水化热分析
- 格式:docx
- 大小:488.01 KB
- 文档页数:15
冬季施工环境下防冻水泥混凝土的水化热计算分析防冻水泥混凝土涉及两个重要参数,即水泥的水化热和外界环境的温度。
水泥的水化热是指水泥在水化过程中释放的热量,而外界环境的温度则决定了水泥混凝土的固化时间和强度发展。
在冬季施工环境中,外界环境温度较低,水泥混凝土的水化过程会受到影响。
首先,我们可以通过实验测定水泥的水化热。
实验可以采用绝热罐测定法或半绝热罐测定法。
通过在实验室中加热水泥,记录加热后水泥的温度变化情况,然后根据热传导定律计算得到水泥的水化热。
这一步骤可以得到水泥的水化热曲线。
然后,在施工现场,我们需要测定外界环境的温度。
可以利用数据记录仪等设备,在施工区域的不同位置记录环境温度,形成时间-温度曲线。
这一步骤可以得到外界环境温度的变化情况。
接下来,结合水泥的水化热曲线和外界环境温度曲线,即可进行防冻水泥混凝土的水化热计算。
具体计算过程如下:1.将外界环境温度曲线转换为每个时间点的温度数值,与水泥的水化热曲线进行对比。
2.找出外界温度曲线中,每个时间点对应的水泥水化热曲线的值。
3.将外界温度和水泥水化热曲线的温度差进行对比。
如果差值较大,说明水泥混凝土在该温度下可能会出现水化困难。
4.根据差值的大小,采取相应的措施。
如果差值较小,可以适当延长养护时间,以确保水泥混凝土的完全凝结。
如果差值较大,可以采取加热措施,提高水泥混凝土的温度。
通过防冻水泥混凝土的水化热计算分析,可以确保在冬季施工环境下水泥混凝土的水化过程能够进行良好,减少施工中可能出现的问题。
一、实验目的1. 了解水化热的概念和测定方法。
2. 通过实验,掌握测定水化热的基本原理和操作步骤。
3. 培养学生的实验操作技能和数据处理能力。
二、实验原理水化热是指在等压条件下,1 mol水与固体物质发生水合反应时,系统所吸收或释放的热量。
本实验采用量热法测定水化热,即通过测量反应过程中溶液温度的变化来计算水化热。
三、实验器材1. 量热器(500 mL)2. 温度计(0.1℃)3. 烧杯(100 mL)4. 电子天平(精确到0.0001 g)5. 玻璃棒6. 水化钙(Ca(OH)2)7. 蒸馏水8. 玻璃瓶(密封)四、实验步骤1. 准备工作:将量热器清洗干净,并用蒸馏水冲洗,确保无杂质。
将温度计插入量热器中,调整至室温。
2. 配制溶液:准确称取0.5 g水化钙(Ca(OH)2),置于100 mL烧杯中,加入适量蒸馏水,用玻璃棒搅拌溶解。
3. 测量初始温度:待溶液温度稳定后,记录量热器中溶液的初始温度。
4. 进行水化反应:将烧杯中的溶液倒入量热器中,立即密封。
观察温度计,记录水化反应过程中溶液的最高温度。
5. 测量反应后温度:待溶液温度稳定后,记录量热器中溶液的反应后温度。
6. 数据处理:计算水化热ΔH,公式如下:ΔH = (m × c × ΔT) / n其中,m为水化钙的质量(g),c为水的比热容(4.18 J/g·℃),ΔT为反应过程中溶液温度的变化(℃),n为水化钙的物质的量(mol)。
五、实验结果与分析1. 实验数据:水化钙质量:0.5 g初始温度:20.0℃反应后温度:22.5℃水的比热容:4.18 J/g·℃水化钙的物质的量:0.005 mol计算水化热:ΔH = (0.5 × 4.18 × (22.5 - 20.0)) / 0.005= 84.2 J/mol2. 分析与讨论:通过实验,测得水化钙与水反应的水化热为84.2 J/mol。
混凝土水化热试验研究混凝土是一种重要的建筑材料,广泛应用于各类建筑结构中。
在混凝土制作过程中,常常会出现水化热的问题。
水化热是指混凝土在硬化过程中由于水化反应释放的热量,其大小与混凝土中水化反应的速率有关。
由于混凝土的热胀冷缩性能较差,不良的水化热会导致混凝土表面开裂、变形等问题,甚至可能影响混凝土的力学性能和耐久性。
为了研究混凝土的水化热问题,通常采用混凝土水化热试验。
混凝土水化热试验的目的是通过模拟混凝土硬化过程中的水化反应,测定混凝土在不同时间段内的水化热释放量,以及分析水化热对混凝土性能的影响。
下面将从试验样品制备、试验方法与步骤、试验结果分析三个方面进行混凝土水化热试验研究的探讨。
首先,试验样品的制备是混凝土水化热试验的关键环节之一、为了确保试验结果的准确性和可靠性,试验样品应该符合相关标准要求,并且具备代表性。
混凝土水化热试验通常采用圆柱形样品,直径为100mm,高度为200mm。
制备混凝土样品时,应注意控制原材料配合比、搅拌时间和坍落度等因素,以保证样品的一致性和可比性。
其次,混凝土水化热试验的方法与步骤主要包括试验装置的选择和试验条件的确定。
常见的试验装置有绝热式试验装置和非绝热式试验装置。
绝热式试验装置适用于研究混凝土水化热的总释放量,而非绝热式试验装置适用于研究混凝土水化热的释放速率。
试验条件的确定需要考虑混凝土类型、环境温度和湿度等因素,以保证试验结果的可靠性和可比性。
最后,根据混凝土水化热试验的结果进行分析。
试验结果通常包括水化热释放曲线和水化热释放量。
通过分析水化热释放曲线,可以确定混凝土水化反应的早期和后期活度,评估混凝土的适用性。
