数学建模-投资收益和风险的模型
- 格式:doc
- 大小:691.57 KB
- 文档页数:20
投资问题数学建模投资问题的数学建模是将投资问题转化为数学模型,并通过求解模型来得到最优的投资策略。
首先,我们需要定义一些变量:- t:投资期限,表示投资的时间长度。
- I(t):在t时刻的投资金额。
- R(t):在t时刻的投资收益率。
- C(t):在t时刻的现金流。
- X(t):在t时刻的投资组合,包括不同的投资品种和金额。
然后,我们可以根据投资问题的具体情况,建立数学模型。
以下是一些常见的投资问题数学建模方法:1. 简单的投资决策问题:假设只有一个投资品种,且投资金额恒定,我们可以使用期望收益率来衡量投资的性能。
数学模型如下:```max E[R(t)] - I(t)```该模型表示在投资期限为t的情况下,最大化期望收益率与投资金额的差值。
2. 多个投资品种的优化投资问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率和风险。
我们可以使用资本资产定价模型(Capital Asset Pricing Model, CAPM)或马科维茨组合理论(Markowitz Portfolio Theory)等模型来进行优化投资决策。
3. 动态投资决策问题:假设投资策略随时间变化,我们可以使用动态规划方法来建立模型。
这通常涉及到投资组合的再平衡和资产配置调整等决策。
4. 投资组合优化问题:假设有多个不同的投资品种可供选择,并且每个品种有不同的收益率、风险和相关性。
我们可以使用马科维茨组合理论等模型来建立投资组合的最优权重分配模型。
以上只是一些常见的投资问题数学建模方法,具体的建模方法需要根据具体的投资问题来确定。
需要注意的是,在建立数学模型时,还需要考虑到实际的投资限制和约束条件,如最小投资金额、投资品种的限制和杠杆效应等。
1998年A题《资产投资收益与风险》题目、论文、点评投资组合与模糊规划模型王正方,赵文明,倪德娟本文讨论了投资的风险与收益的问题,首先我们给出了一个比较完整的模型,然后,考虑投资数额相当大时的一个近似处理模型,并分别用偏好系数加权法和模糊线性规划法进行了求解,接下来,我们又考虑了如何处理投资额相对较小的情况下的最优投资组合情况,引入了绝对收益率进行了较为有效的解决。
投资组合与模糊规划模型.pdf (275.8 KB)投资组合模型伍仕刚,孟宪丽,胡子昂本文建立了考虑交易费用情况下的市场资产组合投资模型,并采用偏好系数加权法对资产的预期收益和总风险进行评价,给出在不同偏好系数下的模型最优解,然后模型讨论了一般情况下的最优投资求解方法,给出定理,在总金额大于某一量值时,可化为线性规划求解。
投资组合模型.pdf (134.92 KB)风险投资分析程文鑫,苑青,骆文润本文主要研究多种资产的组合投资问题,根据题目所给信息,建立了在一定简化条件下的多目标规划模型和单目标风险约束模型,并对问题一与问题二分别使用上述两模型进行求解得到多种投资组合方案,同时对一般情况进行了讨论,最后模型进行了相应的灵敏度分析,讨论了简化条件的适用情况,结果表明模型是较为符合实际的风险投资分析.pdf (241.54 KB)资产投资收益与风险模型陈定涛,蒋浩,肖红英本文应用多目标决策方法建立模型,并通过简化,成为一个单目标线性规划问题。
计算后得到了一个合乎公司要求的、净收益尽可能大,而总体风险尽可能小的最优方案,如下所示: 问题1的最佳投资方案对表二中的数据进行同样的计算和分析,也获得了一个理想的投资方案;从而证明了我们的模型具有一般性。
资产投资收益与风险模型.pdf (298.22 KB)资本市场的最佳投资组合闫珺,王璐,韩嘉睿市场上有多种可提供投资者选择的资产。
本文试图对各种收益和风险进行分析,在一定的标准下给出全部资产组合的效益前沿,即有效资产组合,为投资者提供参考。
投资的收益与风险问题摘要对市场上的多种风险资产和一种无风险资产(存银行)进行组合投资策略的设计需要考虑两个目标:总体收益尽可能大和总体风险尽可能小,而这两个目标在一定意义上是对立的。
本文我们建立了投资收益与风险的双目标优化模型,并通过“最大化策略” ,即控制风险使收益最大,将原模型简化为单目标的线性规划模型一;在保证一定收益水平下,以风险最小为目标,将原模型简化为了极小极大规划模型二;以及引入收益——风险偏好系数,将两目标加权,化原模型为单目标非线性模型模型三。
然后分别使用Matlab 的内部函数linprog ,fminmax ,fmincon 对不同的风险水平,收益水平,以及偏好系数求解三个模型。
