midas Gen-网壳屈曲分析(已改)
- 格式:doc
- 大小:958.00 KB
- 文档页数:15
基于midas Gen的单层球形网壳结构分析及应用研究
王亮;聂向东;崔传峰;秦兴宽;梁思浩
【期刊名称】《建筑技术》
【年(卷),期】2024(55)5
【摘要】基于midas Gen软件模型,在不同应力比下对实体工程金属网壳模型进行分析,获得了工程实体金属网壳模型静力荷载下铸钢铰支座反力、罕遇地震时铸钢铰支座反力、静力荷载销轴反力、罕遇地震销轴反力分布情况。
将设计模型得到的实体工程金属网壳荷载–位移曲线与有关设计模型网壳荷载–位移曲线进行对比,通过实体工程金属网壳模型设计实例,分析了不同应力下的杆件位移情况,从而证明了实体工程金属网壳模型设计的准确性及合理性。
【总页数】5页(P583-587)
【作者】王亮;聂向东;崔传峰;秦兴宽;梁思浩
【作者单位】中国建筑第八工程局有限公司南方公司
【正文语种】中文
【中图分类】TU0
【相关文献】
1.单层网壳与双层网壳钢结构冷却塔结构分析及比较
2.单层球形网壳结构的分析及实验研究
3.关于用Midas-Gen对单层球壳屈曲分析的方法
4.基于MIDAS的单层网壳稳定性分析
5.基于MIDAS GEN的单层球面网壳稳定性分析
因版权原因,仅展示原文概要,查看原文内容请购买。
MIDAS/gen操作流程介绍操作流程L在MIDAS中新建一个模型:2.将CAD单线模型转换成DXF格式导入MIDAS(midm不识别曲线模型,并注意尺寸数问题);3.定义材料及截面属性;4.指定支座节点形式(边界条件):5.检查结构数据;6.定义荷载工况及荷载组合(DL;LL;WL;TS;TL;RL;SL等)7.荷载加载(坐标轴选取:整体坐标轴且是否选取投影面积;局部坐标轴);8杆件释放(释放梁端约束);9.前处理阶段运行;10.查看模态、变形及内力,并判断模型是否准确(如果对模型并不确保准确,可在荷载加载阶段只添加重力荷载,进行简单运行,初步检查模型是否正确);1L后处理阶段试算:12.根据试算结果,查看应力比及设计细节,调整覆盖项参数(再修改程序默认定义不准确的杆件类型以及杆件长细比)。
王I 导入模型开始就要设置好所需单位噢,荷,周L ;p f =自“娟孟J的隔-■独书才加期出-明荏分G 数糖q萌问我才析算俺h 军法敲忻处据l 水北照才析的is国丰玷性分析硼:i 融工mr 叫忻我造鼓跳2曲卜%直调w三或-m 命令信担心汗福面7捕捉类图标/看这里看这里看这里显不类图标所有功能应有尽有,只有你想不到没有他做不到其他软件一样有一些快捷键,比如F2只显示选中单元、F5前处理阶段运行、F8单元验算、F12删除多余杆件等。
各种命令有待你慢慢挖掘》D 视图类图标MIDAS 页面简介口后后口昌底占1Gen 2D14-u 杜仁山-[履里0匚1MJ 酬Qi 中国区清当啮®回出I4与油米后:毕唯I KH耳t L E R 皿,吐如”—三立01葡曲弹1记南唱的现则可动.百T :实宜-、一.、gfi 去。
同声师I 之I 用:>i P 二熊咖±S SirsQX UC 5/(X5“m熊营4喀fB 靠示二需U ,K 辛nr罪(Pi 雅唾壬i﹃.rz ,i禁口致戛安国jR^+J宣n -口@@@威-日年工反应请升析曾嫌十二对程小酶解用I 布:化热甘析曾成由-商与峻的躅朝S吊车碘升析效据祖能面力析茹据国·TT *里*他由-已.-t图结果田理没好国昌查间关丝辛嘉才『市iii Dr用祖色由自随!十二静力祷女•:「:二酒式於、之二三例徜密室二犯就才航濯的近海.-一方法二:―.之中,甘,:馀先17国后济日随31回典1%、3曲1\•院日田二岗国外口噌阿^方法一:|口癖双目凶|…midas Gen MbT 文件G.已打邪51日应J …AutoCAD DKF 立件(D)…关翩I 以均5Ap 2O0O(V6,V7I 交忤…品丽目信息(I SAF20O0O /的文件…日保存35TAAD2(XH)交件…m 存为因...51他,1的农件…识存当由阶段急..导人中卜导出坦卜midas-Crn Design?r^S3^卜会统,价并数强场件地…楼理数定交本近出目打印口…心打说SM打日设置切…跚立电司打印就良性旧…退出因山田费源文件…计算棋型的建立一线棋型的建立式榭噌面实BE 长方语越面藕毓丽冷轧喃】四加劲的摩开做面昂「喻磁面©管田经面r 留纲匚梅日工工拿用毒面T 年面耀瞧X 工字的跌面粉拈库/用户.割[值|组含假面]2!$翩言]爱前面]组合梁或面|瞬居:1名称:显于感面削i值…一[_限一][取^|[适用如隔心:中心假改偏心…「14回考虑直切喇口考虑迪的效果口自由度JGen 2014-lUnUlledj -L 网免口WCAD 中按截面类型分层,一广目田二问连I!酮异性关闭心.1必.也传导MkJZ阻眉比:E 豁告]导入血3cMi 口XE 文件时,^jS*ft£KAD-Si!-r献小棒奖课弹性弛据金计奥怨-ft?利料号帮科美空。
