3.2 经典线性模型的贝叶斯估计
- 格式:ppt
- 大小:214.00 KB
- 文档页数:22
信号的参数估计一般指参数在观测时间内不随时间变化,故是静态估计。
若被估计参量是随机过程或非随机的未知过称,则称为波形估计或状态估计,波形估计或状态估计是动态估计。
3。
2贝叶斯估计贝叶斯估计是基于后验概率分布(posterior distribution)的一类估计方法,其中后验概率分布中采用了先验信息(prior information )。
所谓先验信息,是指已知待估计参数的概率密度函数0()p θ,不管θ是随机变变量或是未知的固定常数。
而后验概率分布具有下面的形式,00()(|)(),1(|)()p c p X p c p X p d θθθθθθ*==⎰.注意两点:1,0()p θ不必满足标准化条件,即0()1p d θθ=⎰,但是0()p θ必须是非负的,并且0102()()p p θθ代表似真比(ratio of plausibility ),若0102()()1p p θθ>,则说明在1θ和2θ两个值之间我们更倾向于1θ为真值;2,()p θ*实际上就是(|)p X θ,是通过试验得到数据X 以后θ的概率密度函数,仅当()1p d θθ=⎰时有明确的含义.下面讨论中,()p θ代表0()p θ,(|)p X θ代表()p θ*。
类似于信号检测中的问题,贝叶斯估计在参数估计中对于不同的估计结果赋予了不同的代价值,然后求解平均代价最小的情况。
估计误差为θθ-,我们只关心估计误差的代价,于是代价函数()()c c θθθ-=,是估计误差的单变量函数。
典型的代价函数有三种:⑴ 平方型()2()c θθθ=-,它强调了大误差的影响 ⑵ 绝对值()c θθθ=-,给出了代价随估计误差成比例增长 ⑶ 均匀型()10c θεθεθε>⎧=⎨⎩-<<这种代价函数给出了估计误差绝对值大于某个值时,代价等于常数,而估计误差绝对值小于某个值时,代价等于零.在贝叶斯估计中,要求估计误差引起的代价的平均值最小。
第三节贝叶斯准则下的两类线性判别模型贝叶斯准则是一种常用的概率学习方法,可以用于分类问题。
在贝叶斯准则的基础上,可以构建两类线性判别模型,即线性判别函数模型和线性判别分析模型。
1.线性判别函数模型线性判别函数模型是一种线性分类方法,它使用一个线性判别函数将样本划分为不同的类别。
假设样本空间为X,类别集合为Y={y_1,y_2},其中y_1和y_2是两个类别。
线性判别函数模型的目标是找到一个超平面,可以将样本空间划分为两个决策域,一个属于类别y_1,另一个属于类别y_2为了构建线性判别函数模型,首先需要假设每个类别的概率分布满足多元高斯分布。
假设y_1的先验概率为P(y_1),y_2的先验概率为P(y_2)。
假设x是一个样本点,x的观测值为x=(x_1,x_2,...,x_n)',n是特征个数。
则x在类别y_i中的条件概率分布可以表示为P(x,y_i),i=1,2根据贝叶斯准则,可以求得后验概率P(y_1,x),即在观测到x的情况下,样本属于类别y_1的概率。
根据线性判别函数模型的定义,可以用一个线性判别函数g(x)来表示后验概率:g(x)=w'x+w_0其中,w=(w_1,w_2,...,w_n)'是权重向量,w_0是偏置项。
根据后验概率的定义,可以将g(x)转化为相应的概率值,通过一个非线性函数转换:P(y_1,x)=1/(1+e^(-g(x)))上述模型就是逻辑回归模型,逻辑回归模型可以通过最大似然估计或其它方法来估计模型参数。
2.线性判别分析模型线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的分类算法,也是基于贝叶斯准则的一种方法。
与线性判别函数模型不同,线性判别分析模型假设各类别的协方差矩阵相等,且为单位矩阵。
因此,LDA可以通过计算样本的均值和协方差矩阵来实现分类。
具体地,假设y_1和y_2是两个类别,样本空间为X,样本点x的观测值为x=(x_1,x_2,...,x_n)',n是特征个数。
贝叶斯模型概念的详细解释1. 贝叶斯模型的定义贝叶斯模型是一种基于贝叶斯定理的概率模型,用于描述和推断随机事件之间的关系。
它基于先验概率和观测数据,通过贝叶斯定理计算后验概率,从而对未知事件进行预测和推断。
贝叶斯模型的核心思想是将不确定性量化为概率,并通过观测数据来更新对事件的概率估计。
它提供了一种统一的框架,用于处理不完全信息和不确定性问题,广泛应用于机器学习、统计推断、自然语言处理等领域。
2. 贝叶斯模型的重要性贝叶斯模型具有以下重要性:2.1. 统一的概率框架贝叶斯模型提供了一种统一的概率框架,使得不同领域的问题可以用相同的数学语言进行建模和解决。
它将不确定性量化为概率,使得我们可以通过观测数据来更新对事件的概率估计,从而更好地理解和解释现实世界中的复杂问题。