关键词:组合投资,两目标优化模型,风险偏好2•问题重述与分析3.市场上有”种资产(如股票、债券、,).:0 丨.小供投资者选择,某公司有数额为匸的一笔相当大的资金可用作一个时期的投资。
公司财务分析人员对这种资产进行了评估,估算出在这一时期内购买•「的平均收益率为c,并预测出购买T的风险损失率为%。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的:中最大的一个风险来度量。
购买」要付交易费,费率为;■.,并且当购买额不超过给定值•;..时,交易费按购买■;.计算(不买当然无须付费)。
另外,假定同期银行存款利率是:,且既无交易费又无风险。
(•1、已知" ;时的相关数据如下:试给该公司设计一种投资组合方案,即用给定的资金有选择地购买若干种资产或存银行生息,使净收益尽可能大,而总体风险尽可能小。
2、试就一般情况对以上问题进行讨论,并利用以下数据进行计算。
本题需要我们设计一种投资组合方案,使收益尽可能大,而风险尽可能小。
并给出对应的盈亏数据,以及一般情况的讨论。
这是一个优化问题,要决策的是每种资产的投资额,要达到目标包括两方面的要求:净收益最大和总风险最低,即本题是一个双优化的问题,一般情况下,这两个目标是矛盾的,因为净收益越大则风险也会随着增加,反之也是一样的,所以,我们很难或者不可能提出同时满足这两个目标的决策方案,我们只能做到的是:在收益一定的情况下,使得风险最小的决策,或者在风险一定的情况下,使得净收益最大,或者在收益和风险按确定好的偏好比例的情况下设计出最好的决策方案,这样的话,我们得到的不再是一个方案,而是一个方案的组合,简称组合方案。
数学建模—投资的收益和风险问题投资一直是人们追逐财富增值的方式之一。
然而,投资市场的不确定性和风险给人们带来了很大的挑战。
数学建模作为一种解决问题的工具,可以帮助我们分析和评估投资的收益和风险。
本文将从数学建模的角度探讨投资的收益和风险问题。
一、投资收益的数学建模投资收益是投资者最关心的问题之一,通过数学建模我们可以对投资收益进行评估和预测。
常用的数学模型之一是股票价格的随机过程模型,其中最经典的是布朗运动模型。
布朗运动模型假设股票价格的波动符合随机游走过程,即无论是股票的上涨还是下跌都服从正态分布。
在这个模型中,我们可以通过计算出股票价格的期望回报和标准差,来评估投资的收益和风险。
除了布朗运动模型,我们还可以利用时间序列分析来预测股票价格的变动趋势。
时间序列分析是一种利用历史数据来分析未来走势的方法,通过建立股票价格与时间的数学模型,可以得到股票价格的预测值。
然而,需要注意的是,时间序列分析并不能完全预测未来的变动,因为股票价格受到很多因素的影响,例如市场供求关系、公司业绩等。
二、投资风险的数学建模除了投资收益,投资风险也是投资者非常关注的问题。
投资风险是指投资在市场变动中可能遭受的损失和波动程度,通过数学建模我们可以对投资风险进行量化评估。
常用的风险评估方法之一是价值-at-风险(Value at Risk,VaR)模型。
VaR模型以一定的概率来评估投资可能遭受的最大损失。
该模型通过构建投资组合的收益分布函数,计算出投资组合在给定概率下可能遭受的最大损失。
VaR模型可以帮助投资者合理地控制风险,制定适当的投资策略。
除了VaR模型,我们还可以利用随机模拟方法来评估投资风险。
随机模拟方法通过生成一系列符合规定分布的随机数,来模拟投资组合的收益分布。
通过模拟大量的随机数,我们可以得到投资组合可能的收益和风险情况,进而评估投资的风险。
三、数学建模在投资决策中的应用数学建模在投资决策中有着广泛的应用。
学建模二号:名:级:投资的收益和风险问题摘要:某投资公司现有一大笔资金(8000 万),可用作今后一段时间的市场投资,假设可供选择的四种资产在这一段时间的平均收益率分别为 r i ,风险损失率分别为 q i 。
考虑到投资越分散,总的风险越小,公司确定,当用这笔资金购买若干种资产时,总体风险可用所投资的资产中最大的一个风险来度量。
另外,假定同期银行存款利率是 r0 =5%。
具体数据如下表:对于第一问,我建立了一个优化的线性规划模型,得到了不错的结果。
假设 5 年的投资时间,我认为五年末所得利润最大可为:37.94 亿。
具体如何安排未来一段时间内的投资,请看下面的详细解答。
如果可供选择的资产有如下15 种,可任意选定投资组合方式,就一般情况对以上问题进行讨论,结果又如何?对于第二问,考虑独立投资各个项目的到期利润率,通过分析,发现数据中存在着相互的联系。
