阳离子交换量cmol/kg
- 格式:ppt
- 大小:635.00 KB
- 文档页数:40
FHZDZTR0029 土壤 阳离子交换量的测定 乙酸铵交换法F-HZ-DZ-TR-0029土壤—阳离子交换量的测定—乙酸铵交换法1 范围本方法适用于酸性和中性土壤阳离子交换量的测定。
2 原理土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换作用,它是由土壤胶体表面性质所决定。
土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。
土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失。
土壤阳离子交换性能分析包括阳离子交换量、交换性阳离子和盐基饱和度等。
阳离子交换量是指土壤胶体所吸附的各种阳离子的总量,常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质。
用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。
3 试剂3.1 乙酸铵溶液:1mol/L ,称取77.09g 乙酸铵,用水溶解,加水稀释至近1000mL ,用氢氧化铵(1+1)或稀乙酸调节至pH7.0,然后加水稀释至1000mL 。
3.2 乙醇(950mL/L )。
3.3 液体石蜡。
3.4 甲基红-溴甲酚绿混合指示剂:称取0.099g 溴甲酚绿和0.066g 甲基红置于玛瑙研钵中,加少量乙醇(950mL/L ),研磨至指示剂完全溶解为止,最后加乙醇(950mL/L )至100mL 。
3.5 硼酸指示剂溶液:称取20g 硼酸,溶于1000mL 水中。
每1000mL 硼酸溶液中加入20mL 甲基红-溴甲酚绿混合指示剂,并用稀酸或稀碱溶液调节至紫红色(葡萄酒色),此时溶液的pH 为4.5。
土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。
由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。
通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。
2 适用范围本方法适用于各类土壤中阳离子交换量的测定。
3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。
4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。
用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。
4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。
土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。
方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
试剂(1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。
土壤阳离子交换量的测定A. EDTA-乙酸铵盐交换法1 方法提要用0.005mol·L-1 EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。
由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。
通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。
2 适用范围本方法适用于各类土壤中阳离子交换量的测定。
3 主要仪器设备3.1 电动离心机:转速3000 r/min~5000r/min;3.2 离心管:100mL;3.3 定氮仪;3.4 消化管(与定氮仪配套)。
4 试剂4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容;4.2 95%乙醇(须无铵离子);4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。