2.2. 可解释性和不确定性处理贝叶斯模型提供了一种可解释性的方法,可以直观地理解模型的预测和推断过程。
它能够量化不确定性,提供事件发生的概率估计,并给出后验概率的置信区间,使决策者能够更好地理解和处理不确定性。
2.3. 先验知识的利用贝叶斯模型允许我们将先验知识和观测数据进行结合,从而更准确地推断未知事件。
通过引入先验知识,我们可以在数据较少或数据质量较差的情况下,仍然得到可靠的推断结果。
2.4. 高度灵活的模型贝叶斯模型具有高度灵活性,可以根据问题的特点和数据的性质选择合适的先验分布和模型结构。
它可以通过引入不同的先验分布和模型假设,适应不同的问题和数据,提高模型的预测能力和泛化能力。
3. 贝叶斯模型的应用贝叶斯模型在各个领域都有广泛的应用,以下是一些常见的应用领域:3.1. 机器学习贝叶斯模型在机器学习中被广泛应用于分类、聚类、回归等任务。
它可以通过学习先验概率和条件概率分布,从观测数据中学习模型参数,并用于预测和推断未知事件。
常见的贝叶斯模型包括朴素贝叶斯分类器、高斯过程回归等。
3.2. 统计推断贝叶斯模型在统计推断中被用于参数估计、假设检验、模型比较等任务。
贝叶斯先验概率贝叶斯估计你有没有想过,我们每天做的决定背后,其实有很多不确定性?我们做的选择是根据过去的经验,也我们选择的结果并不完全能预测。
举个例子,假设你早上出门前看了天气预报,说今天有50%的可能下雨。
那么问题来了,你是带伞呢,还是不带呢?如果你经历了好几次天气预报错得离谱,是不是就会开始怀疑这些概率的准确性了?这时候,你可能会觉得,自己的经验比这些预测更靠谱。
嘿,这其实就跟贝叶斯估计有点关系!贝叶斯估计的核心思想就是:把我们的“信念”或者说“先入为主”的看法,结合新的信息,做出更合理的判断。
拿天气预报来说,假如你这几年过得比较顺风顺水,基本上从来没遇到过下雨的预报被错过过,天公作美,你心里可能会觉得今天下雨的可能性更小些。
这时候,你的“先验知识”就开始发挥作用了。
你并不是完全相信50%的下雨几率,而是结合自己以往的经验,觉得这50%的概率其实没那么准确,可能实际下雨的几率还得往低的方向调整。
对,先验概率,这名字听起来有点高深,但其实说白了,就是你在面对不确定的事物时,最初的判断和看法。
举个例子,假设你今天第一次见到一个人,想知道他是不是喜欢看足球。
你完全不了解他,只知道他长得高大,看起来像个运动员。
你的“先验”就是——他可能喜欢足球。
这个先验的看法,源自你对运动员的刻板印象。
可是,如果你后来得知,这个人其实从不碰球,反而热衷于下围棋,那你的想法肯定得做调整。
你会慢慢抛开原本的看法,开始根据实际信息重新评估他的兴趣。
贝叶斯估计的巧妙之处就在于,它鼓励你做这种“更新”。
每当有新的信息进来时,你就该重新调整自己原本的“信念”。
在上面的例子中,一开始你完全凭直觉判断这个人爱足球,结果一查,他竟然喜欢围棋,那你就得调整看法了,把新的信息加进来,改成一个更加准确的估计。
更有意思的是,贝叶斯估计的魅力不仅在于它能够帮助我们调整决策,还在于它不要求我们一开始就知道真相。
嘿,谁能一开始就知道自己做的决定百分之百正确呢?生活就是这样,充满了不确定。
贝叶斯估计与贝叶斯学习贝叶斯估计是概率密度估计的一种参数估计,它将参数估计看成随机变量,它需要根据观测数据及参数鲜艳概率对其进行估计。
一 贝叶斯估计(1)贝叶斯估计贝叶斯估计的本质是通过贝叶斯决策得到参数θ的最优估计,使总期望风险最小。
设()p θ是待估计参数θ的先验概率密度,且θ取值与样本集1{,,}n x x X =L 有关,设样本的取值空间d E ,参数取值空间Θ,ˆ(,)λθθ是ˆθ作为θ的估计量时的损失函数,本节我们取2ˆˆ(,)()λθθθθ=-。
则此时的总期望风险为: ˆ(,)()(),d E R p x p x d dx λθθθθΘ=⎰⎰定义样本x 下的条件风险为:ˆˆ()(,)(),R x p x d θλθθθθΘ=⎰ 则有:ˆ()(),d E R R x p x dx θ=⎰ 又ˆ()R x θ非负,则又贝叶斯决策知求R 最小即求ˆ()R x θ最小,即: ˆargmin (),R x θθ*=可求得最优估计:().p x d θθθθ*Θ=⎰(2)贝叶斯估计步骤总结1. 获得θ的先验分布()p θ;2. 已知x 的密度分布()p x θ得样本集的联合分布:1()();Nn n p p x θθ=X =∏3. 由贝叶斯公式得θ的后验分布:()()();()()p X p p X p X p d θθθθθθΘ=⎰4. 得到θ的最优估计:().p x d θθθθ*Θ=⎰(3)样本概率密度函数()p x X 估计我们是在假设样本概率密度已知下对参数进行估计的,由贝叶斯估计步骤3可以直接得到样本概率密度函数估计:()()().p x X p x p X d θθθΘ=⎰对上式可以理解为:()p x X 在所有可能参数下取值下样本概率密度的加权平均,权值为θ的后验概率。