通过分析水化热释放量,可以评估混凝土的热胀冷缩性能,判断混凝土表面开裂的潜在风险。
综上所述,混凝土水化热试验是研究混凝土性能的重要手段。
通过混凝土水化热试验,可以评估混凝土的热胀冷缩性能和表面开裂的风险,为混凝土的设计和应用提供参考依据。
同时,混凝土水化热试验也为混凝土的改性和优化提供了理论基础和技术支持。
课题背景及任务来源随着我国交通事业的迅速发展,大跨度桥梁大量出现,在桥梁中大体积混凝土承台、锚碇、塔等亦随之大量出现。
目前所生产的水泥放热速度较过去大为提高,这使得大体积混凝土的温度裂缝问题日益突出,已成为普遍性的问题。
大体积混凝土在固化过程中释放的水化热会产生较大的温度变化和约束作用,由此而产生的温差和温度应力是导致混凝土出现裂缝的主要因素,从而影响结构的整体性、防水性和耐久性,成为结构的隐患。
因此大体积混凝土在施工中必须考虑裂缝控制。
大体积混凝土温度裂缝问题十分复杂,涉及到结构、建筑材料、施工、环境等多方面因素,工程建设领域目前对桥梁中所使用的大体积混凝土的研究还不够深入、全面,相关的规范条文还不够完善,对很多工程实践中的问题只能依靠经验处理,缺乏适当的理论依据,这会造成许多不必要的人力、物力、财力的浪费,大体积混凝土施工质量控制的结果也不很理想。
在总结大体积混凝土温度裂缝产生的原因的基础上,本文结合邕江四线特大桥,以及对承台试块的模拟试验,研究分析了大体积混凝土内部温度场和温度应力变化的规律和工程中采用的温控措施的实际效果。
本文在大体积混凝土工程中所采用的温度监测和裂缝控制措施,为今后同类工程施工提供了有用信息,也为今后开展深入的理论研究提供了试验和理论参考依据。
组成结构通过midas来模拟大体积混凝土在水化热情况下温度与应力应变的变化,并且通过不加冷水管和加冷水管的情况下进行对比分析,并得出相应的结果。
功能与技术能够直观的看到混凝土内部在水化热的情况下温度随时间的变化,并且通过精确的数值进行分析。
从而使我们对水化热有进一步的认识,进而通过温度变化趋势分析混凝土可能会产生的裂缝的位置,从而提前做好防护措施,尽可能是裂缝降到最小。
成果的主要特点通过对大体积混凝土水化热的分析,我们能更加深入的了解混凝土内部温度度的变化情况,从而对混凝土浇筑﹑养护﹑防护提前做出应对措施。
尤其是咋此过程中温度对其裂缝的影响。
混凝土的水化热分析混凝土是广泛应用于建筑和基础设施领域的一种常见材料。
在混凝土的制作过程中,水化反应是一个关键的过程,其产生的水化热对混凝土的性能和耐久性有着重要影响。
本文将对混凝土的水化热进行分析,并探讨其对混凝土性能的影响。
一、混凝土的水化过程混凝土的水化过程是指水泥与水反应生成水化产物的过程。
水化过程是一个复杂的化学反应过程,涉及到水化产物的形成和结构的演变。
一般来说,混凝土的水化过程可以分为初期水化和后期水化两个阶段。
1. 初期水化阶段初期水化阶段指的是混凝土刚刚形成后的几天到几周的时间段。
在此阶段,混凝土内的水化反应比较剧烈,产生大量的水化热。
这是因为水化反应速度较快,水泥中的矿物质与水迅速反应生成水化产物。
初期水化阶段对混凝土的强度发展有着重要影响。
2. 后期水化阶段后期水化阶段是指混凝土中水化反应逐渐减慢的阶段。
在此阶段,水化反应的速率逐渐降低,混凝土中的水化产物逐渐形成并发展。
尽管水化反应速率较慢,但仍然会持续一段时间。
后期水化阶段对混凝土的持久性和耐久性具有重要意义。
二、水化热对混凝土的影响混凝土的水化反应产生的热量是不可避免的。
这种水化热会对混凝土的性能和耐久性产生影响。
1. 早期温升在初期水化阶段,大量的水化热会产生,导致混凝土温度升高。
这种早期温升对混凝土的强度发展和导热性能有着重要的影响。
高温可能导致混凝土内的微观孔隙产生闭合,从而改变了混凝土的结构和性能。
2. 收缩和开裂水化热引起的混凝土温度升高可能导致混凝土在水化过程中产生收缩,进而导致混凝土开裂。
这种收缩和开裂现象对混凝土的耐久性和外观质量产生负面影响。
因此,对混凝土的水化热进行合理控制,是减少混凝土开裂的关键。
3. 内应力和变形水化热引起的温度升高还会导致混凝土内部产生应力和变形。
这些应力和变形可能对混凝土的结构稳定性和力学性能造成影响。
因此,在设计和制造混凝土结构时,需要充分考虑水化热对结构的影响,并采取适当的措施来降低内应力和变形。
水泥水化热研究与分析作者:鲍安娜来源:《商情》2014年第33期在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。
水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。
针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据经验讲述了几种降低水泥水化热的措施。
水泥水化热措施配合比增加热量随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。
水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。
若养护不当,表面裂缝将会进一步发展成深层裂缝。