由此,我建立了一个统计回归模型x5=a0+a1*x4+a2*x3+a3*x2+a4*x1+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2通过这个模型,我预测了今后5年各个项目的到期利润率。
如第一个项目今后五年的到期利润率为:第一年:0.1431 第二年:0.1601 第三年:0.0605 第四年:0.1816 第五年:0.1572 。
(其他几个项目的预测祥见下面的解答)考虑风险损失率时,定义计算式为:f=d*p;d 为该项目 5 年内的到期利润率的标准差,p 为到期利润率;考虑相互影响各个项目的到期利润率时,我们在第一个模型的基础上建立一新的模型:x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5 y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*x5 (两个项目互相影响的模型) x5=a10+a11*x4+a12*x3+a13*x2+a14*x1+a15*y5+a16*z5y5=a20+a21*y4+a22*y3+a23*y2+a24*y1+a25*z5+a26*x5z5=a30+a31*z4+a32*z3+a33*z2+a34*z1+a35*x5+a37*y5(三个项目互相影响的模型)通过解方程组,我们可以预测出今后五年的到期利润率。
数学建模在金融风险管理中的应用在金融领域,风险管理是至关重要的一项任务。
而数学建模作为一种有效的工具,被广泛应用于金融风险管理中。
本文将就数学建模在金融风险管理中的应用进行探讨。
一、风险管理概述金融机构面临着各种各样的风险,包括市场风险、信用风险、操作风险等等。
风险管理旨在通过识别、评估和控制这些风险,保护机构及投资者的利益。
传统的方法主要依赖于经验和直觉,但随着金融市场的复杂化,需要更加科学的方法来进行风险管理。
二、数学建模在金融风险管理中的应用1. 风险评估模型数学建模可以帮助建立风险评估模型,通过分析大量的历史数据和市场行为,预测未来可能的风险事件。
常用的风险评估模型包括马尔可夫模型、蒙特卡洛模拟等,它们能够为金融机构提供更加准确和可靠的风险评估数据。
2. 投资组合优化数学建模可以帮助金融机构进行投资组合优化,即在给定的风险偏好和收益目标下,选择最佳的投资组合。
通过运用数学建模和优化算法,可以找到最优的投资权重以达到最大的收益或最小的风险。
3. 风险分散和对冲数学建模可以帮助金融机构进行风险分散和对冲,即通过投资多种不同类型的资产,降低整体风险。
利用数学建模,可以更好地理解不同资产之间的相关性,并通过对冲操作来降低特定风险。
4. 金融衍生品定价数学建模在金融衍生品定价中也发挥着重要作用。
通过建立数学模型,可以对金融衍生品的价值进行评估和定价,为交易双方提供公正和合理的价格。
三、数学建模在金融风险管理中的优势1. 提供准确和可靠的数据数学建模可以通过冷静客观的方式,提供准确和可靠的风险评估数据,避免了主观性和随意性带来的误判和风险。
2. 加强决策的科学性数学建模可以为金融机构提供科学的决策依据,减少决策的随意性和盲目性。
通过对各种可能性进行模拟和计算,可以更好地预测和应对不同风险。
3. 提高效率和精度数学建模可以通过自动化和计算机技术,提高风险管理的效率和精度。
相比传统的手工计算和分析,数学建模可以更快速地处理大量数据和复杂计算,并提供更精确的结果。
数学建模投资风险与收益
投资风险和收益是投资领域中的两个最重要的概念。
投资者在做出最终的决策之前,
必须仔细衡量这两者之间的关系。
投资风险是指可能发生的一系列不确定的事件,这些事件可能会导致投资者在投资过
程中遭受损失。
投资风险包括市场风险、信用风险、流动性风险和操作风险等。
投资收益是指投资者在投资中获得的收益,包括股息、利息、资本利得和其他收益等。
投资者的收益与投资风险密切相关,通常来说,风险越高,收益也就越高,反之亦然。
在数学建模中,我们可以使用各种数学工具和技巧来分析投资风险和收益之间的关系。
例如,我们可以使用统计方法来评估一个投资组合的风险和收益。
通过分析投资组合中每
个资产的历史数据,我们可以得出该组合的风险和收益情况,并通过优化投资组合的资产
配置,实现最大化收益和最小化风险的目标。
另外,我们还可以使用金融工程学中的定价模型来评估投资的风险和收益。
例如,利
用风险价格和风险杠杆来评估投资组合的风险和收益,并通过调整投资组合的配置,使风