用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。
4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中;4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定;4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL;4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研钵中充分研磨混匀,贮于棕色瓶中备用;4.8 甲基红-溴甲酚绿混合指示:称取0.5g 溴甲酚绿和0.1g 甲基红于玛瑙研钵中,加入少量95%乙醇,研磨至指示剂全部溶解后,加95%乙醇至100mL ;4.9 纳氏试剂:称取10.0g 碘化钾溶于5mL 水中,另称取3.5g 二氯化汞溶于20mL 水中(加热溶解),将二氯化汞溶液慢慢地倒入碘化钾溶液中,边加边搅拌,直至出现微红色的少量沉淀为止。
土壤的阳离子交换量实验数据阳离子交换量是土壤的一个重要指标,它反映了土壤中可供植物吸收的阳离子量。
阳离子交换量的大小直接影响了土壤对植物的养分供应能力。
因此,了解土壤的阳离子交换量对于合理施肥和提高土壤肥力具有重要意义。
本文将通过实验数据分析土壤的阳离子交换量,探讨影响土壤阳离子交换量的因素,以及如何合理调节土壤阳离子交换量提高土壤肥力。
一、实验数据展示我们进行了一项针对不同土壤样品的阳离子交换量实验,具体数据如下:样品编号土壤类型阳离子交换量(cmol/kg)1砂壤土10.22黏壌土15.63红壤土12.44黄壤土18.35棕壤土14.8从上表可以看出,不同土壤类型的阳离子交换量存在明显差异,而且阳离子交换量与土壤类型之间存在一定的关联性。
接下来,我们将分析影响土壤阳离子交换量的因素。
二、影响土壤阳离子交换量的因素1.土壤类型实验数据显示,不同土壤类型的阳离子交换量存在一定的差异。
这是因为不同土壤类型的矿物成分和有机质含量不同,导致土壤的交换容量和交换能力不同。
2.土壤pH值土壤pH值对土壤的阳离子交换量有着重要影响。
通常来说,酸性土壤的阳离子交换量较低,而中性土壤和碱性土壤的阳离子交换量较高。
这是因为酸性土壤中氢离子较多,占据交换位置,阻碍了阳离子的吸附和交换。
3.土壤有机质含量土壤中的有机质对阳离子交换量有着重要影响。
有机质能够提高土壤的离子交换能力,增加阳离子的吸附能力,从而提高土壤的阳离子交换量。
4.土壤粘粒含量土壤中的粘粒含量对土壤的阳离子交换量也有着重要影响。
通常情况下,粘粒含量较高的土壤阳离子交换量较大,因为粘粒能够提供更多的交换位置。
5.盐分含量土壤中的盐分含量对土壤的阳离子交换量也有影响。
盐分含量过高会影响土壤的结构稳定性,导致阳离子难以释放,从而降低了土壤的阳离子交换量。
三、合理调节土壤阳离子交换量了解了影响土壤阳离子交换量的因素之后,我们可以采取一些措施来合理调节土壤的阳离子交换量,提高土壤肥力。
土壤阳离子交换量的正常范围土壤阳离子交换量是衡量土壤质量和肥力的重要指标之一。
它是指土壤中与土壤颗粒表面带电的阴离子吸附或排斥的阳离子的总量。
土壤阳离子交换量的正常范围是指土壤中阳离子交换能力正常的范围。
土壤阳离子交换量的正常范围受到多种因素的影响,包括土壤类型、土壤pH值、有机质含量、土壤质地等。
一般来说,土壤阳离子交换量在2-20 cmol/kg之间被认为是正常范围。
土壤类型是影响土壤阳离子交换量的重要因素之一。
不同土壤类型的阳离子交换能力存在差异。
例如,黄壤和黑土的阳离子交换能力通常较高,而沙质土壤的阳离子交换能力较低。
这是因为黄壤和黑土富含粘粒和腐殖质,能够吸附更多的阳离子,而沙质土壤由于颗粒较大,阳离子吸附能力较弱。
土壤pH值也对土壤阳离子交换量有影响。
土壤呈酸性时,土壤颗粒表面带正电荷的氢离子增多,会排斥更多的阳离子。
而土壤呈碱性时,土壤颗粒表面带负电荷的氢氧根离子增多,可以吸附更多的阳离子。
因此,土壤pH值的变化会导致土壤阳离子交换量的变化。
有机质含量是影响土壤阳离子交换量的重要因素之一。
有机质可以增加土壤的阴离子吸附能力,从而减少阳离子的吸附。
因此,土壤中有机质含量越高,阳离子交换量越低。
土壤质地也会影响土壤阳离子交换量。
粘土质地的土壤颗粒较小,比表面积大,能够吸附更多的阳离子;而砂质土壤颗粒较大,比表面积小,阳离子吸附能力较弱。