在受地基约束的部位,将会产生较小的压应力。
因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。
由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。
一、水化热的计算与分析1、水泥水化热分析水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。
这些热值的代数和就是水泥在任何龄期下的水化热。
国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。
水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。
课题背景及任务来源随着我国交通事业的迅速发展,大跨度桥梁大量出现,在桥梁中大体积混凝土承台、锚碇、塔等亦随之大量出现。
目前所生产的水泥放热速度较过去大为提高,这使得大体积混凝土的温度裂缝问题日益突出,已成为普遍性的问题。
大体积混凝土在固化过程中释放的水化热会产生较大的温度变化和约束作用,由此而产生的温差和温度应力是导致混凝土出现裂缝的主要因素,从而影响结构的整体性、防水性和耐久性,成为结构的隐患。
因此大体积混凝土在施工中必须考虑裂缝控制。
大体积混凝土温度裂缝问题十分复杂,涉及到结构、建筑材料、施工、环境等多方面因素,工程建设领域目前对桥梁中所使用的大体积混凝土的研究还不够深入、全面,相关的规范条文还不够完善,对很多工程实践中的问题只能依靠经验处理,缺乏适当的理论依据,这会造成许多不必要的人力、物力、财力的浪费,大体积混凝土施工质量控制的结果也不很理想。
在总结大体积混凝土温度裂缝产生的原因的基础上,本文结合邕江四线特大桥,以及对承台试块的模拟试验,研究分析了大体积混凝土内部温度场和温度应力变化的规律和工程中采用的温控措施的实际效果。
本文在大体积混凝土工程中所采用的温度监测和裂缝控制措施,为今后同类工程施工提供了有用信息,也为今后开展深入的理论研究提供了试验和理论参考依据。
组成结构通过midas来模拟大体积混凝土在水化热情况下温度与应力应变的变化,并且通过不加冷水管和加冷水管的情况下进行对比分析,并得出相应的结果。
功能与技术能够直观的看到混凝土内部在水化热的情况下温度随时间的变化,并且通过精确的数值进行分析。
从而使我们对水化热有进一步的认识,进而通过温度变化趋势分析混凝土可能会产生的裂缝的位置,从而提前做好防护措施,尽可能是裂缝降到最小。
成果的主要特点通过对大体积混凝土水化热的分析,我们能更加深入的了解混凝土内部温度度的变化情况,从而对混凝土浇筑﹑养护﹑防护提前做出应对措施。
尤其是咋此过程中温度对其裂缝的影响。
新佳田铁路立交特大桥主墩承台水化热分析报告1、工程概况某立交特大桥主墩承台有两种类型,尺寸长⨯宽⨯高分别为1220⨯1320⨯350(cm)(承台1)和1220⨯1670⨯350(cm)(承台2),混凝土采用C40。
混凝土厚度达3.5m,可能会因混凝土中的凝胶材料水化热引起的温度变化和收缩而导致有害裂缝产生,属于规范规定的大体积混凝土。
2参数分析采用有限元软件Midas Civil对承台大体积混凝土进行水化热计算。
大体积混凝土浇筑后的温度变化与混凝土配合比、混凝土的入模温度、混凝土与外部的热交换、内部冷却水管的布置等多种因素有关。
此工程为对称的立方体结构,为节约计算时间、提高计算效率,承台按照1/2模型进行计算。
取两个承台中较大承台进行分析(承台2)。
为了准确模拟承台向地基热传导过程,模型包括承台部分以及包括地基部分,其中地基向承台外拓展3m的长度,厚3m,有限元模型如图2-1所示。
图2-1 1/2承台有限元模型(承台2)2.1 边界设置1、热分析边界(1)承台顶板和侧面施加相应的对流边界,对流系数大小和风速、保温层以及模板有关。
不同边界设置对应的对流系数如表2-1。
表2-1 不同情况对应对流系数表(2)大气温度没有实测数据,根据最近气温情况取固定值15℃。
地基土侧面、底面以及除了和承台接触部分的顶面施加固定温度,固定温度取与大气平均温度一致,为15℃。
2、力学边界地基土侧面、底面施加固定约束,结构对称面约束对应方向的法向自由度。
2.2计算参数混凝土的绝热升温K 可通过式(2.1)计算。
()0Q W kF K c ρ+=(2.1)式中:Q 0——水泥最终水化热,kJ/kg ,取377; W ——单位体积混凝土中水泥用量,kg/m 3; F ——单位体积混凝土中混合材料用量,kg/m 3;k ——混合材料水化热折减系数,粉煤灰取0.25,矿粉取0.463; c ——混凝土比热kJ/(kg ℃),取0.96; ρ——混凝土密度,kg/m 3,取2500。
例题大体积混凝土水化热分析2 例题. 大体积混凝土水化热分析概要此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料3.定义材料时间依存特性4.建立实体模型5.组的定义6.定义边界条件7.输入水化热分析控制数据8.输入环境温度9.输入对流函数10.定义单元对流边界11.定义固定温度12.输入热源函数及分配热源13.输入管冷数据14.定义施工阶段15.运行分析16.查看结果例题大体积混凝土水化热分析1.简要本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。
