2015年高考数学创新设计精品试题专题训练1-6-1
- 格式:doc
- 大小:140.00 KB
- 文档页数:7
【创新设计】(人教通用)2015高考数学二轮复习 专题整合限时练1理(含最新原创题,含解析)(建议用时:40分钟) 一、选择题1.若A ={x |2<2x<16,x ∈Z },B ={x |x 2-2x -3<0},则A ∩B 中元素个数为 ( ).A .0B .1C .2D .3解析 因为A ={x |2<2x<16,x ∈Z }={x |1<x <4,x ∈Z }={2,3},B ={x |x 2-2x -3<0}={x |-1<x <3},所以A ∩B ={2}. 答案 B2.若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( ).A.12+i B . 5 C.52D .54解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b =-1,|a +b i|=|-12-i|=52. 答案 C3.我校要从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,则在选出的宣传者中男、女都有的概率为( ). A.815B .12 C.25D .415解析 从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,总的方法数为C 04C 22+C 14C 12+C 24C 02=15,其中选出的宣传者中男、女都有的方法数为C 14C 12=8,所以,所求概率为815.答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ).A .21B .24C .28D .7解析 ∵a 2+a 4+a 6=3a 4=12, ∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28.答案 C5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件解析 由(a -b )·a 2<0得,a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0,即“(a -b )·a 2<0”是“a <b ”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12 B .32C .1D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x ±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+332=32. 答案 B7.已知a 为执行如图所示的程序框图输出的结果,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( ).A .192B .32C .96D .-192解析 由程序框图可知,a 计算的结果依次为2,-1,12,2,…,成周期性变化,周期为3;当i =2 011时运行结束,2 011=3×670+1,所以a =2.所以,⎝⎛⎭⎪⎫a x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 6·26-r x 3-r, 令3-r =2,得r =1,所以,含x 2项的系数是(-1)C 1625=-192. 答案 D8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则f (x )的解析式为( ).A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3C .f (x )=sin ⎝⎛⎭⎪⎫2x +π6 D .f (x )=sin ⎝⎛⎭⎪⎫2x -π6 解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4,∴ω=2,f (x )=sin (2x +φ). 把⎝⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ,又∵|φ|<π2,∴7π6+φ=3π2,∴φ=π3,∴f (x )=sin (2x +π3).答案 A9.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则O A →·O M →的取值X 围是( ). A .[-1,0]B .[-1,2]C .[0,1]D .[0,2]解析 ∵A (-2,1),M (x ,y ),∴z =O A →·O M →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N (1,1)时,z min =-2+1= -1;经过点M (0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( ).A.13 B .23 C.15D .25解析 由题意知,|F 1F 2|=|F 1A |=4,∵|F 1A |-|F 2A |=2,∴|F 2A |=2,∴|F 1A |+|F 2A |=6,∵|F 1F 2|=4,∴C 2的离心率是46=23. 答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形正视图为直角梯形,则此几何体的体积V 为( ).A.323 B .403C.163D .40解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a n n+1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=( ). A .-3 B .