大体积混凝土水化热分析课件
- 格式:ppt
- 大小:2.80 MB
- 文档页数:18
大体积混凝土工程ppt课件•大体积混凝土工程概述•大体积混凝土材料性能•大体积混凝土施工技术•大体积混凝土温度控制与防裂措施目•大体积混凝土质量检查与验收标准•大体积混凝土工程案例分析录01大体积混凝土工程概述定义与特点定义大体积混凝土工程是指结构断面最小尺寸在80cm以上,水化热引起混凝土内的最高温度与外界气温之差预计超过25℃的混凝土工程。
特点结构厚实,混凝土量大,工程条件复杂,施工技术要求高,水泥水化热使结构产生温度和收缩变形等。
工程应用背景应用领域大体积混凝土工程广泛应用于建筑、水利、交通等基础设施建设领域,如高层建筑基础、大坝、桥梁等。
工程背景随着现代工程技术的不断发展,大体积混凝土工程规模越来越大,对混凝土性能的要求也越来越高。
发展趋势与挑战发展趋势大体积混凝土工程正向更高性能、更环保、更智能的方向发展,如高性能混凝土、绿色混凝土、智能混凝土等。
挑战大体积混凝土工程面临着施工难度大、质量控制难、裂缝控制难等挑战,需要不断研究和探索新的技术方法和材料。
02大体积混凝土材料性能水泥骨料外加剂掺合料原材料选择与要求01020304选用低热水泥,减少水化热,降低温度应力。
选用级配良好、粒径较大的粗骨料,减少用水量,降低收缩。
使用减水剂、缓凝剂等,改善混凝土和易性,减少水泥用量。
适量掺入粉煤灰、矿渣等活性掺合料,提高混凝土后期强度,减少收缩。
配合比设计原理根据工程要求,设计合适的强度等级。
降低水灰比,减少收缩和开裂风险。
通过试验确定最佳骨料级配,提高混凝土密实度。
确保混凝土具有良好的和易性、流动性和保水性。
满足强度要求控制水灰比优化骨料级配考虑施工性能抗压强度抗裂性能耐久性变形性能力学性能与耐久性大体积混凝土具有较高的抗压强度,能够承受较大的荷载。
大体积混凝土具有良好的耐久性,能够抵抗环境侵蚀和破坏。
通过优化配合比和采取温控措施,提高混凝土的抗裂性能。
在荷载作用下,大体积混凝土能够产生一定的变形,但不会发生破坏。
例题大体积混凝土水化热分析2 例题. 大体积混凝土水化热分析概要此例题将介绍利用midas Gen做大体积混凝土水化热分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简介2.设定操作环境及定义材料3.定义材料时间依存特性4.建立实体模型5.组的定义6.定义边界条件7.输入水化热分析控制数据8.输入环境温度9.输入对流函数10.定义单元对流边界11.定义固定温度12.输入热源函数及分配热源13.输入管冷数据14.定义施工阶段15.运行分析16.查看结果例题大体积混凝土水化热分析1.简介本例题介绍使用 midas Gen 的水化热功能来进行大体积混凝土水化热分析的方法。
例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。
(该例题数据仅供参考)基本数据如下:地基:17.6 x 12.8 x 2.4 m板式基础:11.2 x 8.0 x 1.8 m水泥种类:低热硅酸盐水泥(Type IV)板式基础地基1/4模型图1 分析模型3例题大体积混凝土水化热分析4 2.设定操作环境及定义材料在建立模型之前先设定环境及定义材料1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>设置>单位系:长度 m,力 kgf,热度 kcal图2 定义单位体系4.主菜单选择特性>材料>材料特性值:添加:定义新材料材料号:1 名称:基础规范:GB10(RC)混凝土:C30 材料类型:各向同性比热:0.25 热传导率:2.3材料号:2 名称:地基设计类型:用户定义材料类型:各向同性弹性模量:1.0197e8 泊松比:0.2 线膨胀系数:1e-5 容重:1835比热:0.2 热传导率:1.7注:也可以通过程序右下角随时更改单位。
例题 大体积混凝土水化热分析5图3 定义材料3.定义材料时间依存特性1. 主菜单选择 特性>时间依存性材料>抗压强度:添加:定义基础的时间依存特性名称:强度发展 类型:设计规范 规范:ACI混凝土28天抗压强度:3e4 kN/m 2混凝土抗压强度系数a 4.5 b 0.95 注意:此处注意修改单位:力 kN ,长度 m 2. 主菜单选择 特性>时间依存性材料>材料连接:强度进展:强度发展 选择指定的材料:1.基础 添加例题大体积混凝土水化热分析6图4 定义材料时间依存特性图5 时间依存性材料连接注:材料的收缩徐变特性在水化热分析控制中定义。