因此,土壤质地越重,阳离子交换量越高。
除了以上因素,土壤中的盐分含量、土壤水分、土壤温度等也会对土壤阳离子交换量产生影响。
例如,土壤中的盐分含量过高会导致土壤颗粒带电减弱,从而降低阳离子交换能力;土壤过湿或过干也会影响阳离子的吸附和交换过程。
土壤阳离子交换量是反映土壤肥力和质量的重要指标,其正常范围在2-20 cmol/kg之间。
土壤类型、土壤pH值、有机质含量、土壤质地等因素对土壤阳离子交换量有重要影响。
了解土壤阳离子交换量的正常范围,有助于合理施肥和土壤改良,提高土壤肥力和农作物产量。
阳离子交换量及其测定方法(CEC:Cation Exchange capacity)在一定pH值(=7)时,每千克土壤中所含有的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数(potential CEC)。
常用单位:cmol(+)/kg ,国际单位:mmol/kgCEC的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。
阳离子交换量的大小,可作为评价土壤保肥能力的指标。
阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
不同土壤的阳离子交换量不同,主要影响因素:a,土壤胶体类型,不同类型的土壤胶体其阳离子交换量差异较大,例如,有机胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。
b,土壤质地越细,其阳离子交换量越高。
c,对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。
d,土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。
土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
测定方法:土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。
联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
中性乙酸铵法也是我国土壤和农化实验室所采用的常规分析方法,适于酸性和中性土壤。
最近的土壤化学研究表明,对于热带和亚热带的酸性、微酸性土壤,常规方法由于浸提液pH值和离子强度太高,与实际情况相差较大,所得结果较实际情况偏高很多。
新方法是将土壤用BaCl2 饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。
土壤阳离子交换量测定方法一、测定目的土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
二、方法原理EDTA—铵盐快速法不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的。
采用LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤,石灰性土壤,这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
三、仪器及设备架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
四、试剂配制(1)LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵克及克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至或,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中的混合液用于中性和酸性土壤的提取,的混合液仅适用于石灰性土壤的提取用。
(2)95%酒精。
工业用,应无铵离子反应。
(3)2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至(定氮混合指示剂显酒红色)。
土壤中阳离子交换量的测定土壤是农业生产的基础,而土壤中阳离子交换量(Cation Exchange Capacity,简称 CEC)是评价土壤肥力和土壤质量的重要指标之一。