midasGEN对单层网壳非线性分析
midasGEN网壳稳定分析过程算例
根据《空间网格结构技术规程》(JG17-2010)一下规定:
需要计算网壳的安全系数>4.2
以下分别为midasGEN和sap2000进行单层网壳稳定性分析步骤1、工程介绍:
直径D=32m,矢高f=4.5m单层网壳,支座约束均为固定铰支座,如下图所示:
恒活荷载见模型中数值。
2、下面先进行第一步------屈曲分析
勾选仅考虑正值是,如果出现负值,说明是反向荷载按照一定倍
数施加先破坏,但是常规结构一般都是竖直向下荷载会使结构破坏。
勾选检查斯图姆序列是要把最不利的模态排列在前面。
F5运行
显示最不利节点为264节点,记住这一个节点号。
然后施加初始缺陷
点击根据“初始缺陷更新模型”
一般都是选择第一模态(第一模态屈曲因子最小,也是结构最先屈曲的荷载倍数,个人觉得要是模型第一模态要是出现局部屈曲,需要调整模型直至第一模态为整体屈曲模态)
最大值为D/300(注意单位)
然后update会生成另外一个模型。
在这个模型中,需要添加一个非线性分析工况先添加一个组合
适用之后就会生成一个D+L工况接下来就是非线性分析
我们选择几何非线性----位移控制法------主节点264方向dz位移不足数量10子步骤内迭代次数10最大控制位移:-350mm(正方向向上,这个位移需要进行反复试验才能使分析收敛,分析结果才会有效)点击确认
然后F5进行分析
窗口显示以下内容,说明已经收敛
通过步骤图表输出位移-----安全系数曲线
K最大值为21.6>4.2满足要求。
例题8 单层网壳屈曲分析1例题单层网壳屈曲分析2例题. 单层网壳屈曲分析概要此例题将介绍利用midas Gen做网壳屈曲分析的整个过程,以及查看分析结果的方法。
该例题的建模利用midas Gen建模助手中的网壳建模助手,这里不再做介绍。
通过该例题希望用户能够了解做网壳屈曲分析的一般步骤和过程。
此例题的步骤如下:1.简介2.输入各种荷载3.定义屈曲分析控制数据4.考虑网壳初始缺陷5.运行分析并查看结果6.非线性屈曲分析例题单层网壳屈曲分析1.简介本例题网壳的几何形状、边界条件以及所使用的构件如图1所示。
荷载只考虑屋盖作用雪荷载的情况,遇到屋盖作用多种荷载的情况,只需按同样的方法加载即可。
(该例题数据仅供参考),荷载组合可以在后处理模式中输入。
➢荷载工况 1 –自重➢荷载工况 2 –屋面恒荷载 2kN➢荷载工况 3 –屋顶活荷载 2kN图1 分析模型3例题单层网壳屈曲分析4 2.输入各种荷载1.设定荷载工况在输入荷载之前先设定荷载工况。
1.点击主菜单选择荷载>静力荷载>建立荷载工况>静力荷载工况2.在对话窗口中输入如图2,所示的荷载工况图2 输入荷载工况注:在极限状态设计法中屋面活荷载与普通层的活荷载的荷载分项系数不同,故荷载工况也需单独输入。
例题单层网壳屈曲分析2.输入自重构件的材料和截面被定义后,程序将根据其体积和比重自动计算结构的自重。
通过在自重指令中输入系数可以定义其作用方向。
输入自重的步骤如下。
1.在功能列表(图3的 )中选择自重2.在荷载工况名称选择栏选择‘自重’3.在自重系数的Z中输入‘-1’4.在操作选择栏点击键1图3 输入自重5例题单层网壳屈曲分析6 3.输入屋面荷载为计算初始缺陷,先计算在各荷载工况组合作用下的基本屈曲模态的屈曲向量,因此将屋面上所作用的恒荷载和活荷载施加到网壳上的各节点上。
图4 屋顶荷载单位力的施加例题单层网壳屈曲分析3.定义屈曲分析控制数据主菜单选择分析>分析控制>屈曲定义屈曲分析控制数据,运行屈曲分析,找到网壳结构最低阶屈曲模态(第一屈曲模态)的屈曲向量,通过该模态的屈曲向量考虑结构的初始缺陷图5 屈曲分析控制数据确认,运行分析。
在MIDAS中如何计算自重作用下活荷载的稳定系数(屈曲分
析安全系数)
问:在MIDAS中如何计算自重作用下活荷载的稳定系数(屈曲分析安全系数)?
答:稳定分析又叫屈曲分析,所谓的荷载安全系数(临界荷载系数)均是对应于某种荷载工况或荷载组合的。
例如:当有自重W和集中活荷载P作用时,屈曲分析结果临界荷载系数为10的话,表示在10*(W+P)大小的荷载作用下结构可能发生屈曲。
但这也许并不是我们想要的结果。