-2 C .3D .2解析 ∵函数f (x )是奇函数,∴f (-x )=-f (x ),∵f (32-x )=f (x ),∴f (32-x )=-f (-x ),∴f (3+x )=f (x ),∴f (x )是以3为周期的周期函数. ∵S n n =2×a n n+1,∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n ≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为a 1-1=-2,∴a n -1=-2·2n -1=-2n ,a n =-2n+1,∴a 5=-31,a 6=-63.∴f (a 5)+f (a 6)=f (-31)+f (-63)=f (2)+f (0)=f (2)=-f (-2)=3. 答案 C 二、填空题13.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为__________.解析 ∵p ·q =2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1), ∴|p +λq |=2+λ2+2λ-12=5λ2+5≥ 5.答案514.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2得,2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4.由正弦定理得,sin A =a sin B b =12,又A +B +C =π,A ∈⎝⎛⎭⎪⎫0,3π4,∴A =π6.答案π615.若曲线y =x 在点(m ,m)处的切线与两坐标轴围成三角形的面积为18,则m =________. 解析 由y =x ,得y ′=-12x,所以,曲线y =x在点(m ,m)处的切线方程为y -m=-12m(x -m ),由已知,得12×32m×3m =18(m >0),m =64.答案 6416.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab的最小值为________.解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以 3a +2b ab =3b +2a =(3b +2a )(2a +b )=6a b +2b a+7≥26a b ·2ba+7=7+43(当且仅当a =2-3,b =23-3时等号成立). 答案 7+4 3。
创新问题专项训练(二)一、选择题 1.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C A -C B ,C A C B ,C B -C A ,C AC B ,若A ={x |x 2-ax -1=0,a ∈R },B ={x ||x 2+bx +1|=1,b ∈R },设S ={b |A *B =1},则C (S )等于( )A .4B .3C .2D .12.已知集合A ={(x ,y )||x -2|+|y -3|≤1},集合B ={(x ,y )|x 2+y 2+Dx +Ey +F ≤0,D 2+E 2-4F >0},若集合A ,B 恒满足“A ⊆B ”,则集合B 中的点所形成的几何图形面积的最小值是( )A.22πB .πC.12πD.2π3.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+ … +x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=x ·e x5.定义:若函数f (x )的图像经过变换T 后所得图像对应函数的值域与f (x )的值域相同,则称变换T 是f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于f (x )的同值变换的是( )A .f (x )=(x -1)2,T 将函数f (x )的图像关于y 轴对称 B .f (x )=2x -1-1,T 将函数f (x )的图像关于x 轴对称C .f (x )=2x +3,T 将函数f (x )的图像关于点(-1,1)对称D .f (x )=sin(x +π3),T 将函数f (x )的图像关于点(-1,0)对称二、填空题6.对于非空实数集A ,记A *={y |任意x ∈A ,y ≥x }.设非空实数集合M ,P ,满足M ⊆P .给出以下结论:①P *⊆M *;②M *∩P ≠∅;③M ∩P *=∅.其中正确的结论是________(写出所有正确结论的序号).7.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]等于________.8.某同学为研究函数f (x )=1+x 2+1+-x2(0≤x ≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP =x ,则AP +PF =f (x ).请你参考这些信息,推知函数f (x )的极值点是______;函数f (x )的值域是________.9.(1)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =x ,y =x 12,y =(22)x的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.(2)若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为自然对数的底数),根据你的数学知识,推断h (x )与φ(x )间的隔离直线方程为________.三、解答题10.已知二次函数f (x )=ax 2+bx +c 和g (x )=ax 2+bx +c ·ln x (abc ≠0). (1)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数; (2)在同一函数图像上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k ,若f (x )满足k =f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx +c 与g (x )=ax 2+bx +c ·ln x (abc ≠0)是否为“K 函数”?并证明你的结论.11.