4-1运输问题的数学模型
- 格式:ppt
- 大小:503.00 KB
- 文档页数:14
数学建模之运输问题1. 引言运输问题是指在给定产地到销售地之间有若干个供应点和需求点的情况下,如何安排运输使得总运输成本最低。
这是一个经济管理中的经典问题,也是数学建模中常见的一个研究方向。
2. 问题描述假设有n个供应点和m个需求点,其中每个供应点的供应量和每个需求点的需求量已知,并且每个供应点到每个需求点的运输成本也已知。
我们的目标是确定供应点到需求点的运输量,使得总运输成本最小。
3. 模型建立为了建立数学模型,我们可以引入一个矩阵来表示供应点和需求点之间的运输成本。
设C为一个n行m列的矩阵,其中Cij表示供应点i到需求点j的运输成本。
我们需要引入决策变量X,其中Xij表示从供应点i到需求点j的运输量。
那么,目标函数可以定义为最小化总运输成本,即$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} X_{ij}$$同时,我们需要保证供应点和需求点的供需平衡,即满足每个供应点的供应量和每个需求点的需求量。
这可以表示为以下约束条件:1. 对于每个供应点i,有 $\sum_{j=1}^{m} X_{ij} = s_i$,其中$s_i$ 表示供应点i的供应量。
2. 对于每个需求点j,有 $\sum_{i=1}^{n} X_{ij} = d_j$,其中$d_j$ 表示需求点j的需求量。
进一步地,我们需要确保运输量的非负性,即$X_{ij} \geq 0$。
4. 求解方法对于较小规模的问题,我们可以使用线性规划方法求解运输问题。
线性规划是一种数学优化方法,可以在满足一定约束条件的前提下,使得目标函数达到最小值。
对于大规模的问题,我们可以使用近似算法或启发式算法进行求解。
这些算法可以快速找到较好的解,但不能保证找到最优解。
常用的算法包括模拟退火算法、遗传算法等。
5. 应用领域运输问题在许多实际应用中都有广泛的应用。
例如,在物流管理中,优化运输方案可以减少运输成本、提高运输效率;在生产计划中,合理安排运输可以确保供应链的稳定性和高效性。
运输问题的数学模型例题运输问题是指在运输过程中,如何最优地分配资源,使得运输成本最小,运输效率最高。
运输问题的数学模型包括最小化成本、最大化效益等多种形式。
下面我们来看一个例题。
问题描述:某物流公司有3个仓库和4个客户,每个仓库和客户之间的距离已知。
现在需要将货物从仓库运送到客户,每个客户需要的货物量也已知。
假设每个仓库的货物量都足够满足所有客户的需求,如何安排运输方案,使得总运输成本最小?解题思路:我们可以用线性规划来解决这个问题。
设每个仓库和客户之间的运输量为$x_{ij}$,其中$i$表示仓库编号,$j$表示客户编号。
则总运输成本可以表示为:$$%min %sum_{i=1}^3%sum_{j=1}^4 c_{ij}x_{ij}$$其中$c_{ij}$表示从仓库$i$到客户$j$的单位运输成本。
同时,对于每个客户$j$,要求其所需货物量$q_j$必须满足:$$%sum_{i=1}^3 x_{ij}=q_j$$对于每个仓库$i$,要求其供应的货物量$y_i$必须满足:$$%sum_{j=1}^4 x_{ij}=y_i$$另外,由于$x_{ij}$必须非负,所以还要满足:$$x_{ij}%geq 0$$综上所述,我们可以得到如下线性规划模型:$$%min %sum_{i=1}^3%sum_{j=1}^4 c_{ij}x_{ij}$$$$s.t.% %sum_{i=1}^3 x_{ij}=q_j,% j=1,2,3,4$$$$% % % % % % % % % %sum_{j=1}^4 x_{ij}=y_i,% i=1,2,3$$ $$% % % % % % % % % x_{ij}%geq 0,% i=1,2,3,% j=1,2,3,4$$这是一个标准的线性规划模型,可以用常见的线性规划求解器求解。
求解结果就是每个仓库和客户之间的运输量$x_{ij}$,以及总运输成本。
总结:运输问题是一个常见的优化问题,在实际生产和物流中经常会遇到。
管理运筹学运输问题引言运筹学是管理学的一个分支,旨在研究和开发决策支持工具和技术,以优化各种问题的决策过程。
其中,运输问题是运筹学领域中一个重要的问题之一,它涉及到如何有效地分配有限的资源,以实现最佳的运输方案。
本文将介绍管理运筹学中的运输问题,并探讨其解决方法。
运输问题概述运输问题是在给定供应地和需求地之间寻找最佳运输方案的数学模型。
一般来说,这个问题可以分为两个主要的组成部分:供应地和需求地。
•供应地:这是物品或产品的来源地,例如工厂或仓库。
每个供应地都有一定数量的可供应物品,同时还有一个运输成本与不同需求地之间的运输。
•需求地:这是物品或产品的目的地,例如商店或客户。
每个需求地都有一定数量的需求,同时还有一个运输成本与不同供应地之间的运输。