例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。
(该例题数据仅供参考)基本数据如下:地基:17.6 x 12.8 x 2.4 m板式基础:11.2 x 8.0 x 1.8 m水泥种类:低热硅酸盐水泥(Type IV)板式基础地基1/4模型图1 分析模型3例题大体积混凝土水化热分析4 2.设定操作环境及定义材料在建立模型之前先设定环境及定义材料1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>单位体系:长度 m,力 kN图2 定义单位体系4.主菜单选择模型>材料和截面特性>材料:添加:定义新材料材料号:1 名称:基础规范:GB(RC)混凝土:C30 材料类型:各向同性材料号:2 名称:地基设计类型:用户定义材料类型:各向同性弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:185.主菜单选择工具>单位体系:长度 m,力 kgf,热度 kcal6.主菜单选择模型>材料和截面特性>材料:注:也可以通过程序右下角随时更改单位。
例题 大体积混凝土水化热分析5编辑:修改材料热特性数据 基础 比热:0.25 热传导率:2.3 地基 比热:0.2 热传导率:1.7图3 定义材料3.定义材料时间依存特性1. 主菜单选择 模型>材料和截面特性>时间依存性材料(抗压强度):添加:定义基础的时间依存特性名称:强度发展 类型:设计规范 规范:ACI混凝土28天抗压强度:3e4 KN/m 2混凝土抗压强度系数a 4.5 b 0.95 2. 主菜单选择 模型>材料和截面特性>时间依存性材料连接:强度进展:强度发展 选择指定的材料:1.基础 添加例题大体积混凝土水化热分析6图4 定义材料时间依存特性图5 时间依存性材料连接4.建立实体模型1.主菜单选择模型>节点>建立:坐标1(0 0 0) 2(8.8 0 0) 3(8.8 6.4 0) 4(0 6.4 0)2.主菜单选择主菜单选择模型>单元>建立:单元类型:板 4节点类型:厚板材料:1:基础厚度:1节点连接:1 2 3 4注:材料的收缩徐变特性在水化热分析控制中定义。
midasfea-水化热参数化分析一.概要1.水化热分析浇筑混凝土时,水泥在水化过程中产生大量热量会使混凝土的温度升高。
虽然随时间的推移混凝土的温度会慢慢冷却,但结构各个位置的温度下降速度不均匀,结构不同位置将发生相对温差,此温差会使混凝土发生温度应力。
温度裂缝发生类型混凝土浇筑初期,因内部温度升高将发生膨胀,但混凝土表面的温度下降较快,相对应变较小,从而使混凝土表面产生拉应力。
混凝土内部不同的温度分布引起的不同的体积变化而导致的应力称为内部约束应力。
此类拉应力裂缝主要发生在构件尺寸比较大的结构。
|内部约束产生的裂缝(放热时)||外部约束产生的裂缝(冷却时)|混凝土在高温状态下温度下降会发生收缩,但受到与其接触的已浇筑混凝土或者地基等的约束而产生的拉力,像这样变形受外部边界约束的状态称为外部约束。
此类应力主要发生在像墙这样约束度比较大的结构中。
利用温度裂缝指数预测温度裂缝韩国混凝土规范中使用温度裂缝指数(抗拉强度与发生的温度应力之比)i值预测是否发生裂缝。
一般采用下面的值。
因此通过查看温度分布可以看出输入数据是否有误,如果温度分布没有问题可说明输出的应力结果也是正确的。
水化热分析必须进行反复计算大体积混凝土的温度裂缝可以利用温输入混凝土的散热特性及浇筑条件等度裂缝指数(CrackRatio,Icr)来验算。
温度裂缝指数要满足结构的重要混凝土的温度性、功能、环境条件等因素的要求。
温度裂缝指数受水泥的类型、浇筑温度、养生方法等多因素的影响,所以应力需要对多种条件进行反复分析以找出最佳的浇筑方法。
No裂缝指数Ye参数化分析功能END为比较多种条件的分析结果需要建立多个模型进行分析,分析结束后需要整理大量的分析结果、还要进行结果保存、对比等工作。
通过FEA的水化热参数化分析功能,可以实现一个模型多种条件分析。
可以大大减少单纯繁琐的反复分析过程,从而提高工作效率。
参数化分析的使用方法首先建立一个基本模型,在基本模型里使用替换变量的方式定义分析工况。
水化热施工阶段分析1目录概要3分析模型截面数据 / 5材料热特性值 / 7结构建模8设定建模环境 / 8定义构件材料 / 9定义时间依存材料 / 10连接一般材料与时间依存材料 / 11建立结构模型 / 12输入水化热分析数据25水化热分析控制 / 25输入大气温度 / 26输入对流系数 / 27定义固定温度条件 / 31定义放热函数 / 32定义施工阶段 / 34运行结构分析37查看分析结果37查看温度变化 / 38查看应力变化 / 40查看时程图形 / 42使用动画查看结果 / 46水化热施工阶段分析概要目前大体积混凝土、高强混凝土以及耐久性混凝土正被广泛应用于实际工程中,由水化热引起的温度裂缝也逐渐成为设计人员所关注的课题。