二 贝叶斯学习贝叶斯学习本质是参数值随着样本增多趋近于真实值的过程。
对于贝叶斯学习由下面过程得到:记样本集为NX ,其中N 代表样本集内样本的个数。
R贝叶斯包分类介绍(R task view ofBayesian)=========一般模型==================arm包: 包括使用lm,glm,mer,polr等对象进行贝叶斯推断的R函数BACCO: 随机函数的贝叶斯分析. 包含3个子包: emulator, calibrator, and approximator, 进行贝叶斯估计和评价计算机程序.bayesm: 市场与微经济分析模型的许多贝叶斯推断函数. 模型包括线性回归, 多项式logit, 多项式probit, 多元probit, 多元混合normals(包括聚类), 密度估计-使用有限混合正态模型与Dirichlet先验过程, 层次线性模型, 层次多元logit, 层次负二项回归模型, 线性工具变量模型(linear instrumental variable models). bayesSurv: 生存回归模型的贝叶斯推断.DPpackage: 贝叶斯非参数和半参数模型. 现在还包括密度估计, ROC曲线分析, 区间一致数据, 二项回归模型, 广义线性模型和IRT类型模型的半参数方法. MCMCpack: 特定模型的MCMC模拟算法, 广泛用于社会和行为科学. 拟合很多回归模型的R函数. 生态学模型推断. 还包括一个广义Metropolis采样器, 适合任何模型.mcmc: 随机行走Metropolis算法, 对于连续随机向量.==========特殊模型和方法=============AdMit: 拟合适应性混合t分布拟合目标密度使用核函数.bark: 实现(Bayesian Additive Regression Kernels)BayHaz: 贝叶斯估计smooth hazard rates, 通过Compound Poisson Process (CPP) 先验概率.bayesGARCH: 贝叶斯估计GARCH(1,1) 模型, 使用t分布.BAYSTAR: 贝叶斯估计threshold autoregressive modelsBayesTree: implements BART (Bayesian Additive Regression Trees) by Chipman, George, and McCulloch (2006).BCE: 从生物注释数据中估计分类信息.bcp: a Bayesian analysis of changepoint problem using the Barry and Hartigan product partition model.BMA:BPHO: 贝叶斯预测高阶相互作用, 使用slice 采样技术.bqtl: 拟合quantitative trait loci (QTL) 模型.可以估计多基因模型, 使用拉普拉斯近似. 基因座内部映射(interval mapping of genetic loci).bim: 贝叶斯内部映射, 使用MCMC方法.bspec: 时间序列的离散功率谱贝叶斯分析cslogistic: 条件特定的logistic回归模型(conditionally specified logistic regression model)的贝叶斯分析.deal: 逆运算网络分析: 当前版本覆盖离散和连续的变量, 在正态分布下.dlm: 贝叶斯与似然分析动态信息模型. 包括卡尔曼滤波器和平滑器的计算, 前向滤波后向采样算法.EbayesThresh: thresholding methods 的贝叶斯估计. 尽管最初的模型是在小波下开发的, 当参数集是稀疏的, 用户也可以受益.eco: 使用MCMC方法拟合贝叶斯生态学推断in two by two tables evdbayes: 极值模型的贝叶斯分析.exactLoglinTest: log-linear models 优度拟合检验的条件P值的MCMC估计. HI: transdimensional MCMC 方法几何途径, 和随机多元Adaptive Rejection Metropolis Sampling.G1DBN: 动态贝叶斯网络推断.Hmisc内的gbayes()函数, 当先验和似然都是正态分布, 导出后验(且最优)分布, 且当统计量来自2-样本问题.geoR包的krige.bayes()函数地理统计数据的贝叶斯推断, 允许不同层次的模型参数的不确定性.geoRglm 