险和收益达到最优化。
除了数学建模,我们还可以使用许多其他工具和技巧来帮助我们评估投资风险和收益
之间的关系。
例如,我们可以使用基本面分析来评估股票的价值,使用技术分析来预测股
票价格的变化,使用公司财务分析来评估企业的财务状况等。
总之,投资风险和收益是投资领域中的两个最重要的概念。
通过使用数学建模和其他
工具和技巧,我们可以更加准确地分析投资组合的风险和收益,并实现最优化的投资决
策。
投资的收益和风险问题摘要本论文主要讨论解决了在组合投资问题中的投资收益与风险的相关问题。
分别在不考虑风险和考虑风险的情况下建立相应的数学模型,来使得投资所获得的总利润达到最大。
问题一是一个典型的线性规划问题,我们首先建立单目标的优化模型,也即模型1,用Lingo软件求解,得到在不考虑投资风险的情况下,20亿的可用投资金额所获得的最大利润为153254.4万元。
然后分别分析预计到期利润率、可用投资总资金和各投资项目的投资上限对总利润的影响。
发现利润与利润率成正比的关系;可用投资总额有一个上限,当投资额小于这个上限时,总利润与可用投资额成正比的关系,当大于这个上限时,可用投资额与总的利润没有关系,总利润率保持不变;各项目的投资上限均与目标值呈正相关,项目预计到期利润率越大,该项目投资上限的变动对目标值的影响越大。
问题二是一个时间序列预测问题。
分别在独立投资与考虑项目间的相互影响投资的情况下来对到期利润率和风险损失率的预测。
两种情况下的预测思路与方法大致相同。
首先根据数据计算出到期利润率,将每一个项目的利润率看成一个时间序列,对该序列的数据进行处理,可以得到一个具有平稳性、正态性和零均值的新时间序列。
再计算该序列的自相关函数和偏相关函数,发现该时间序列具有自相关函数截尾,偏自相关函数拖尾的特点,所以可认为该序列为一次滑动平均模型(简称MA(1))。
接着,用DPS数据处理系统软件中的一次滑动平均模型依次预测出各项目未来五年的投资利润率。
对于风险损失率,我们用每组数据的标准差来衡量风险损失的大小,将预测出来的投资利润率加入到样本数据序列中,算出该组数据的标准差,用该值来衡量未来五年的风险损失率。
具体答案见4.2.2.1问题的分析与求解。
同样在考虑相互影响的情况下,我们运用ARMA(3,1)模型进行预测,结果见4.2.2.2 问题三与问题一类似,也是优化的问题,其目标仍是第五年末的利润最大,而且也没有考虑风险问题,只是约束条件改变了。
安徽建筑大学数学建模课程设计报告书院系数理学院专业信息与计算科学班级三班学号姓名题目投资的收益与风险指导教师欧剑一、设计目的过数学建模课程设计了解数学建模的步骤、方法,学会撰写科技论文,通提高应用数学的意识、兴趣和能力。
二、设计时间20 -20 学年第二学期第~ 周三、设计地点理化楼数学建模实验室四、设计内容针对某一生产、生活实际问题,建立数学模型,通过数学模型的求解,解决这一问题。
按数学建模竞赛论文格式撰写一篇完整的解决实际问题的数学建模论文。
五、设计要求1.灵活应用各种数学知识解决各种实际问题。
2.了解问题,明确目的。
在建模前,要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察。
3.对问题进行简化和假设。
在明确目的、掌握资料的基础上抓住主要矛盾,舍去一些次要因素,对问题进行适当地简化和合理的假设。
4.在所作简化和假设的基础上,选择适当的数学工具来刻划、描述各种量之间的关系,用表格、图形、公式等来确定数学结构。
5.要对模型进行分析,即用解方程、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明,得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性,必要时进行修改,调整参数,或者改换数学方法。
6.用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。
投资收益和风险的模型一 问题的描述某公司有数额为M (较大)的资金,可用作一个时期的投资,市场上现有5种资产(i S )(如债券、股票等)可以作为被选的投资项目,投资者对这五种资产进行评估,估算出在这一段时期内购买i S 的期望收益率(i r )、交易费率(i p )、风险损失率(i q )以及同期银行存款利率0r (0r =3%)在投资的这一时期内为定值如表1,不受意外因素影响,而净收益和总体风险只受i r ,i p ,i q 影响,不受其他因素干扰 。