水化热引起的温度裂缝大多发生在结构施工初期宽度较大且贯通裂缝比较多,对结构的耐久性、透水性会产生严重影响,因此在设计、施工以及监理阶段需要详细验算水化热引起的温度应力。
另外,大体积混凝土结构是分阶段浇筑的,分阶段浇筑的混凝土具有不同的混凝土材龄和热特性值,所以必须分施工阶段做水化热分析。
因混凝土水化热引起的温度应力大体分为内部约束应力和外部约束应力。
内部约束应力是因为混凝土温度分布的不平衡约束了结构体积的膨胀而发生的应力。
在水化反应初期,混凝土表面温度和内部温度差使混凝土表面发生张拉应力;在温度下降阶段因为内部收缩变形大于表面,所以在混凝土内部发生张拉应力。
内部约束应力的大小与结构物内外温度差成比例。
外部约束应力是因为已浇筑的混凝土或地基表面约束了正在浇筑的混凝土的温度变形而发生的应力。
外部约束的影响与接触表面的宽度和外部约束刚度有关。
水化热分析包括热传导分析(Heat Transfer Analysis)和温度应力分析(Thermal Stress Analysis)两个过程。
热传导分析是计算节点温度随时间的变化量,即计算因水泥水合过程中发生的放热、对流、传导引起的节点温度变化。
水泥水化热测定方法水泥水化热测定方法是用于测定水泥在水化反应过程中释放的热量的一种方法。
水化热是指水泥和水之间发生水化反应时,放出的热量。
了解水泥的水化热可以帮助评估水泥的水化性能和反应速度,对于工程建设中对水泥的性能要求和稳定性有很重要的意义。
下面将详细介绍几种常见的水泥水化热测定方法。
1.热量平衡法热量平衡法是一种常用的水泥水化热测定方法。
该方法通过测量反应体系的温度变化来计算水化热。
实验过程中,将水泥样品与适量的水混合,并将反应体系置于恒定温度环境中,利用热量计或热敏电阻来测量反应体系的温度变化。
通过分析温度变化曲线,可以计算出反应体系在水化反应过程中释放的热量。
2.球罩法球罩法是一种通过测量水泥水化热释放速率的方法。
实验过程中,将水泥样品与适量的水混合,并将反应体系置于一个密闭的球形罩体中。
罩体内设有传感器,用于测量反应体系的温度变化,并通过连接的计算机实时记录数据。
通过分析温度变化曲线,可以计算出水化反应过程中的热释放速率。
3.绝热孔温法绝热孔温法是一种通过测量反应体系中其中一特定位置的温度变化来计算水泥水化热的方法。
实验过程中,将水泥样品与适量的水混合,并将反应体系置于一个绝热孔温仪中。
孔温仪的仪表记录器可实时记录不同位置的温度变化。
通过分析温度变化曲线,可以计算出反应体系的水化热。
需要注意的是,在进行水泥水化热测定实验时,应保持实验条件的稳定性,如恒定的温度、适量的水泥和水的比例等。
同时,还需注意避免外界环境的影响,如温度变化、湿度等。
总结起来,水泥水化热测定方法包括热量平衡法、球罩法和绝热孔温法等。
这些方法通过测量反应体系的温度变化来计算水泥在水化反应过程中释放的热量。
这些方法可以帮助评估水泥的水化性能和反应速度,对于工程建设中对水泥的性能要求和稳定性有重要的意义。
水泥水化热测定方法
水泥水化热的测定方法是通过热量计来测定水泥在水化过程中释放的热能。
测定方法如下:
1. 准备水泥试样:从水泥样品中取一定重量的粉末,并用干净的玻璃棒将其均匀地混合。
2. 准备热量计:使用热量计装置,如孔式热量计或间接式热量计。
确保热量计设备干净,并按照设备使用说明进行校准。
3. 加入水:在热量计器中加入一定量的水,确保水的温度稳定并记录水的初始温度。
4. 将试样加入热量计中:将混合好的水泥试样小心地加入热量计中,注意不要使温度发生明显的变化。
5. 开始测量:将热量计器封闭,并开始记录试样水化过程中释放的热量变化。
记录一定时间间隔内的温度变化,直到水泥试样的水化反应趋于完全结束。
6. 分析结果:根据测量得到的温度变化曲线,可以计算出水泥试样在水化过程中释放的热能。
需要注意的是,在进行水泥水化热测定时,应尽量使测量环境温度稳定,并避免外界因素对测量结果的影响。
同时,在进行测量前应先对热量计进行校准和漂移测试,确保测量结果的准确性。
水化热测定方法以水化热测定方法为标题,我们将探讨一种用于测量物质水合反应热的实验方法。
水化热是指物质在与水反应时释放或吸收的热量,它是很多化学反应中的重要参数。
通过测定水化热,我们可以了解物质与水反应的热力学性质,进而研究物质的结构和性质。
1. 实验原理水化热测定方法基于热力学第一定律,即能量守恒定律。
当物质与水反应时,反应过程中释放或吸收的热量可以通过测量反应前后温度变化来确定。
在实验中,我们可以使用恒温计量热仪(也称为热卡计)来测量反应过程中的温度变化。
2. 实验步骤我们需要准备好实验器材和试剂。
通常情况下,我们会选择精确称量的试剂,以保证实验结果的准确性。
接下来,我们将试剂溶解在适量的水中,使其完全溶解。
在实验过程中,我们需要控制反应的温度,以确保测量结果的准确性。
在实验开始前,我们需要将热卡计校准至零点。
然后,我们将试剂溶液注入热卡计中,并立即开始记录温度变化。
实验过程中,我们需要不断搅拌溶液,以确保反应的均匀进行。