我们想知道的是在自重(或自重+二期恒载)存在的情况下,多大的活荷载作用下会发生失稳,即想知道W+Scale*P中的Scale值。
我们推荐下列反复计算的方法。
步骤一:先按W+P计算屈曲分析,如果得到临街荷载系数S1。
步骤二:按W+S1*P计算屈曲,得临界荷载系数S2。
步骤二:按W+S1*S2*P计算屈曲,得临界荷载系数S3。
重复上述步骤,直到临街荷载系数接近于 1.0,此时的S1*S2*S3*Sn即为活荷载的最终临界荷载系数。
(参见下图)。
Gen中分析报错总结1、MAXIMUM NUMBER OF ITERATION HAS BEEN REACHEDCHECK TOLERANCE IN THE VIBRATION RESULT TABLERECOMMENDATION FOR BETTER CONVERGENCE :INCREASE THE SUBSPACE DIMENSION GREATER THANMIN(2Nf, Nf+8) (Nf=NUMBER OF FREQUENCIES)得到最大迭代次数,请在振动结果表中检查公差。
建议增加子空间维数,大于MIN(2Nf, Nf+8) Nf=数量的频率解:修改“子空间大小”2、节点奇异解:要查看边界条件及荷载加载3、静力弹塑性分析的报错,例题“上海建工林晨”[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 20171[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 2024[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4059[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4306[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4323[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4570[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4587[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4834[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4850[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5098[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5114[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5131[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5367[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5384[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5401[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING :1[My_I-End] COMP. OF BEAM NO. 5422[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5645[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5647[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5652[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5652[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5653[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5661[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5678[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5699[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5717[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5891< PUSHOVER