现要设计出一种投资组合方案, 使净收益尽可能大, 风险尽可能小.表1投资项目i S 期望收益率(%)i r 风险损失率(%)i q交易费率(%)i p存银行0S3 0 0 1S27 2.4 1 2S 22 1.6 2 3S 25 5.2 4.5 4S 23 2.2 6.5 5S211.52其中0,1,2,3,4,5.i二 问题假设及符号说明2.1 问题假设(1)总体风险可用投资的这五种中最大的一个风险来度量;(2)在投资中,不考虑通货膨胀因素, 因此所给的i S 的期望收益率i r 为实际的平均收益率;(3)不考虑系统风险, 即整个资本市场整体性风险, 它依赖于整个经济的运行情况, 投资者无法分散这种风险, 而只考虑非系统风险, 即投资者通过投资种类的选择使风险有所分散;(4)不考虑投资者对于风险的心理承受能力。
2.2 符号说明i x :购买第i 种资产的资金数额占资金总额的百分比;i Mx :购买第i 种资产的资金数额; 0Mx :存银行的金额; ()i f x :交易费用; R :净收益;Q :总体风险; i ρ:第i 种投资的净收益率。
三 模型的分析与建立令交易费用,0()(0,1,,5)0,0i i i i i Mx p x f x i x >⎧==⎨=⎩则净收益为50(1)i i i R M r x M ==+-∑总体风险为05max i i i Q Mx q ≤≤=约束条件为55()iii i f x MxM ==+=∑∑可以简化约束条件为5(1)1iii p x=+=∑同时将5(1)i i i M M p x ==+∑代入,得555(1)(1)()i i i i i i i i i i R M r x M p x M r p x ====+-+=-∑∑∑略去M,原问题化为双目标决策问题:50max ()i i i i R x r p ==-∑05min max i i i Q x q ≤≤= (3.1)5(1)1s. t .00,1,,5i i i i p x x i =⎧+=⎪⎪⎨≥⎪⎪=⎩∑以下设0i i r p ->,否则不对该资产投资。
四 模型的求解4.1 固定R 使Q 最小的模型固定R 使Q 最小,将模型(3.1)化为05min max i i i Q q x ≤≤=,505(),(1)s. t . (1)1,(2)00,1,,5i i i i i i i i r p x R p x x i ==⎧-=⎪⎪⎪+=⎨⎪⎪≥⎪=⎩∑∑ (4.1)此模型又可改写为miny()()()()()()0001115550011551111s. t . 0,00,1,,5i i ir p x r p x r p x Rp x p x p x x q yx y i ⎧-+-++-=⎪++++++=⎪⎪≤⎨⎪≥≥⎪⎪=⎩令()(1)i i i i r p p ρ=-+,i ρ表示第i 种投资的净收益率,则i ρ必大于0ρ,否则, 若10ρρ≤, 则不对i S 投资, 因为对该项目投资纯收益率不如存银行, 而风险损失率又大于存银行。
将i ρ从小到大排序,设k ρ最大, 则易见对模型(4.1)的可行解必有k R ρ≤≤03.0.当03.0=R 时, 所有资金都存银行,0=Q ; 当k R ρ=时, 所有资金用于购买i S ,1kkq Q p =+;当k R ρ<<03.0时,有如下结论[7]。
结论:若0.03<R<k ρ,015(,,,)x x x 是模型(3.2.2)的最优解, 则1155x q x q ==[7]。
而对于固定收益使风险最小的模型来说,这结论也可换句话说:在前5项投资总额一定的前提下,各项投资的风险损失相等即112255x q x q x q ===时,总体风险最小[8]。
证:设125,,,y y y 是满足112255x q x q x q ===的一组解,即*112255y q y q y q Q ====。
显然此时*Q 为总体风险。
由于前5项投资总额M 是一定的,只要改变其中一项的值,便会导致总体风险增加。
(比如说将1y 的值增加为*1y 会使得**11y q Q >,总体风险显然增加;反之,若减小1y 的值,必然会导致另外一项或几项的值,总体风险自然增加。
)因此,当(0.03,)k R ρ∈时,可按以下步骤求出最优解:1)将(1)式和(2)式消去0x ;2)将i i Q x q =代入解出Q ;3)由i i Qx q =,15i ≤≤,5011(1)i ii x p x ==-+∑求出最优解。