它反映了土壤保持和供应植物所需养分离子的能力,对于合理施肥、土壤改良以及环境保护都具有重要意义。
那么,如何准确测定土壤中的阳离子交换量呢?阳离子交换量指的是在一定 pH 值条件下,每千克土壤所能吸附的全部交换性阳离子的厘摩尔数(cmol/kg)。
这些阳离子包括钾(K⁺)、钠(Na⁺)、钙(Ca²⁺)、镁(Mg²⁺)、铵(NH₄⁺)等。
土壤中的胶体物质,如黏土矿物、腐殖质等,带有负电荷,能够吸附这些阳离子,并在一定条件下与溶液中的其他阳离子进行交换。
测定土壤阳离子交换量的方法有多种,常见的有乙酸铵法、氯化铵乙酸铵法等。
下面以乙酸铵法为例,介绍一下测定的具体步骤。
首先,需要准备实验所需的仪器和试剂。
仪器包括离心机、电动振荡器、火焰光度计等;试剂有乙酸铵溶液(pH 70)、乙醇、氧化镁等。
接着,进行土壤样品的采集和处理。
采集的土壤样品要具有代表性,去除其中的杂质,如石块、植物残体等,然后将其风干、磨细,并通过一定孔径的筛子。
然后,进行样品的预处理。
称取一定量的土壤样品放入离心管中,加入乙酸铵溶液,在电动振荡器上振荡一定时间,使土壤中的阳离子充分与乙酸铵溶液中的铵离子进行交换。
振荡结束后,离心分离,倒掉上清液。
用乙醇洗涤样品,以去除多余的乙酸铵,然后再次离心,倒掉上清液。
接下来,将处理后的样品放入烘箱中烘干,然后加入氧化镁进行蒸馏。
蒸馏出的氨用硼酸溶液吸收。
最后,用标准酸溶液滴定吸收液,根据滴定所消耗的酸量,计算出土壤中阳离子交换量。
在测定过程中,需要注意以下几点:1、实验操作要规范、准确,严格按照实验步骤进行,以减少误差。
2、试剂的配制要精确,浓度要符合要求。
3、仪器要校准,确保测量结果的准确性。
此外,不同类型的土壤,其阳离子交换量的范围有所不同。
1 方法依据
HJ 889-2017土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法;
2 仪器和设备
土壤筛,高速离心机,电子分析天平
3 分析步骤
详见HJ 889-2017 9分析步骤
4 验证结果
4.1 方法检出限
按HJ 168-2010规定以扣除空白值后的与0.01吸光度相对应的浓度值作为检出限,按公式MDL=0.01/b,结合HJ 889-2017标准中的公式,得到检出限:
MDL=0.01×V×3±
b×m
=
0.01×50×3
0.5609×3.5
=0.8cmol(+)/kg
4.2 精密度
取3个浓度水平样品,按照HJ 889-2017分别做6次平行实验,计算阳离子交换量的平均值,标准偏差并求出相对标准偏差,结果见表1。
表1 精密度测试数据
4.3 准确度
取2个有证标准物质,分别做6次平行实验,计算平均值,相对标准偏差,最大相对误差,检测结果见表3。
表3 有证标准物质测试数据
5.1检出限
实验测得检出限为0.8cmol(+)/kg。
5.2精密度
样品1平均值为8.3cmol(+)/kg,相对标准偏差为1%;样品2平均值为16.3cmol(+)/kg,相对标准偏差为2%;样品3平均值为35.4cmol(+)/kg,相对标准偏差为0.9%;
5.3准确度
分别对GBW07414a(ASA-3a)和GBW07461(ASA-10)两个有证标准物质进行测定,单次测定结果均在标准值范围内。
FHZDZTR0029 土壤 阳离子交换量的测定 乙酸铵交换法F-HZ-DZ-TR-0029土壤—阳离子交换量的测定—乙酸铵交换法1 范围本方法适用于酸性和中性土壤阳离子交换量的测定。
2 原理土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换作用,它是由土壤胶体表面性质所决定。
土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。
土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失。
土壤阳离子交换性能分析包括阳离子交换量、交换性阳离子和盐基饱和度等。
阳离子交换量是指土壤胶体所吸附的各种阳离子的总量,常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质。
用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。
3 试剂3.1 乙酸铵溶液:1mol/L ,称取77.09g 乙酸铵,用水溶解,加水稀释至近1000mL ,用氢氧化铵(1+1)或稀乙酸调节至pH7.0,然后加水稀释至1000mL 。