LOADCASE NO. 1 / 1 >* INCREMENT METHOD : DISPLACEMENT CONTROL( Maximum Translational Displacement )* ANALYSIS OPTION : P-DELTA* CONSIDERING INITIAL LOADCASE* LOADCASE LOAD TYPE : MODE SHAPE* INCORE MULTI-FRONTAL SOLVER1----INC. STEPS- ----SUBSTEP- --ITERATION- --LOAD PARAMETER- --ELAPSED / TOTAL TIME----43 / 100 67 561 ************ 552.320 / 1284.465 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 563 ************ 553.740 / 1287.767 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 564 ************ 555.450 / 1291.744 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 565 ************ 556.850 / 1295.000 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 566 ************ 558.070 / 1297.837 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 567 ************ 559.110 / 1300.256 [sec]1>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERS43 / 100 67 568 ************ 560.450 / 1303.372 [sec]>>> ITERATIVE SOLUTION DIVERGED.>>> CHANGE INCREMENT SIZE OR (AND) NONLINEAR ANALYSIS CONTROL PARAMETERSDISTANCES BETWEEN NODES IN SOME ELEMENTS ARE ABNORMALWHEN CALCULATING STIFFNESS OR STRESS FOR THEM.PLEASE CHECK INPUT DATA (ELEMENTS SHAPES, MESH SIZE & PATTERNS,MATERIAL PROPERTIES, AND FORCE INCREMENT, Etc).NODAL(UPDATED) COORDINATE IS SAVED FN.OUT FILE-------------------------------------------------------------ERRORS ENCOUNTERED. MIDAS JOB TERMINATED. REFER TO .OUT FILE-------------------------------------------------------------解:检查模型相应单元处的铰定义4、警告信息:在节点处方程无效,解:边界设置问题5、导入过程中,提示如下。
midasGEN网壳稳定分析过程算例
根据《空间网格结构技术规程》(JG17-2010)一下规定:
需要计算网壳的安全系数>4.2
以下分别为midasGEN和sap2000进行单层网壳稳定性分析步骤
1、工程介绍:
直径D=32m,矢高f=4.5m单层网壳,支座约束均为固定铰支座,如下图所示:
恒活荷载见模型中数值。
2、下面先进行第一步------屈曲分析
勾选仅考虑正值是,如果出现负值,说明是反向荷载按照一定倍数施加先破坏,但是常规结构一般都是竖直向下荷载会使结构破坏。
勾选检查斯图姆序列是要把最不利的模态排列在前面。
F5运行
显示最不利节点为264节点,记住这一个节点号。