所以,我们算得如下结果:(1)0.03R =时,0123451,0,0x x x x x x Q =======;(2)0.261.01R =时,0234510,11.01,0.0241.01x x x x x x Q =======; (3)(0.03,0.261.01)R ∈时,0.03,40.1721R Q -= 10.030.9641R x -=,20.030.6428R x -=,30.032.0889R x -=,40.030.8838R x -=,50.030.6026R x -=,0123451 1.01 1.02 1.045 1.065 1.02x x x x x x =-----。
事实上应用Lingo 软件可算得如下结果:表1收益R最小风险度Q投资i S 的资金百分比i x (0,1,2,3,4,5.i =)0x 1x 2x3x4x5x0.0300 0.0000 1.0000 0.0000 0.00000.00000.00000.00000.0400 0.00020.9397 0.0104 0.0156 0.0048 0.0113 0.01660.0500 0.0005 0.8793 0.0207 0.0311 0.0096 0.0226 0.0332 0.0600 0.0007 0.81900.03110.04670.01440.03390.04980.0700 0.0010 0.7587 0.0415 0.0622 0.0191 0.0453 0.0664 0.0800 0.00120.6984 0.0519 0.0778 0.0239 0.0566 0.08300.0900 0.0015 0.6380 0.0622 0.0933 0.0287 0.0679 0.0996 0.1000 0.00170.5777 0.0726 0.1089 0.0335 0.0792 0.11620.1100 0.0020 0.5174 0.0830 0.1245 0.0383 0.0905 0.1328 0.1200 0.00220.4571 0.0933 0.1400 0.0431 0.1018 0.14940.1300 0.0025 0.3967 0.1037 0.1556 0.0479 0.1131 0.1660 0.1400 0.00270.3364 0.1141 0.1711 0.0527 0.1245 0.18250.1500 0.0030 0.2761 0.1245 0.1867 0.0574 0.1358 0.1991 0.1600 0.00320.2158 0.1348 0.2023 0.0622 0.1471 0.21570.1700 0.0035 0.1554 0.1452 0.2178 0.0670 0.1584 0.2323 0.1800 0.00370.0951 0.1556 0.2334 0.0718 0.1697 0.24890.1900 0.0040 0.0348 0.1660 0.2489 0.0766 0.1810 0.2655 0.2000 0.00460.0000 0.1897 0.2846 0.0876 0.1097 0.30360.2100 0.0062 0.0000 0.2589 0.3884 0.1195 0.00000.2132 0.2200 0.00930.0000 0.3858 0.4160 0.1781 0.00000.0000 0.2300 0.0131 0.0000 0.5471 0.1800 0.2525 0.0000 0.0000 0.24000.01700.00000.7084 0.00000.2722 0.00000.00000.2500 0.0209 0.0000 0.8701 0.0000 0.1160 0.0000 0.0000 0.26/1.010.0238 0.00000.99010.00000.00000.00000.0000收益R最小风险度Q最小风险度Q 随收益R 的变化趋势图4.2 固定Q 使R 最大的模型固定Q 使R 最大,将模型(3.2.1)化为50max ()i i i i R r p x ==-∑,50,s. t .(1)1,0,(0,1,,5.)i i i i i i x q Q p x x i =≤⎧⎪⎪+=⎨⎪⎪≥=⎩∑(3.2.3)对于每一个Q ,用模型(3.2.3) 都能求出R , 由净收益率()(1)i i i i r p p ρ=-+, 直观上想到i ρ越大,i x 应尽量大,这种想法是正确的,可将其写为如下结论。