织工程学在皮肤组织工程学中的应用皮肤组织工程学是组织工程学中的一个应用领域,目前已经成为临床诊疗的一种疗法。
口腔骨组织工程研究进展引言近年来,口腔领域的骨组织工程研究引起了广泛的关注。
由于口腔颌骨易受外力影响、愈合较慢,牙体修复、种植和正畸治疗等领域对于骨组织再生的需求十分迫切。
传统的治疗方式如人工骨组织植入、正畸技术以及骨移植等存在不少缺陷,因此近年来口腔骨组织工程的研究备受关注。
本文将就目前口腔骨组织工程的研究进展进行概述和分析。
骨组织工程的基本概念骨组织工程是工程学、材料学、生物学等学科的交叉应用,通过体外培养、基因工程等手段,利用生物材料及干细胞等替代性材料或组织,协同治疗骨缺损、创伤和疾病,在体内诱导生物学效应,最终实现骨组织再生的目的。
口腔骨组织工程口腔骨组织是指口腔颌骨中的骨组织,是支撑口腔牙齿的重要结构,并参与咀嚼和说话等生理功能。
随着人类寿命的不断延长,意外伤害和口腔疾病的发病率不断增高,需要更好的治疗方法和手段。
因此,口腔颌骨缺损和骨折等问题也越来越受到关注。
目前,口腔骨组织工程已经成为治疗骨缺损的一种可行方法。
口腔骨组织工程的研究进展目前,口腔骨组织工程的研究进展主要集中在以下几个方面:生物材料的研究与应用生物材料是口腔骨组织工程中不可或缺的一环,选择合适的生物材料对于骨组织工程的成功至关重要。
近年来,国内外学者对生物材料的研究进行了深入探讨,针对不同种类的生物材料进行了长期的实验研究,如羟基磷灰石、聚丙烯、明胶等。
这些生物材料具有良好的生物相容性、生物活性,在骨修复和再生等方面有着广阔的应用前景。
干细胞的研究与运用干细胞是口腔骨组织工程中的主要研究方向之一。
干细胞能够分化生成多种细胞类型,如成骨细胞、软骨细胞、肌肉细胞等,具有广泛的应用前景。
目前,主要分为两类干细胞,一种是成体干细胞,另一种是胚胎干细胞。
成体干细胞来源广泛,如骨髓、脂肪、脐血等;胚胎干细胞具有广泛的分化潜能,具有再生医学的巨大应用前景。
干细胞在口腔颌骨缺损和创伤修复中的应用潜力受到了广泛关注。
基因治疗基因治疗是利用对基因工程技术的掌握,实现遗传病的治疗或相关疾病的治疗。
骨组织工程最新研究进展骨组织作为生命科学研究领域的一门崭新学科,其研究范围涉及骨、软骨、肌腱等多种组织的再造与修复,与骨组织的研究与治疗范围有非常大的交叉。
本文仅就组织工程在骨组织领域的研究进展,从骨、软骨、肌腱等骨组织治疗中涉及较多的组织构建方面作一简要概述。
标签:骨组织;研究进展作为一门古老的学科,骨组织的发展具有悠久历史,其发端可追溯到人类生命起源的最初阶段;骨组织是随着社会的发展与经济的进步,针对日益增高的创伤发生率与日趋复杂和严重的创伤程度,而逐渐成为骨外科学领域的一个重要分支;骨组织的发展不但继承了传统骨科的丰厚内涵,而且更体现在其融汇吸收了现代医学与现代生物学等生命科学领域多学科发展的最新成果。
一骨组织工程研究进展作为组织工程研究领域中最为活跃的一部分,骨组织工程的研究已处于组织构建与缺损修复的前沿,是可能率先进入临床应用的组织工程领域之一。
骨创伤修复雄厚的理论与研究基础,各种生物材料在临床骨缺损治疗中的长期广泛应用,都为骨组织工程的发展提供了得天独厚的有利条件。
骨髓基质干细胞具有获取时对机体损伤小、培养扩增后数量充足且自体细胞避免了免疫排斥反应的特点,已经成为骨组织工程研究中的最佳细胞来源。
应用骨髓基质干细胞作为种子细胞已成功修复大动物的颅骨、下颌骨与四肢骨缺损。
笔者所在实验室利用BMACs复合藻酸钙成功修复了羊颅骨标准缺损;Schliephake等利用煅烧牛骨作为支架复合BMSCs修复羊的下颌骨节段缺损,组织形态计量学结果显示,新骨形成量較单纯材料组有显著增加;Kon等发现BMSCs复合羟基磷灰石陶瓷后修复羊胫骨节段缺损,2个月时力学强度显著高于单纯材料组。