然后施加初始缺陷
点击根据“初始缺陷更新模型”
一般都是选择第一模态(第一模态屈曲因子最小,也是结构最先屈曲的荷载倍数,个人觉得要是模型第一模态要是出现局部屈曲,需要调整模型直至第一模态为整体屈曲模态)
最大值为D/300(注意单位)
然后update会生成另外一个模型。
在这个模型中,需要添加一个非线性分析工况
先添加一个组合
适用之后就会生成一个D+L工况接下来就是非线性分析
我们选择几何非线性----位移控制法------主节点264方向dz位移不足数量10子步骤内迭代次数10最大控制位移:-350mm(正方向向上,这个位移需要进行反复试验才能使分析收敛,分析结果才会有效)点击确认
然后F5进行分析
窗口显示以下内容,说明已经收敛
通过步骤图表输出位移-----安全系数曲线
K最大值为21.6>4.2满足要求。
屈曲约束支撑软件实现过程屈曲约束支撑是一种新型耗能支撑,本文通过一个例题操作的过程,使设计师能够快速了解在midas软件中进行屈曲约束支撑建模、设计方法。
1概况建立一简单模型,如下图所示,模型相关信息请查看模型文件,本分析过程主要实行动力弹塑性分析,其中支撑运用纤维铰模型,梁柱采用集中塑性铰单元模拟,分析过程中的主要核心步骤将面下面介绍。
2将定义的梁单元支撑释放两端约束选择支撑,点击:模型>边界约束>释放梁端部约束点击“铰-铰”,适用,过程如下图3定义纤维材料(用于模拟支撑)模型>材料和截面特性>纤维材料特性值点击“添加”,定义纤维材料,如下图4定义纤维单元模型>材料和截面特性>纤维截面分割点击“添加”,如下图,定义名称,选择纤维截面,点击“导入截面”按键(第一个按键为导入截面)。
在上图中,依次执行图右边的“选择对象”,“设定区域”,“分割截面”,确认,过程如下图所示。
5定义非弹性铰模型>材料和截面特性>非弹性铰特性值点击“添加”,增加梁柱及支撑集中塑性铰,过程如下图]非线性铰定义完成后如下显示:6分析非线性铰模型>材料和截面特性>分配非弹性铰梁铰分配过程如下:(选择单元可以点取,也可以点下图中的“选择所有匹配单元”自动选择单元,然后点适用)同理,分配柱与支撑非线性铰,操作过程如下图所有铰分配完成后结果图如下:7定义地面加速度:定义时程函数荷载>时程分析数据>时程分析函数点选“地震波”,选择分析用的地震波,确认,如下图。
定义荷载工况荷载>时程分析数据>时程荷载工况(定义非线性分析相关数据,阻尼可根据需要自行调整)定义地面加速度荷载>时程分析数据>地面加速度选择前面的地震波与工况,定义不同方向的地面加速度,如下图8至此为止,所有模型建立完成,在midas工作树中可以看到模型的相关信息如下:9运行分析,计算10查看结果结果>时程分析结果>非弹性铰状态结果>时程分析结果>纤维截面分析结果选择相应的支撑,查看内力,屈服情况,滞回等,如下图附带两个文档,供参考使用:使用纤维模型做桥梁的动力弹塑性分析.pdf 动力弹塑性分析.pdf。
Midas-Gen在减震结构动力弹塑性分析的应用【摘要】随着我国抗震设计的发展,消能减震在结构中的应用也已经非常普遍。
其中,屈曲约束支撑的应用是最为普遍的,因规范规定,消能减震结构均应做弹塑性分析计算,但由于消能减震应用往往伴随减震设备的销售,并且在方案阶段就要提供弹塑性分析报告,如果都用ABAQUS分析,时效性太慢,MIDAS-GEN有屈曲约束支撑单元,有超高的时效性,因此在减震结构动力弹塑性分析中应用广泛。
【关键词】迈达斯;动力弹塑性;屈曲约束支撑【中图分类号】TU74 【文献标识码】A【文章编号】1002-8544(2017)24-0056-021.引言近几年,随着我过超高层、减隔震的大力发展,动力弹塑性分析的需求日益增加,但是ABAQUS这种大型有限元分析软件的运算效率已经无法满足当今时代日益增长的弹塑性分析需求,因此MIDAS-GEN、SAUSAGE、YJK-EP这些弹塑性分析软件的不断升级、不断改进已经在中大型项目或者减隔震项目中广泛应用。
本文主要介绍MIDAS-GEN在含屈曲约束支撑的结构中动力弹塑性分析应用步骤。
2.弹塑性分析详细步骤2.1 结构模型的转换和对比将用于小震设计的PKPM模型或者YJK模型通过YJK转换接口导入到MIDAS-GEN中,然后进行模型准确性校核,通过反应谱分析校核六要素:前三阶周期及对应振型、振型质量参与系数、总质量、基底剪力与层间位移角。
这里需要特别注意,要特别留意转换过后要注意校核程序的地震输入信息、嵌固端信息、节点束缚信息是否吻合,以免出错。
对于转换过来的MIDAS-GEN模型有几点要特别注意:(1)要自动生成墙号后需要按同一位置修改墙号;(2)要注意质量源不要重复定义;(3)要注意层信息中刚性楼板不能重复定义。