如图,两个圆形飞轮通过皮带传动,大飞轮O 1的半径为2r (r 为常数),小飞轮O 2的半径为r ,O 1O 2=4r .在大飞轮的边缘上有两个点A ,B ,满足∠BO 1A=π3,在小飞轮的边缘上有点C .设大飞轮逆时针旋转,传动开始时,点B ,C 在水平直线O 1O 2上.(1)求点A 到达最高点时A ,C 间的距离; (2)求点B ,C 在传动过程中高度差的最大值.答 案1.选B 显然集合A 的元素个数为2,根据A *B =1可知,集合B 的元素个数为1或3,即方程|x 2+bx +1|=1有1个根或有3个根.结合函数y =|x 2+bx +1|的图象可得,b =0或4-b 24=-1,即b =0或b =±2 2.2.选B 集合A 可以看作是由区域{(x ,y )||x |+|y |≤1}向右平移2个单位长度、向上平移3个单位长度得到的,这是一个边长为2的正方形区域,集合B 是一个圆形区域,如果A ⊆B 且集合B 中的点形成的几何图形的面积最小,则圆x 2+y 2+Dx +Ey +F =0是|x -2|+|y -3|=1所表示正方形的外接圆,其面积是π×12=π.3.选B 由于线性回归方程恒过样本点的中心(x ,y ),则由“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”一定能推出“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”,反之不一定成立.4.选D 由凸函数的定义可得该题即判断f (x )的二阶导函数f ″(x )的正负.对于A ,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于B ,f ′(x )=1x -2,f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;对于C ,f ′(x )=-3x 2+2,f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于D ,f ′(x )=e x +x e x ,f ″(x )=e x +e x +x e x =2e x +x e x,在x ∈(0,π2)上,恒有f ″(x )>0.5.选B 选项B 中,f (x )=2x -1-1的值域为(-1,+∞),将函数f (x )的图象关于x轴对称变换后所得函数的值域为(-∞,1),值域改变,不属于同值变换.经验证,其他选项正确.6.解析:对于①,由M ⊆P 得知,集合M 中的最大元素m 必不超过集合P 中的最大元素p ,依题意有P *={y |y ≥p },M *={y |y ≥m },又m ≤p ,因此有P *⊆M *,①正确;对于②,取M =P ={y |y <1},依题意得M *={y |y ≥1},此时M *∩P =∅,因此②不正确;对于③,取M ={0,-1,1},P ={y |y ≤1},此时P *={y |y ≥1},M ∩P *={1}≠∅,因此③不正确.综上所述,其中正确的结论是①.答案:①7.解析:∵函数f (x )的定义域为(0,+∞),∴函数f ′(x )=1x +2x2>0,即函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e >0,知x 0∈(2,e),∴[x 0]=2.答案:28.解析:显然当点P 为线段BC 的中点时,A ,P ,F 三点共线,此时AP =PF ,且函数f (x )取得最小值5,函数f (x )的图象的对称轴为x =12;当x ∈[0,12]时,函数f (x )单调递减,且值域为[5,2+1];当x ∈[12,1]时,函数f (x )单调递增,且值域为[5,2+1],∴函数f (x )的值域为[5,2+1].答案:x =12[5,2+1]9.解析:(1)由A 点的纵坐标为2,得点A 的横坐标是⎝⎛⎭⎪⎫222=12,由矩形的边平行于坐标轴,得B 点的纵坐标是2,从而横坐标是22=4,所以C 点的横坐标是4,纵坐标是(22)4=14,所以点D 的横坐标等于A 点的横坐标12,点D 的纵坐标等于C 点的纵坐标14,即D 点的坐标是(12,14).(2)容易观察到h (x )和φ(x )有公共点(e ,e),又(x -e)2≥0,即x 2≥2e x -e ,所以猜想h (x )和φ(x )间的隔离直线为y =2e x -e ,下面只需证明2eln x ≤2e x -e 恒成立即可,构造函数λ(x )=2eln x -2e x +e.由于λ′(x )=2e e -xx(x >0),即函数λ(x )在区间(0,e)上递增,在(e ,+∞)上递减,故λ(x )≤λ(e)=0,即2eln x -2e x +e≤0,得2eln x ≤2e x -e.故猜想成立,所以两函数间的隔离直线方程为y =2e x -e.答案:(1)(12,14)(2)y =2e x -e10.解:(1)假设g (x )在定义域(0,+∞)上为增函数,则有g ′(x )=2ax +b +c x =2ax 2+bx +cx>0对于一切x >0恒成立,从而必有2ax 2+bx +c >0对于一切x >0恒成立.又a <0,由二次函数的图象可知:2ax 2+bx +c >0对于一切x >0恒成立是不可能的. 因此当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数.(2)函数f (x )=ax 2+bx +c 是“K 函数”,g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”.证明如下:对于二次函数f (x )=ax 2+bx +c ,k =f x 1-f x 2x 1-x 2=a x 22-x 21+b x 2-x 1x 2-x 1=a (x 2+x 1)+b =2ax 0+b .又f ′(x 0)=2ax 0+b ,故k =f ′(x 0). 故函数f (x )=ax 2+bx +c 是“K 函数”.对于函数g (x )=ax 2+bx +c ·ln x (abc ≠0)(x >0), 不妨设x 2>x 1>0,则k =g x 1-g x 2x 1-x 2=a x 21-x 22+b x 1-x 2+c ln x 1x 2x 1-x 2=2ax 0+b +c lnx 1x 2x 1-x 2.