目前的研究焦点在于如何能够使骨髓基质干细胞的体外培养与诱导标准化,以进一步应用于大规模的临床治疗。
此外,最新研究表明同种异体骨髓基质干细胞复合TCP能修复犬股骨21mm的节段缺损,而不需要进行免疫抑制治疗,若进一步证实在人体可行,通过建立一个骨髓基质干细胞库,即能更及时方便地应用组织工程方法来修复骨缺损。
综述Review收稿日期:2010-01-04作者简介:崔福斋,教授,博士生导师0 引言在世界范围内,由于创伤,肿瘤 和感染等原因造成的骨缺损每年都在折磨着众多的患者。
自19世纪以来,人们一直采用骨移植术,通过植入自体骨,异体骨和人工骨替代材料来修复大范围骨缺损。
然而这些材料都各自存在着不可忽视的缺陷。
这些骨移植材料,分别有来源有限,排异反应,与宿主骨的力学性能不匹配,以及使用寿命等方面的问题,导致它难以达到令人满意的骨修复效果。
骨组织工程在这种背景下应运而生,给骨修复带来新的期盼。
1985年生物力学专家Y.C. Fung 向美国科学基金会(NSF)申请建立一个工程研究中心,名称为“活组织工程中心”(Center for Engineering of Living Tissues)[1],然而当局并没有批准他的申请。
1993年,Langer 和 Vacanti 在Science 上首次发表了题为“TissueEngineering ”[2]的论文,并提出了组织工程的基本含义:应用工程学和生命科学的基本原理和技术,在体外构建具有生物功能的人工替代物,用于修复组织缺损,替代失去功能或衰竭的组织、器官的部分或全部功能。
而骨组织工程就是利用细胞生物学和工程学原理,研究开发修复和改善损伤骨组织形态和功能的生物替代物的一门科学,其发展速度在组织工程领域中是最快的。
骨组织工程基于种子细胞+生长因子+支架材料的概念,其中支架材料一方面作为种子细胞和生长因子的载体将其运送至缺损部位,另一方面还给新骨生长提供支撑的作用,是骨组织工程的关键,同时也是全世界研究力量投入最多的地方。
由于组织工程细胞相关标准需长期的论证和安全性验证,近年用自体细胞的组织工程策略备受关注[5]。
综述Review1 支架材料需满足的条件Scott在最近的综述[3]中提出了支架设计的4F准则:形状诉求(Form)、性能诉求(Function)、功能诉求(Formation)和可植入性(Fixation)。
形状诉求是指支架材料必须能够完全填充复杂的三维缺陷,并且可以诱导再生组织填充整个缺陷;性能诉求是指支架材料必需拥有相应的性能(主要是力学性能),可以在缺失组织得到修复之前暂时起到缺失组织的作用来满足日常活动的需求;功能诉求是指支架材料能够通过释放生长因子和提供合适的环境来促进组织再生;可植入性指的是支架材料可以在外科手术中植入人体,并起到预期的功效。
其中形状诉求是一个三维的几何学问题,可以通过CT(Computed tomography)和MRI(Magnetic resonance)等方法来实现;而可植入性同时是一个几何学和力学要求,支架材料必须可以固定在骨缺陷中,并且提供和适的表面以满足缝合以及固定的需要。
这两个要求相对简单,而性能诉求和功能诉求就要复杂得多。
对于骨组织工程中的支架材料来说,性能诉求主要指的是力学性能要求,即支架的力学性能必须与环境组织的力学性能相匹配:太软的支架不足以支撑人体的日常活动需求,而太硬的材料也会带来负面的影响,如骨组织的吸收等。
虽然与周围环境中组织的力学性能相匹配可以作为衡量支架材料力学性能是否合格的标准,然而组织的力学性能是相当复杂的。