当温度变化趋于平稳时,我们可以停止记录,并根据实验数据计算出水化热的值。
3. 实验数据处理在实验数据处理中,我们需要考虑到热卡计的热容和试剂的质量。
通过测量热卡计的热容,我们可以将实验过程中的温度变化转化为热量的变化。
同时,我们还需要考虑到试剂的质量,以确定单位质量试剂的水化热。
通过实验数据处理,我们可以得到物质与水反应的水化热值。
这个值可以告诉我们物质与水反应时释放或吸收的热量。
通过进一步的分析,我们可以了解物质的热力学性质,比如反应的放热或吸热性质。
4. 应用领域水化热测定方法在化学研究和工业生产中具有广泛的应用。
在研究方面,水化热可以帮助我们了解物质的结构和性质,从而推断化学反应的机理。
在工业生产中,水化热可以用于优化反应条件,提高反应的效率和产率。
在药物研发和能源领域,水化热测定方法也发挥着重要的作用。
通过测定药物与溶液中的相互作用,我们可以了解药物的溶解性和稳定性,从而指导药物的配方设计。
大体积混凝土水化热温度场数值分析在现代建筑工程中,大体积混凝土的应用越来越广泛。
然而,大体积混凝土在水化过程中产生的大量热量,若不能得到有效控制,会导致混凝土内部温度过高,从而引发裂缝等质量问题。
因此,对大体积混凝土水化热温度场进行数值分析具有重要的意义。
大体积混凝土的特点是体积大、结构厚实。
在水泥水化反应过程中,会释放出大量的热量。
由于混凝土的导热性能较差,热量在内部积聚,导致内部温度迅速升高。
而混凝土表面与外界环境接触,散热较快,这样就形成了较大的内外温差。
当温差超过一定限度时,混凝土内部产生的拉应力超过其抗拉强度,就会产生裂缝。
为了准确分析大体积混凝土水化热温度场,需要建立相应的数学模型。
这通常涉及到热传导方程的应用。
热传导方程描述了热量在物体内部的传递规律。
在大体积混凝土中,考虑到混凝土的热物理性能参数(如导热系数、比热容等)随温度的变化,以及边界条件(如混凝土表面与空气的热交换、与地基的接触热阻等)的复杂性,模型的建立需要综合考虑多种因素。
在数值分析中,常用的方法有限元法和有限差分法。
有限元法将大体积混凝土离散为若干个小单元,通过求解每个单元的热平衡方程,进而得到整个结构的温度场分布。
有限差分法则是将求解区域划分为网格,通过差分近似代替导数,求解热传导方程。
以一个实际的大体积混凝土基础为例。
假设该基础尺寸为长20 米、宽 15 米、高 3 米,混凝土的初始浇筑温度为 20℃,水泥用量为350kg/m³。
采用有限元软件进行数值模拟,输入混凝土的热物理性能参数、边界条件和水化热生成函数等。
模拟结果显示,在混凝土浇筑后的最初几天内,内部温度迅速上升。
在第三天左右达到峰值,内部最高温度可能超过 70℃。
而混凝土表面温度相对较低,内外温差较大。
随着时间的推移,内部热量逐渐向外扩散,温度逐渐降低,但温差仍然存在。
通过对数值分析结果的研究,可以采取相应的温控措施。
例如,在混凝土中埋设冷却水管,通过通水带走部分热量;优化混凝土配合比,减少水泥用量,降低水化热;在混凝土表面覆盖保温材料,减小表面散热速度等。
水泥水化热测定方法水泥的水化反应是指水泥在水的存在下发生的反应,其中水泥与水发生化学反应生成水硬性固体,即水泥石。
水泥水化热是指在水泥水化反应过程中放出的热量。
水泥水化热的测定是水泥基材料研究领域中非常重要的一个实验方法,在水泥材料的设计、配方,以及性能等方面有着重要的意义。
下面我们就介绍一下水泥水化热的测定方法。
一、实验目的1.了解水泥与水发生反应后放出的热量;3.研究不同水泥水化热的变化规律及其影响因素。
二、实验原理在水泥的水化反应过程中,水泥与水发生化学反应后生成水泥石。
在此过程中,水泥的水化热是通过测定水泥与水反应中所放出的热量来确定的。
水泥水化热实验中主要用到反应热学的原理,根据热量守恒定律,水泥与水反应的过程中,放出的热量应该等于吸收的热量,即:Qc = QpQc是水泥的水化热,单位为焦耳(J);水泥水化热实验中,一般采用大气压下的绝热式容器来进行测定。
在实验过程中,放置水和水泥试样的绝热压力容器中,通过测量水泵冷却水的温升来测定水泥水化过程中放出的热量。
三、实验仪器和材料1.水泥:普通硅酸盐水泥;2.水:蒸馏水或去离子水;3.实验设备:加热水浴器、称量仪、绝热压力容器、热电偶、数字温度计、水泵和计时器等。
四、实验步骤1.取适量的水泥,在研钵中研磨10 min左右,筛过80目筛网备用;3.将适量的水加入绝热压力容器中,再加入研磨后的水泥,混合均匀;4.将绝热压力容器放入加热水浴器中,加热至恒定温度,并在加热过程中不断搅拌试样;5.结束加热后,测定温度计初值,并恒速搅拌计时;6.同时启动水泵电机,将冷却水从水泵进入绝热压力容器中,观察水的温度变化,并记录变化过程中的时间、温度值;7.完成实验后,根据实验数据计算水化热;8.重复进行同样的实验两次或三次,得到平均值。
五、实验记录和结果分析1.实验记录在实验过程中,需要记录每次实验开始时的时间和温度,以及结束时的时间和温度,实验的热化曲线等数据。
第一章设计说明第二章大体积混凝土承台水化热有限元分析2.1 概论2.1.1 大体积混凝土定义目前国际上对大体积混凝土仍无一个统一的定义。