3.2 乙醇(950mL/L )。
3.3 液体石蜡。
3.4 甲基红-溴甲酚绿混合指示剂:称取0.099g 溴甲酚绿和0.066g 甲基红置于玛瑙研钵中,加少量乙醇(950mL/L ),研磨至指示剂完全溶解为止,最后加乙醇(950mL/L )至100mL 。
3.5 硼酸指示剂溶液:称取20g 硼酸,溶于1000mL 水中。
每1000mL 硼酸溶液中加入20mL 甲基红-溴甲酚绿混合指示剂,并用稀酸或稀碱溶液调节至紫红色(葡萄酒色),此时溶液的pH 为4.5。
FHZDZTR0029 土壤 阳离子交换量的测定 乙酸铵交换法F-HZ-DZ-TR-0029土壤—阳离子交换量的测定—乙酸铵交换法1 范围本方法适用于酸性和中性土壤阳离子交换量的测定。
2 原理土壤的阳离子交换性能,是指土壤溶液中的阳离子与土壤固相阳离子之间所进行的交换作用,它是由土壤胶体表面性质所决定。
土壤胶体是土壤中粘土矿物和腐殖酸以及相互结合形成的复杂有机矿质复合体,其吸收的阳离子包括钾、钠、钙、镁、铵、氢、铝等。
土壤交换性能对植物营养和施肥有较大作用,它能调节土壤溶液的浓度,保持土壤溶液成分的多样性和平衡性,还可保持养分免于被雨水淋失。
土壤阳离子交换性能分析包括阳离子交换量、交换性阳离子和盐基饱和度等。
阳离子交换量是指土壤胶体所吸附的各种阳离子的总量,常作为评价土壤保肥能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据,它反映土壤的负电荷总量和表征土壤的化学性质。
用中性乙酸铵溶液反复处理土壤,使土壤成为铵饱和的土,再用95%乙醇洗去多余的乙酸铵后,用水将土样洗入凯氏瓶中,加固体氧化镁蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵的量计算土壤阳离子交换量。
3 试剂3.1 乙酸铵溶液:1mol/L ,称取77.09g 乙酸铵,用水溶解,加水稀释至近1000mL ,用氢氧化铵(1+1)或稀乙酸调节至pH7.0,然后加水稀释至1000mL 。
3.2 乙醇(950mL/L )。
3.3 液体石蜡。
3.4 甲基红-溴甲酚绿混合指示剂:称取0.099g 溴甲酚绿和0.066g 甲基红置于玛瑙研钵中,加少量乙醇(950mL/L ),研磨至指示剂完全溶解为止,最后加乙醇(950mL/L )至100mL 。
3.5 硼酸指示剂溶液:称取20g 硼酸,溶于1000mL 水中。
每1000mL 硼酸溶液中加入20mL 甲基红-溴甲酚绿混合指示剂,并用稀酸或稀碱溶液调节至紫红色(葡萄酒色),此时溶液的pH 为4.5。
土壤阳离子交换量阳离子交换量(CEC)是土壤重要化学性质之一,是指在一定pH值时,每千克干土所能吸附的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数,常用单位为cmol(+)/kg。
阳离子交换量是衡量土壤保持或储存阳离子能力的指标,是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
当土壤颗粒带负电荷时,它们会吸引并保留阳离子(带正电荷的离子),阻止它们在土壤剖面中淋失。
土壤颗粒所携带的阳离子称为可交换阳离子,是植物养分最重要的直接来源。
阳离子交换量越高,能保持的阳离子数量越多,土壤的保肥、供肥性能和缓冲能力越强。
一般认为阳离子交换量大于20cmol(+)/kg为保肥能力强的土壤;20~10cmol(+)/kg为保肥能力中等的土壤;小于10cmol(+)/kg为保肥能力弱的土壤。
影响阳离子交换量的因素很多,包括土壤质地、有机质含量、黏土的数量和种类、胶体类型、土壤pH值等。
土壤质地越细,阳离子交换量越高;黏粒含量高的土壤比黏粒含量低的土壤能够保持更多的可交换阳离子;有机质是阳离子交换量的一个非常重要的来源,有机质含量高的土壤阳离子交换量较有机质含量低的砂质土壤高;有机胶体比矿质胶体具有更高的阳离子交换量;土壤pH值也会影响土壤阳离子交换能力,随着土壤pH值的增加,阳离子交换量增加;生物炭表面多孔,具有较大的比表面积、较强的阳离子交换能力,能增加土壤阳离子交换量。
土壤的阳离子交换量决定了土壤能容纳的正离子的数量(阳离子),反过来土壤阳离子交换量会对土壤的肥力管理产生重大影响。