大体积混凝土施工阶段水化热分析目录一、概要 (1)二、分析模型截面数据 (1)三、材料热特性值 (2)四、结构建模 (2)4.1设定建模环境 (3)4.2定义构件材料 (3)4.3定义时间依存材料 (4)4.4时间依存材料连接 (4)4.5建立结构模型 (5)五、结果分析 (9)一、概要目前,大体积混凝土、高强混凝土以及耐久性混凝土正被广泛应用于实际工程中,由水化热引起的温度裂缝也逐渐成为设计人员关注的课题。
水化热引起的温度裂缝大多发生在结构施工初期,宽度较大且贯通裂缝比较多,对结构的耐久性、透水性会产生严重影响,因此在设计、施工以及监理阶段需要详细验算水化热引起的温度应力。
另外,大体积混凝土结构是分阶段浇筑的,分阶段浇筑的混凝土具有不同的混凝土材龄和热特性值,所以必须分施工阶段做水化热分析。
因混凝土水化热引起的温度应力分为内部约束应力和外部约束应力。
内部约束应力是因为混凝土温度分布的不均衡约束了结构体积的膨胀而发生的应力。
在水化反应初期,混凝土表面温度和内部温差使混凝土表面发生张拉应力;在温度下降阶段因为内部收缩变形大于表面,所以在混凝土内部发生张拉应力。
内部约束应力的大小与结构物内外温度差成比例。
外部约束应力是因为已浇筑的混凝土或地基表面约束了正在浇筑的混凝土的温度变形而发生的应力。
外部约束的影响与接触表面的宽度和外部约束刚度有关。
水化热分析包括热传导分析和温度应力分析两个过程。
热传导分析是计算节点温度随时间的变化量,即计算因水泥水化过程中发生的放热、对流、传导引起的节点温度变化。
温度应力分析是使用热传导分析得到的各时间段的节点温度分布以及材料随时间变化的特性、混凝土随时间变化的收缩、混凝土随时间和应力变化的徐变等,计算大体积混凝土各施工阶段应力。
二、分析模型截面数据本例题使用的承台尺寸为25.6m×13.6m×4.5m,冷却水管布置如下图所示,分两层浇筑,第一次浇筑168小时(7d)以后浇筑第二层,对第二阶段浇筑的混凝土水化热分析时间为840小时(28+7d)。
例题大体积混凝土水化热分析2 例题. 大体积混凝土水化热分析概要此例题将介绍利用MIDAS/Gen做大体积混凝土水化热分析的整个过程,以及查看分析结果的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料3.定义材料时间依存特性4.建立实体模型5.组的定义6.定义边界条件7.输入水化热分析控制数据8.输入环境温度9.输入对流函数10.定义单元对流边界11.定义固定温度12.输入热源函数及分配热源13.输入管冷数据14.定义施工阶段15.运行分析16.查看结果例题大体积混凝土水化热分析1.简要本例题介绍使用MIDAS/Gen 的水化热模块来进行大体积混凝土水化热分析的方法。
例题模型为板式基础结构,对于浇筑混凝土后的1000个小时进行了水化热分析,其中管冷作用于前100个小时。
(该例题数据仅供参考)基本数据如下:地基:17.6 x 12.8 x 2.4 m板式基础:11.2 x 8.0 x 1.8 m水泥种类:低热硅酸盐水泥(Type IV)板式基础地基1/4模型图1 分析模型3例题大体积混凝土水化热分析4 2.设定操作环境及定义材料在建立模型之前先设定环境及定义材料1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名并保存3.主菜单选择工具>单位体系:长度 m,力 kN图2 定义单位体系4.主菜单选择模型>材料和截面特性>材料:添加:定义新材料材料号:1 名称:基础规范:GB(RC)混凝土:C30 材料类型:各向同性材料号:2 名称:地基设计类型:用户定义材料类型:各向同性弹性模量:1e6 泊松比:0.2 线膨胀系数:1e-5 容重:185.主菜单选择工具>单位体系:长度 m,力 kgf,热度 kcal6.主菜单选择模型>材料和截面特性>材料:注:也可以通过程序右下角随时更改单位。
例题 大体积混凝土水化热分析5编辑:修改材料热特性数据 基础 比热:0.25 热传导率:2.3 地基 比热:0.2 热传导率:1.7图3 定义材料3.定义材料时间依存特性1. 主菜单选择 模型>材料和截面特性>时间依存性材料(抗压强度):添加:定义基础的时间依存特性名称:强度发展 类型:设计规范 规范:ACI混凝土28天抗压强度:3e4 KN/m 2混凝土抗压强度系数a 4.5 b 0.95 2. 主菜单选择 模型>材料和截面特性>时间依存性材料连接:强度进展:强度发展 选择指定的材料:1.基础 添加例题大体积混凝土水化热分析6图4 定义材料时间依存特性图5 时间依存性材料连接4.建立实体模型1.主菜单选择模型>节点>建立:坐标1(0 0 0) 2(8.8 0 0) 3(8.8 6.4 0) 4(0 6.4 0)2.主菜单选择主菜单选择模型>单元>建立:单元类型:板 4节点类型:厚板材料:1:基础厚度:1节点连接:1 2 3 4注:材料的收缩徐变特性在水化热分析控制中定义。