就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。
又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。
而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m 的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。
由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。
2.1.2 大体积混凝土温度裂缝成因施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。
大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多, 而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。
由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。
因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。
2.1.3 本章研究的主要内容(一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿真水化热计算。
(二)对其水化热进行参数分析。
2.2 承台仿真分析2.2.1 工程基本概况松柏山水库特大桥位于松柏山水库上游,为贵安新区黔中大道(三期)道路工程的一个控制性桥梁。
左、右幅主桥均采用100+180+100m(桥梁中心线对应跨径)变截面预应力混凝土连续刚构桥,墩顶梁高12.0m,跨中梁高4.2m,采用挂篮悬浇施工。
其主墩承台为C30混凝土,每个承台设置5层冷却管,承台尺寸为17.1m×17.1m×5m,属于典型的大体积混凝土结构,主墩承台构造简图如下。
17101710立面平面图2.2.1 主墩承台平面、立面示意图(单位:cm )2.2.2 基本计算数据2.2.3 模型的建立由于承台模型具有对称性,取1/4模型进行建模和分析,既可以提高建模速度、缩短分析时间,又方便查看内部温度分布及应力发生状况。
为了模拟混凝土的热量传递给地基的情况,将地基模拟成具有一定比热和热传导率的结构;为了更准确的反应结构内部的温度、应力变化,分割单元时适当细分。
建模时在地基基础施加位移约束,在混凝土表面施加对流边界和环境温度条。
1/4三维模型共计节点6490个、单元5356个,采用实体单元,如图2.2.2所示。
图2.2.2 1/4承台三维立体模型图(上层为承台,下层为地基基础)2.2.4 计算工况与计算结果(1)工况1:一次性浇筑,不布设冷却管。
(2)工况2:按照设计文件布设冷却管。
以下给出代表性温度场、应力场计算结果(图2.2.3~2.2.10),分两种工况给出图2.2.3 工况1承台内部中心节点温度时图2.2.4 工况2承台内部中心节点温度时程曲线图2.2.5 工况1承台内部中心节点应力时程曲线图2.2.6 工况2承台内部中心节点应力时程曲线图2.2.7 工况1承台内部水化热温度场云图(60h)图2.2.8 工况2承台内部水化热温度场云图(60h)图2.2.9 工况1承台内部水化热温度场云图(170h)图2.2.10 工况2承台内部水化热温度场云图(170h)由上述计算结果简要分析如下:(1)未布设冷却管时,承台内部最高水化热温度达66.6℃,持续时间长;而布设冷却管后承台内部最高水化热温度为53.1℃,相比之下降低了13.5℃,且持续时间较短。
(2)未布设冷却管时,由于水化热温升较高,导致其温度应力超过混凝土即时的材料强度,如不采取防裂措施,混凝土会产生温度裂缝;而布设冷却管时,相比下温升较低,导致其温度应力小于混凝土即时的材料强度,混凝土不会开裂。
(3)采用预埋冷却管方式施工,可以较好的降低水化热温度,减小混凝土内表面温差,有效的防止温度裂缝的产生,但应做好养护措施。
2.2.5 实测值与理论计算值对比分析选取松柏山水库特大桥右幅8#主墩承台内部中心点进行分析。
现场对右幅8# 主墩承台进行了连续14天的观测,承台混凝土内部温度通过预埋温度传感器测试,大气温度、承台表面温度及冷却管进出水口温度采用点式温度计观测。
承台中心温度实测值与理论值对比图如下。
图2.2.11 中心测点实测值与计算结果相比从图2.2.11可看出,计算结果最高温度为53.1℃,出现在混凝土浇筑后60h;现场实测最高温度为53.2℃,出现在混凝土浇筑后64h;由于现场环境突变等因素的影响,两者曲线不可能完全一致,但计算温度曲线与实测温度曲线发展趋势相同,并且绝大部分测点计算结果与实测值相差不超过2℃。
因此,承台仿真分析具有一定参考性和可靠性。
2.3 水化热参数分析除了上述有无冷却管施工对水化热有影响外,还有很多因素与大体积混凝土的水化热密切相关,如内部因素有水泥类型、用量等,外部因素有入模温度、冷却管水温等。
以上述承台为分析模型,运用MADIS有限元软件对影响水化热的主要参数进行分析。