又g ′(x 0)=2ax 0+b +c x 0,若g (x )为“K 函数”,则必满足k =g ′(x 0),即有2ax 0+b +c ln x 1x 2x 1-x 2=2ax 0+b +cx 0,也即c ln x 1x 2x 1-x 2=2c x 1+x 2(c ≠0),所以lnx 1x 2x 1-x 2=2x 1+x 2.设t =x 1x 2,则0<t <1,ln t =t -1+t.①设s (t )=ln t -t -1+t,则s ′(t )=t -2t+t2>0,所以s (t )在t ∈(0,1)上为增函数,s (t )<s (1)=0,故ln t ≠t -1+t.②①与②矛盾,因此,函数g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”. 11.解:(1)以O1为坐标系的原点,O 1O 2所在直线为x 轴,建立如图所示的直角坐标系.当点A 到达最高点时,点A 绕O 1转过π6,则点C 绕O 2转过π3.此时A (0,2r ),C (92r ,32r ).∴AC =-92r 2+r -32r 2=25-23·r .(2)由题意,设大飞轮转过的角度为θ, 则小飞轮转过的角度为2θ,其中θ∈[0,2π].此时B (2r cos θ,2r sin θ),C (4r +r cos 2θ,r sin 2θ). 记点B ,C 的高度差为d ,则d =|2r sin θ-r sin 2θ|, 即d =2r |sin θ-sin θcos θ|.设f (θ)=sin θ-sin θcos θ,θ∈[0,2π], 则f ′(θ)=(1-cos θ)(2cos θ+1).令f ′(θ)=(1-cos θ)(2cos θ+1)=0,得cos θ=-12或1,则θ=2π3,4π3,0或2π.f (θ)和f ′(θ)随θ的变化情况如下表:综上所述,点B ,C 在传动过程中高度差的最大值d max =332r .。
第2讲 数列的综合问题一、选择题1.(2014·杭州质量检测)设S n 为等差数列{a n }的前n 项和.若a 4<0,a 5>|a 4|,则使S n >0成立的最小正整数n 为( ).A .6B .7C .8D .9解析 ∵a 4<0,a 5>|a 4|, ∴a 4+a 5>0, ∴S 8=a 4+a 52=a 1+a 82>0.∴最小正整数为8. 答案 C2.(2014·广州综合测试)在数列{a n }中,已知a 1=1,a n +1-a n =sin n +π2,记S n 为数列{a n }的前n 项和,则S 2014=( ).A .1 006B .1 007C .1 008D .1 009解析 由a n +1-a n =sinn +π2⇒a n +1=a n +sinn +π2,所以a 2=a 1+sin π=1+0=1,a 3=a 2+sin 3π2=1+(-1)=0,a 4=a 3+sin 2π=0+0=0,a 5=a 4+sin 5π2=0+1=1,∴a 5=a 1,如此继续可得a n +4=a n (n ∈N *),数列{a n }是一个以4为周期的周期数列,而2 014=4×503+2,因此S 2 014=503×(a 1+a 2+a 3+a 4)+a 1+a 2=503×(1+1+0+0)+1+1=1 008. 答案 C3.(2014·吉林省实验中学模拟)a n =⎠⎛0n (2x +1)d x ,数列⎩⎨⎧⎭⎬⎫1a n 的前项和为S n ,数列{b n }的通项公式为b n =n -8,则b n S n 的最小值为 ( ).A .-3B .-4C .3D .4解析 a n =⎠⎛0n (2x +1)d x =n 2+n =n (n +1),所以1a n=1n -1n +1,所以S n =n n +1,所以b n S n =n n -n +1=n +1+9n +1-10≥-4,当且仅当n +1=9n +1,即n =2时等号成立,所以b n S n 的最小值为-4. 答案 B4.已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n的最小值为( ).A.32 B .53 C.256D .43解析 由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理有q 2-q -2=0,解得q =2或q =-1(与条件中等比数列的各项都为正矛盾,舍去),又由 a m ·a n =4a 1,得a m a n =16a 21,即a 212m+n -2=16a 21,即有m +n -2=4,亦即m +n =6,那么1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n =16⎝ ⎛⎭⎪⎫4m n +n m +5≥16⎝ ⎛⎭⎪⎫24mn ·n m +5=32,当且仅当4m n =n m ,m +n =6,即n =2m =4时取得最小值32.答案 A 二、填空题5.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1, ∴a 1=1,a 3=4,则公比q =2, 因此S 6=-261-2=63.答案 636.(2014·江苏五市联考)各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.解析 根据题意,由于各项均为正数的等比数列{a n }中,a 2-a 1=1,所以q >1.∵a 2a 1=q ,∴a 1(q -1)=1,a 1=1q -1, ∴a 3=q 2q -1=q -2+q -+1q -1=q -1+1q -1+2≥2q -1q -1+2=4, 当且仅当q =2时取得等号,故可知数列{a n }的通项公式a n =2n -1.答案 2n -17.(2014·咸阳一模)已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析 因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点.