由于天然骨组织的特性,其力学性能并不能简单的定义为强度或模量,因为首先对于不同的骨组织来说模型是截然不同的,包括线性弹性、非线性弹性、粘弹性等;其次即使对于某种特定的骨组织来说通常也需要同时采用许多不同的模型来进行模拟。
因此,为了满足力学性能匹配的要求,支架材料必须满足一系列相当复杂的力学要求,同时也必须满足骨的各向异性[4]。
除此以外,考虑到支架材料的力学性能会随着降解而缓慢的丧失,一个在植入时满足要求的支架很有可能会在植入一段时间后丧失其应有的支撑能力,从而导致手术的失败。
另一方面支架材料的功能诉求要求其必须能够促的影响:(1)材料表面的性状与细胞的相互作用;(2)支架材料对生长因子释放的调控;(3)支架的物质传导作用。
20世纪90年代Robert Langer等人就已经研究了调节材料与细胞的相互作用对促进组织再生的效果[6],特别是最近20年来该领域取得了诸多进展。
在这段期间,人们通过研究发现磷酸钙表面是具有骨传导功能的,有利于骨沉积[7],此外,Kokubo,Murphy等人也在金属钛和聚合物表面通过生物矿化地方法制备出了骨传导涂层[8~12]。
支架的物质传导作用主要是指自体组织在支架内的渗透和扩散作用,以及氧气在支架中的渗透和扩散作用。
在自体组织的渗透方面,目前已经有Hollister等人的计算,他们的计算主要针对的是骨组织在支架中的扩散和渗透常数[13~15]。
相比较而言,关于支架中氧的传导研究就更加丰富一些,Domm[16]和Malda[17]等人的研究证明环境中较低的氧分压有利于软骨细胞的生存和软骨组织的再生,反之,Utting[18]等人证明较高的氧分压有利于成骨细胞的繁殖。
此外,骨髓基质干细胞也受到环境中氧分压的影响,Robins[19]等人发现低的氧分压有利于骨髓基质干细胞分化为软骨细胞,同时D’Ippolito[20]发现低的氧分压对成骨细胞有抑制作用。
尽管人们对合格的骨组织工程支架材料提出了一系列要求,却无法说清楚一个具体的支架需要满足什么样具体的性能指标,这是一个需要将来研究以填补的空白。
而要弄清楚这些具体的问题一方面需要弄清楚复杂的天然骨组织的分子水平结构和性能,另一方面需要研究现有支架材料在大型动物模型中的作用。
脱细胞技术处理好了,细胞外基质(ECM)支架也是国内外努力的一个重要方向[4]。
人工支架材料从其制造工艺上看可以分为两种:预设计支架(Designed Controlled Scaffold)和非预设计支架(Non-Designed Controlled Scaffold)[3],在本文中将详细介绍这两种支架材料。
2 预设计支架材料预设计支架顾名思义就是支架的结构和性能在设计阶段决定。
而一个满足4F准则的支架通常是有着多综述Review常往往需要经过复杂的计算才能完成。
支架的外形设计相对比较容易,可以由CAD[21~24] (Computer-Aided Design)或者IBD[25~27](Image-Based Design)来进行,但是微观结构的设计就十分复杂。
因为支架微观结构的改变必然会同时带来力学性能,渗透性/扩散性的变化,而且一者的增强必然会带来另外一者的减弱[28],于是要达到要求的性能就必须仔细寻找微观结构设计的平衡点。
于是如何在这两者之间找到平衡就成了该领域研究的焦点课题。
有众多的研究人员通过均一化理论对其进行了计算和模拟[29~33]。
Scott[34~37]等人通过求解局域方程得到局域的特征变量,将特征变量与微观结构整合进而得出支架材料的有效性能指标。
与此同时,另外一部分学者采用了非均一化方法对固定微观结构下材料的有效性能指标进行了计算。