2.2 屈曲约束支撑单元的模拟在进行模型对比之前,需要进行两次对比,第一,是从PKPM采用等效线性单元模拟刚度的模型导入到MIDAS中进行一次对比,准确无误后,建立边界非线性单元在弹性计算时刚度和PKPM等效线性单元(一般用实心方钢截面)等效,再进行一次模型可靠性对比,最后的模型可靠性对比取PKPM等效线性单元与MIDAS中采用非线性滞后系统单元的模型进行对比。
关于用Midas-Gen对单层球壳屈曲分析的方法摘要:随着现代科技的发展,对于计算机软件的应用越来越多,甚至可以说是计算机软件在人们工作中是必不可少的工具。
对于我们建筑行业也不例外,计算机软件在不断的更新发展,现在钢结构设计人员除了使用3d3s,sap,Ansys等软件外,用midas软件的人们也越来越多了。
本文将用Midas-Gen对单层球壳屈曲分析过程进行介绍。
现以直径为80米、矢高为68米的单层短程线型球为例进行介绍。
(网壳结构的稳定性是单层网壳结构设计中的关键问题。
)关键词:单层球面网壳屈曲分析稳定沈阳沈北新区市民活动中心单层球壳,直径为80m、矢高为68米的单层短程线型球,杆件采用圆钢管,主要规格为圆管Φ159×5,Φ180×6,Φ219×8,Φ245×12,Φ299×14。
材料弹性模量,剪切模量,网壳仅承受竖向和水平荷载,制作情况为周边铰接,网壳恒荷载为:1kN,风荷载为:3kN,杆件均采用梁单元。
第一步:建立模型短程线球面网壳是由正20面体在球面上划分网格,每一个平面为正三角形,把球面划分为20个等边球面三角形。
在实际工程中,正20面体的边长太大,需要再划分。
再划分后杆件的长度都有微小差异。
本文主要对每边划分成了12份。
该结构建模型采用软件autoCAD。
第二步:定义杆件将CAD建完的模型导入midas软件,将杆件定义截面、材质。
第三步:添加荷载荷载均为集中荷载:恒荷载为1kN;风荷载为3kN。
第四步:计算分析添加荷载组合,进行分析。
进行屈曲分析设置:模态数为6,屈曲分析荷载工况考虑恒荷载和风荷载。
运行分析。
第五部:查看结果(由于篇幅有限,现只给前三个模态)(如图1)第一模态(临界荷载系数=26.9)第二模态(临界荷载系数=26.9)(如图2)第三模态(临界荷载系数=28.8)(如图3)结论:根据以上分析的结果我们不难判断出结构的薄弱区,然后采取相应的办法和措施去处理。
Midas Gen 学习总结一、YJK 导入gen(详见“YJK 模型转midas 模型程序功能与使用”)1.版本选择选择版本V7.30,YJK 中的地震反应谱函数和反应谱工况的相关内容不转换V8.00 则进行转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas 工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK 完全一致,不需要在gen 中再将荷载和自重转换为质量。
建议取此选项。
Midas 自算:查看midas 工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK 定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas 的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4.楼板表现楼板分块:导入到midas 楼板为3 节点或4 节点楼板,需要在midas 划分网格。
YJK 网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas 网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas 楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas 楼面荷载分配到周边梁墙。
二、gen 建模、分析1、建模过程:(cad 导入法)① 前期准备:修改模型单位(mm)→ 定义材料、截面和厚度;② 构件建模:从cad 中导入梁→ 单元扩展生成柱墙→ 墙体分割与开洞→ 定义楼板类型(刚性板/弹性板);③ 施加荷载:定义静力荷载工况(恒、活、X/Y 风)→分配楼面荷载和施加梁荷载→ 定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④ 补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤ 运行分析:先设定特征值的振型数量,然后点击运行分析。