在正常管理措施下,具有高阳离子交换量和高缓冲能力的土壤,其pH值变化比低阳离子交换量的土壤慢得多。
阳离子交换量还会影响氮肥和钾肥的施用时间。
阳离子交换量低的土壤一些阳离子可能会淋失,易造成土壤缺钾、镁等阳离子。
在这些土壤上秋季施铵、氮和钾会导致一些养分从根层淋失,特别是在低阳离子交换量的砂质土壤中。
35 阳离子交换量试验35.0.1 阳离子交换量是测量土对溶液中阳离子交换吸附性能强弱的指标。
试验结果以所交换阳离子浓度毫摩每千克土表示,即mmol/kg。
35.0.2 本试验采用EDTA铵盐法,适用于酸性土、中性土,也适用于石灰性土。
35.0.3 本试验应采用下列仪器设备:1 离心机:转速3000~4000r/min,离心管100 ml。
2 天平:称量200 g,分度值0.0001 g;称量200 g,分度值0.01 g;称量500 g,分度值0.5 g。
3 蒸馏装臵:按图35.0.2所示安装,其中开氏瓶体积为150 ml。
4 其他设备:带橡皮头玻棒、烧杯、锥形瓶、滴定管、滴定管夹及台、1-蒸汽发生器;2-冷凝箱;3-开氏瓶;4-吸收瓶;5、6-电炉;7-Y形管;8-橡皮管;9-螺丝夹;10-弹簧夹;11-缓冲管。
35.0.4 试剂配制应符合下列规定:1 EDTA铵盐混合液,称取醋酸铵(NH4C2H3O2 )77.09 g和乙二胺四乙酸(C10H16N2O8 )1.641 g,用水溶解后一起洗入1L容量瓶中,加水至900 ml左右,用(1+1)氨水(NHOH)或稀醋酸溶液调至pH 7.0或pH 8.5,然后定容至刻度。
4256257即用同样方法配成两种不同酸度的混合液备用。
其中pH7.0用于中性和酸性土的提取;pH 8.5仅用于石灰性土的提取。
调节pH 值可在酸度计上进行,即准确吸取混合液50 ml ,调节所用NH 4OH 或醋酸的用量,以此算出1L 混合液需要量。
2 95%乙醇(应无铵离子反应)3 氧化镁:在高温炉中于500~600℃灼烧0.5h 。
4 定氮混合指示剂:分别称取甲基红0.1 g 和溴甲酚绿0.5 g ,放入玛瑙研钵中,用100 ml 95%乙醇研磨溶解,然后用稀盐酸或稀氢氧化钠调节到pH 4.5(指示剂显淡紫色)。
5 钠氏试剂:取氢氧化钾(KOH) 135g 溶于460ml 水中为A 液,取碘化钾(KI) 20g 溶于50ml 水中,加碘化汞使溶液至饱和状态(约32 g )为B 液。
实验一根系阳离子交换量的测定(淋洗法)根系是作物吸收养分的重要器官,作物根系阳离子代换量(Cation Exchange Content, CEC)的大小,大体上可反映根系吸收养分的强弱和多少,因此,测定根系阳离子代换量(CEC)对于了解作物吸收养分的能力与指导合理施肥具有一定的意义。
一、方法原理根系中的阳离子,在稀HCl中,能被H+代换出来,而根系所吸收的H+量与代换出来的阳离子量相等。
在洗去多余的HCl溶液后,用中性KCl溶液将H+代换出来,以KOH溶液滴定至pH 7.0,根据消耗KOH的浓度和用量,计算出阳离子代换量(以每1kg干根的厘摩尔数表示)。
二、操作步骤从田间选取具有代表性的植株若干(尽可能不要损坏根系),先用水冲洗根系,再放在筛子上置于水中轻轻振荡,至洗净为止,后再用蒸馏水冲洗数次,然后切去地上部分,置于30℃烘箱中烘干(一般烘8 h以上),将烘干根样取出磨细,过18~25号筛(0.7~1.0 mm),混合均匀,贮于广口瓶中备用。
称取烘干磨细的根样0.1000 g,放入180~250 mL烧杯中,先加几滴蒸馏水使根系湿润,避免以后操作时根浮在液面上,再加0.01 mol·L -1HCl 100 mL,搅拌5 min,待根样下沉后,将大部分盐酸连同根样倒入漏斗中过滤,然后用蒸馏水漂洗至无Cl-为止(用AgNO3检验)(一般用110~200 mL蒸馏水,少量多次即可洗至无Cl-)。
再用尖头玻棒将过滤纸中心穿孔,以100 mL KCl(事先调至pH 7.0)逐渐将过滤纸上的根样全部洗入原烧杯中,用pH计测定根-KCl 悬浮液pH值,然后加7~8 d酸碱混合指示剂,用0.01 mol·L -1 KOH滴定至兰绿色(保持30 s 不变),记下所消耗的0.01 mol·L -1 KOH 毫升数,并以此计算出根系的阳离子代换量(以每1kg干根的厘摩尔数表示)。
三、结果计算CEC(cmol·kg-1)=N KOH×V KOH×100 根样干重(g)四、注意事项1、过滤及漂洗时,溶液不超过漏斗的2/3处,并遵守“少量多次”的洗涤原则。