2.3.1 水泥类型与用量水泥是水化热产生的根本原因,分别采用普通硅酸盐水泥、中热硅酸盐水泥、高早强硅酸盐水泥、高炉矿渣水泥、粉煤灰水泥这5种水泥进行定量分析;分别取水泥用量300kg、325kg、350kg、375kg、400kg进行定量分析。
取承台内部最大温升进行比较,分析结果见下图。
图2.3.1 水泥类型与水泥用量温升曲线由图2.3.1可知,在其余因素不变,只改变水泥用量的情况下,混凝土的最大温升与水泥用量成正比。
温升最大的高早强硅酸盐水泥在水泥用量300kg时承台中心点温升45.4℃,水泥用量达到400kg时承台中心点温升59.2℃,差别达13.8℃,每增加25kg水泥用量承台中心点温升3.5℃;温升最小的中热硅酸盐水泥在水泥用量300kg时承台中心点温升30℃,水泥用量达到400kg时承台中心点温升39.5℃,差别达9.5℃,每增加25kg水泥用量承台中心点温升2.5℃。
由图2.3.1可知,在其余因素不变,只改变水泥品种的情况下,使用低热品种水泥比使用高热品种水泥的最大温升要小很多。
同样水泥用量为300kg的情况下,使用中热硅酸盐水泥其承台中心点温升30℃,而使用高早强硅酸盐水泥其承台中心点温升45.4℃,两者温升差值较大。
由以上可知,混凝土的绝热温升与水泥的用量成正比,而且不同水泥品种对混凝土水化热影响很大。
因此,在满足混凝土设计强度的前提下,水泥应采用低热水泥并尽量减少水泥用量,可适当掺入粉煤灰等活性矿物外加剂,以此来降低水化热,防止温度裂缝的产生。
2.3.2 入模温度混凝土入模温度也称浇注温度,是混凝土水化热温升的基础。
在其它条件不变的情况,分别改变入模温度10℃、20℃、30℃,运用迈达斯分析运行求得3种入模温度下的承台内部最高温度,结果见下图。
图2.3.2 3种入模温度下的温度峰值变化曲线由图2.3.2可看出,入模温度越高,中心温度值也越高。
30℃下的入模温度温升比10℃下的入模温度温升高10.5℃。
由以上可知,混凝土入模温度越高,它的热峰值也必然越高,对结构内表面温差的影响也越大。
因此,有效降低入模温度,对控制混凝土最高温升,减小结构内表面温差起着至关重要的作用,但混凝土入模温度最低不宜低于5℃,在5℃ 下水泥的水化热将停止反应,混凝土强度将不会增加,所以在冬季施工时混凝土应加入防冻剂。
结合理论与现场实际观测,入模温度控制在15~20℃较好。
2.3.3 冷却管水温在布设冷却管施工的情况下,冷却管水温对承台水化热也有一定程度的影响。
取冷却管水温18~30℃,在其它因素不变的条件下,运用迈达斯软件分别进行运行分析,其承台内部峰值变化结果见下图。
图2.3.3 不同冷却水温作用下的温度峰值变化曲线由图2.3.3可见,管冷温度在18~30℃下的内部温差可达3℃,每增加2℃冷却管水温,其承台内部峰值增大0.5℃。
因此,冷却水温越低,其承台内部峰值越低,温控效果越好。
但水温不宜过底,冷却水温越低其冷却水温与内部混凝土温差也越大,导致水管周围的拉应力也越大,当拉应力超过内部混凝土容许应力时,承台内部将会产生裂缝。
通过现场对主墩承台观测的实际情况来看,进水口水温在25℃左右时,承台内部降温速率变得有所缓慢,结合理论与现场实际可以得出,冷却水温保持在15℃左右时温控效果较好。
2.3.4 大气温度不同季节浇筑混凝土,其大气温度是不同的。
分别选取5℃和30℃下的环境温度,运用迈达斯软件进行承台温度分析,分析结果见图2.3.4~2.3.5。
图2.3.4 大气温度为5℃下的中心温度与表面温度变化曲线图2.3.5 大气温度为30℃下的中心温度与表面温度变化曲线由图2.3.4可看出,大气温度在5℃时,承台内部峰值为53.1℃,承台内表面温差最大达到39℃,远远超过了规范所规定的25℃。
由图2.3.5可看出,大气温度在30℃时,承台内部峰值为53.2℃,承台内表面温差最大为19℃,低于规范所规定的25℃。
由以上可得,大气温度对混凝土水化热峰值影响很小,但对混凝土内外温差有很大的影响。
环境温度越低,混凝土表面温度越低,内外温差越大,当内外温差超过规范值时,结构将会产生表面裂缝,其耐久性会受到损害。
因此,在寒潮等温度较低的天气,应采取措施保温覆盖。
2.4 结论本章通过MADIS有限元仿真分析计算和现场实测研究了桥梁大体积混凝土承台的水化热,得到如下结论:(1)仿真分析计算可以较好的预测水化热的实际发展规律,对指导大体积混凝土的温控和防裂措施具有重要意义。
(2)影响大体积混凝土水化热的因素分为主动因素和被动因素,其中主动因素包括水泥的品种与用量,决定着水化热的变化规律;被动因素包括入模温度、冷却管布置、冷却水温等,在一定程度上影响着水化热的发展。
(3)理论和实践表明选择低水化热的水泥品种,同时采取优化混凝土配合比、掺入粉煤灰等措施减少水泥用量,是从根本上降低水化热温度的措施(4)在大体积混凝土内部预埋冷却管,通过管冷作用降低水化热温度;降低混凝土的浇筑温度,选择气温较低的时候浇筑混凝土;混凝土浇筑完毕后,注意对混凝土加以覆盖并保湿养护。
(5)总而言之,合理有效的大体积混凝土温控方案和施工措施,是防止大体积混凝土在水化热过程中产生裂缝的重要保证。