例题8 单层网壳屈曲分析
1
例题单层网壳屈曲分析
2
例题. 单层网壳屈曲分析概要
此例题将介绍利用midas Gen做网壳屈曲分析的整个过程,以及查看分析结果的方法。
该例题的建模利用midas Gen建模助手中的网壳建模助手,这里不再做介绍。
通过该例题希望用户能够了解做网壳屈曲分析的一般步骤和过程。
此例题的步骤如下:
1.简介
2.输入各种荷载
3.定义屈曲分析控制数据
4.考虑网壳初始缺陷
5.运行分析并查看结果
6.非线性屈曲分析
例题单层网壳屈曲分析1.简介
本例题网壳的几何形状、边界条件以及所使用的构件如图1所示。
荷载只考虑屋盖作用雪荷载的情况,遇到屋盖作用多种荷载的情况,只需按同样的方法加载即可。
(该例题数据仅供参考),荷载组合可以在后处理模式中输入。
➢荷载工况 1 –自重
➢荷载工况 2 –屋面恒荷载 2kN
➢荷载工况 3 –屋顶活荷载 2kN
图1 分析模型
3
例题单层网壳屈曲分析
4 2.输入各种荷载
1.设定荷载工况
在输入荷载之前先设定荷载工况。
1.点击主菜单选择荷载>静力荷载>建立荷载工况>静力荷载工况
2.在对话窗口中输入如图2,所示的荷载工况
图2 输入荷载工况
注:在极限状态设计法中屋面活荷载与普通层的活荷载的荷载分项系数不同,故荷载工况也需单独输入。
例题单层网壳屈曲分析2.输入自重
构件的材料和截面被定义后,程序将根据其体积和比重自动计算结构的自重。
通过在自重指令中输入系数可以定义其作用方向。
输入自重的步骤如下。
1.在功能列表(图3的 )中选择自重
2.在荷载工况名称选择栏选择‘自重’
3.在自重系数的Z中输入‘-1’
4.在操作选择栏点击键
1
图3 输入自重
5
例题单层网壳屈曲分析
6 3.输入屋面荷载
为计算初始缺陷,先计算在各荷载工况组合作用下的基本屈曲模态的屈曲向量,因此将屋面上所作用的恒荷载和活荷载施加到网壳上的各节点上。
图4 屋顶荷载单位力的施加
例题单层网壳屈曲分析3.定义屈曲分析控制数据
主菜单选择分析>分析控制>屈曲
定义屈曲分析控制数据,运行屈曲分析,找到网壳结构最低阶屈曲模态(第一屈曲模态)的屈曲向量,通过该模态的屈曲向量考虑结构的初始缺陷
图5 屈曲分析控制数据
确认,运行分析。
7
例题单层网壳屈曲分析
8 主菜单选择结果>模态>阵型>屈曲模态
图6 第一阶屈曲模态
图7 第二阶屈曲模态
例题单层网壳屈曲分析
4.考虑网壳初始缺陷
根据屈曲模态更新模型
1.选择计算初始缺陷的模态
2.按规范计算初始缺陷最大值(跨度的1/300)或比例系数
3.更新并保存模型
图8 计算初始缺陷更新模型
9
例题单层网壳屈曲分析
10
5.运行分析并查看结果
把考虑了初始缺陷的模型重新运行分析
1.运行分析查看结果:主菜单选择结果>模态>振型>屈曲模态查看图形结
果,如图10
2.查看结果:主菜单选择结果>表格>结果表格>屈曲模态查看临界荷载系
数和各屈曲向量,如图11
图9 屈曲分析控制数据
注:屈曲分析必须要有
可变荷载,否则不能分
析
例题单层网壳屈曲分析
图10 屈曲模态图形结果
注:可变荷载的临
界荷载系数
图11 临界荷载系数与屈曲向量
注:特征值屈曲因为无法反映结构的后屈曲性能,其值往往被高估,
因此有必要考虑结构的非线性效应
11
例题单层网壳屈曲分析
12 6.非线性屈曲分析
把考虑了初始缺陷的模型重新运行分析
1.自动生成荷载组合:主菜单选择结果>组合>荷载组合
2.建立或修改需要转换成非线性荷载工况的荷载组合,如图12
3.生成非线性荷载工况:主菜单选择荷载>静力荷载>建立荷载工况
>使用荷载组合,建立荷载工况,如图13
4.查看在该工况下线弹性分析位移最大的点,做非线性分析控制节点,如
图14
5.设定非线性控制数据,进行几何非线性分析(需先删除屈曲分析控制,
还需要取消建筑主控数据里“层构件剪力比”):主菜单选择分析>分
析控制>非线性,如图15
6.查看荷载-位移曲线:结果>时程>阶段/步骤时程图表,如图16
图12 建立需要转换成非线性荷载工况的荷载组合
系数可修改
建立需要转换成非线性
荷载工况的荷载组合
例题单层网壳屈曲分析
图13 由建立的荷载组合生成非线性荷载工况
注:以节点77号
做为控制节点
图14 确定非线性分析控制节点
13
例题单层网壳屈曲分析
14 图15 设定非线性分析控制数据
不断调试,直
到得到理想的
结果
例题单层网壳屈曲分析
结构失稳点
稳定系数图16 结构荷载-时间曲线图表
15。