包的binom.krige.bayes() 函数进行贝叶斯后验模拟, 二项空间模型的空间预测.MasterBayes: MCMC方法整合家谱数据(由分子和形态数据得来的)lme4包的mcmcsamp()函数信息混合模型和广义信息混合模型采样.lmm: 拟合信息混合模型, 使用MCMC方法.MNP: 多项式probit模型, 使用MCMC方法.MSBV AR: 估计贝叶斯向量自回归模型和贝叶斯结构向量自回归模型.pscl: 拟合item-response theory 模型, 使用MCMC方法, 且计算beta分布和逆gamma分布的最高密度区域RJaCGH: CGH微芯片的贝叶斯分析, 使用hidden Markov chain models. 正态数目的选择根据后验概率, 使用reversible jump Markov chain Monte Carlo Methods 计算.sna: 社会网络分析, 包含函数用于从Butt's贝叶斯网络精确模型, 使用MCMC方法产生后验样本.tgp: 实现贝叶斯treed 高斯过程模型: 一个空间模型和回归包提供完全的贝叶斯MCMC后验推断, 对于从简单线性模型到非平稳treed高斯过程等都适合. Umacs: Gibbs采样和Metropolis algorithm的贝叶斯推断.vabaye1Mix: 高斯混合模型的贝叶斯推断, 使用多种方法.=Post-estimation tools=====BayesValidate: 实现了对贝叶斯软件评估的方法.boa: MCMC序列的诊断, 描述分析与可视化. 导入BUGS格式的绘图. 并提供Gelman and Rubin, Geweke, Heidelberger and Welch, and Raftery and Lewis 诊断. Brooks and Gelman 多元收缩因子.coda: (Convergence Diagnosis and Output Analysis) MCMC的收敛性分析, 绘图等. 可以轻松导入WinBUGS, OpenBUGS, and JAGS 软件的MCMC输出. 亦包括Gelman and Rubin, Geweke, Heidelberger and Welch, and Raftery and Lewis 诊断. mcgibbsit: 提供Warnes and Raftery MCGibbsit MCMC 诊断. 作用于mcmc对象上面.ramps: 高斯过程的贝叶斯几何分析, 使用重新参数化和边际化的后验采样算法. rv: 基于模拟的随机变量类, 后验模拟对象可以方便的作为随机变量来处理. scapeMCMC: 处理年龄和时间结构的人群模型贝叶斯工具. 提供多种MCMC诊断图形, 可以方便的修改参数===========学习贝叶斯的包===================BaM: Jeff Gill's book, "Bayesian Methods: A Social and Behavioral Sciences Approach, Second Edition" (CRC Press, 2007). 伴随的包Bolstad: 此书的包. Introduction to Bayesian Statistics, by Bolstad, W.M. (2007). 的包LearnBayes: 学习贝叶斯推断的很多的函数. 包括1个,2个参数后验分布和预测分布, MCMC算法来描述分析用户定义的后验分布. 亦包括回归模型, 层次模型. 贝叶斯检验, Gibbs采样的实例.贝叶斯包一般模型拟合Bayesian packages for general model fitting1.The arm package contains R functions for Bayesianinference using lm, glm, mer and polr objects. arm package 包含了用于使用lm,glm,mer 和polr对象的贝叶斯推理的R函数Install.packages(“arm”)Library(“arm”)Help(package=”arm”) Documentation for package …arm‟ version 1.5-08 DESCRIPTION file.Help PagesFunctions to compute the balance statistics函数来计算平衡统计balanceFunctions to compute the balance statistics函数来计算平衡统计balance-classbayesglm-class Bayesian generalized linear models. 贝叶斯广义线性模型。