而等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10. 答案 108.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2n -2d =n 33-10n 23,由于函数f (x )=x 33-10x 23(x >0)在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49. 答案 -49 三、解答题9.已知数列{a n }是各项均为正数的等比数列,a 3=4,{a n }的前3项和为7.(1)求数列{a n }的通项公式;(2)若a 1b 1+a 2b 2+…+a n b n =(2n -3)2n+3,设数列{b n }的前n 项和为S n ,求证:1S 1+1S 2+…+1S n ≤2-1n.(1)解 设数列{a n }的公比为q ,由已知得q >0,且⎩⎪⎨⎪⎧a 1q 2=4,a 1+a 1q +4=7,∴⎩⎪⎨⎪⎧a 1=1,q =2.∴数列{a n }的通项公式为a n =2n -1.(2)证明 当n =1时,a 1b 1=1,且a 1=1,解得b 1=1. 当n ≥2时,a n b n =(2n -3)2n+3-(2n -2-3)2n -1-3=(2n -1)·2n -1.∵a n =2n -1,∴当n ≥2时,b n =2n -1.∵b 1=1=2×1-1满足b n =2n -1, ∴数列{b n }的通项公式为b n =2n -1(n ∈N *). ∴数列{b n }是首项为1,公差为2的等差数列.∴S n =n 2.∴当n =1时,1S 1=1=2-11.当n ≥2时,1S n =1n 2<1nn -=1n -1-1n. ∴1S 1+1S 2+…+1S n ≤2-11+11-12+…+1n -1-1n =2-1n. 10.(2014·四川卷)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n, 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n.所以,T n =2n +1-n -22n. 11.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上.(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2). 因为a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2. 又λ=2时,S n +2n +22n =2n +2,显然{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.。
2015年高考数学《新高考创新题型》之7:立体几何(含精析)之7.立体几何(含精析)一、选择题。
1.如图,正方体的棱长为,点在棱上,且,点是平面上的动点,且动点到直线的距离与点到点的距离的平方差为,则动点的轨迹是()A.圆B.抛物线C.双曲线D.2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为45°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值等于()A.B.C.D.3.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且B1F面A1BE,则B1F与平面CDD1C1所成角的正切值构成的集合是()A.2B.C.D.,这两个球相外切,且球与正方体共顶点A的三个面相切,球与正方体共顶点的三个面相切,则两球在正方体的面上的正投影是()(创作:学科网“天骄工作室”)5.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()6.在如图所示的空间直角坐标系中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②7.如图,正方体的棱长为,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于(创作:学科网“天骄工作室”)A.B.C.D.8.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为的鸡蛋(视为球体)放入其中,则鸡蛋中心(球心)与蛋巢底面的距离为A.B.C.D.的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则的取值范围是()A.(0,2) B.(0,1)C.(1,2) D.10.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形.若将它倒立放在桌面上,则该圆锥体在桌面上从垂直位置倒放到水平位置的过程中(含起始位置和最终位置),其在水平桌面上正投影不可能是()设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记=λ.当APC为钝角时,λ的取值范围是________.12.如右图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是________(写出所有正确命题的编号).[来源:学§科§网]①当时,S为四边形;②当时,S不为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.的正三角形硬纸,沿各边中点连线垂直折起三个小三角形,做成一个蛋托,半径为的鸡蛋(视为球体)放在其上(如图),则鸡蛋中心(球心)与蛋托底面的距离为________.平面上,将两个半圆弧和、两条直线和围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理、一个平放的圆柱和一个长方体,得出的体积值为________.抛物线绕轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是.三、解答题。