Anderson和Knoth-Tate[38]采用计算流体力学在软件Fluent的帮助下求解了支架微观孔道内的流体速率。
Adachi等人[39]把支架材料的降解和骨组织的再生放在同一个模型中进行考量,得出了预测支架力学性能随时间变化的模型。
通过上述的支架结构设计的方法,Lin等人[37]设计并制造出多孔的钛腰椎融合器,该融合器可以承受正常人体脊柱所承担的应力,并且其性能的各向异性与人体实际情况相吻合(图1)。
对于预设计支架来说,为了保证设计的结构和功能在实际产品中得到完全的体现,只能采取一种制造工艺——喷涂成型,又叫做非固态成型(SFF,Solid Free-Form Fabrication)。
所谓喷涂成型是指通过喷涂法一层一层将事先已经设计好的整个三维外形以及内部结构堆积出来,然后通过其他的手段将刚刚成型的支架形状和结构固定,这一过程涉及到喷涂沉积技术、激光聚合技术、激光烧结技术和结构印刷技术等等技术领域。
由于喷涂技术对材料的制约,现在SFF法所使用的材料主要是聚合物,陶瓷,还有聚合物/陶瓷的复合材料。
目前已经有很多相关的工作了,例如Langer 小组通过甘油和癸二酸缩聚制备出聚甘油癸二酸(PGS,poly(glycerol-sebacate))[40,41],拉伸强度超过0.5MPa,切变模量为0.282MPa,可以承受200%的弹性形变。
该支架具有不错的生物相容性,植入体内仅仅会引起微弱的炎症反应,通过表面腐蚀可以再35天的时间内完全降解。
无论是力学性能还是降解性能都可以通过调节材料的合成条件来控制。
Hutmacher,Teoh[42,44]等人通过熔融沉积成型的方法合成出了PCL和PCL/磷酸三钙(TCP)陶瓷的复合材料。
Zein等人制造出PCL的支架材料,空隙率可以在48%和77%之间调节,模量可以在4MPa到77MPa之间调节,屈服强度强度在0.4MPa到3.6MPa之间。
Liu[45]等人发明了一种低温喷涂的方法制备出了PLLA/TCP和PLGA/TCP复合材料的支架,孔隙率为74~81%,模量为17~23MPa,屈服强度在0.75MPa到1.4MPa之间。
SFF法制备出的支架的孔道直径往往有数百个微米,如Lee等人[46]利用光固化制备的PPF支架具有直径为500~900μm的孔道,孔隙率为30~63%,模量为15~40MPa。
另外一个小组中,Lee等人[47]制备出具有300μm直径孔道的PPF 支架,模量在200MPa到588MPa之间,极限强度为27~129MPa。
3 非预设计支架材料同预设计支架材料不同,非预设计支架材料在制备以前并没有一个具体的性能和结构上的设计,它制备的准则是仿生。
人们都试图通过研究天然组织本身来模拟构建适宜的支架结构,Curry在上世纪70年代广泛研究了矿化的生物材料,出版了权威著作图1 通过多元拓扑优化过程同时设计支架的外型和内部三维孔道结构a)在两个脊椎体之间建立一个宏观的设计区域;b)在设计区域内通过宏观拓扑优化得到满足生理载荷的材料密度分布;c)在满足宏观优化预测的孔隙率基础上进行微观拓扑优化得到具有特定微观多孔结构的坚硬材料;d)通过Boolean 交叉算法将宏观外型和微观孔道结构结合在一起得到最终的产物;e)以金属钛为原综述Review组通过自组装方法制备出的纳米晶羟基磷灰石/胶原(nHAC)在成分和结构上都与天然骨组织十分接近[49]。
Nature Materials曾发表评论说:他给出实验证明了骨矿化胶原的分级结构理论,开辟了用仿生自组装制造生物材料的新途径[50]。
在前人工作的基础上,人们认识到适合骨组织工程的支架材料必须具有良好的生物相容性,适中的力学性能,降解速率与自体骨组织再生速率相匹配,还要有合适的空隙率和孔径。