运输问题的目标是找到一种分配方案,以最小化总运输成本,并满足供应地和需求地的限制。
运输问题可以用数学模型描述,其中包括以下变量和约束条件:•变量:–xi:从第i个供应地运输的物品数量–yj:向第j个需求地运输的物品数量•约束条件:–供应地约束:∑xi ≤ si,其中si为第i个供应地可供应的物品数量–需求地约束:∑yj ≥ dj,其中dj为第j个需求地的需求物品数量–非负约束:xi ≥ 0,yj ≥ 0,物品数量不能为负数•目标函数:–最小化总运输成本:Minimize ∑(cij * xi * yj),其中cij为从供应地i到需求地j的单位运输成本这个数学模型可以通过线性规划方法进行求解,其中运输问题可以转化为标准线性规划问题,并使用相应的算法和技术进行求解。
求解运输问题的方法可以分为以下几种:1.传统方法:传统的方法包括北西角法、最小元素法、Vogel法等。
这些方法通过逐步分配物品数量,计算运输成本,并根据不同的策略进行调整,直到找到最优解。
2.网络流方法:网络流方法将运输问题转化为最小成本流问题,并利用网络流算法进行求解。
这些算法可以有效地处理大规模的运输问题,并提供较快的求解速度。
第四章运输问题4.1 运输问题的数学模型4.1.1 运输问题的模型本章研究物资的运输调度问题,其典型情况是:设某种物品有m个产地,A1,A2,…,A m;各产地的产量分别是a1,a2,…,a m;有n个销地B1,B2,…,B n;各销地的销量分别是b1,b2,…,b n;假定从产地向销地运输单位物品的运价是c ij;问:怎样调运这些物品才能使总运费最小?设变量ij x为第i个产地运往第j个销地的产品数量。
为直观起见,可将产品产地、销地的产销量以及运输物品的单价为一个汇总表,如表4-1所示。
表4-11A2A1B2BmAnB"#11c12c1n c2ncmnc2mc1mc21c22c11x12x1n x21x22x2n x1mx2m x mn x1a2ama1b2b n b"#如果运输问题的总产量等于其总销量,即有∑∑===njjmiiba11(4-1)则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。
产销平衡运输问题的数学模型可表示如下:m nij iji1i1nij ij1mij ji1ijmin z c xx a,i1,2,,mx b,j1,2,,nx0,i1,2,,m,j1,2,,n=====⎧==⎪⎪⎨⎪==⎪⎩≥==∑∑∑∑""""目标函数约束条件决策变量(4-2)其中,约束条件右侧常数a i,和b j,满足总量平衡条件。
在模型(4-2)中,目标函数表示运输总费用极小化;约束条件前m个约束条件的意义是:由某一产地运往各个销地的物品数量之和等于该产地的产量;中间n个约束条件是指由各产地运往某一销地的物品数量之和等于该销地的销量;后m×n个约束条件为变量非负条件。
运输问题模型是线性规划问题特例。
因而可用单纯形法求解,但是,需要引进很多个人工变量,计算量大而复杂。
应该寻求更简便的、更好的解法。
例4.1某公司经销甲产品。
运输问题运输问题(transportation problem)一般是研究把某种商品从若干个产地运至若干个销地而使总运费最小的一类问题。
然而从更广义上讲,运输问题是具有一定模型特征的线性规划问题。
它不仅可以用来求解商品的调运问题,还可以解决诸多非商品调运问题。
运输问题是一种特殊的线性规划问题,由于其技术系数矩阵具有特殊的结构,这就有可能找到比一般单纯形法更简便高效的求解方法,这正是单独研究运输问题的目的所在。
§1运输问题的数学模型[例4-1] 某公司经营某种产品,该公司下设A、B、C三个生产厂,甲、乙、丙、丁四个销售点。
公司每天把三个工厂生产的产品分别运往四个销售点,由于各工厂到各销售点的路程不同,所以单位产品的运费也就不同案。
各工厂每日的产量、各销售点每日的销量,以及从各工厂到各销售点单位产品的运价如表4-1所示。
问该公司应如何调运产品,在满足各销售点需要的前提下,使总运费最小。
表4-1设代表从第个产地到第个销地的运输量(;),用代表从第个产地到第个销地的运价,于是可构造如下数学模型:(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)通过该引例的数学模型,我们可以得出运输问题是一种特殊的线性规划问题的结论,其特殊性就在于技术系数矩阵是由“1”和“0”两个元素构成的。
将该引例的数学模型做一般性推广,即可得到有个产地、个销地的运输问题的一般模型。
注意:在此仅限于探讨总产量等于总销量的产销平衡运输问题,而产销不平衡运输问题将在本章的后续内容中探讨。
(;运出的商品总量等于其产量)(;运来的商品总量等于其销量)供应约束确保从任何一个产地运出的商品等于其产量,需求约束保证运至任何一个销地的商品等于其需求。
除非负约束外,运输问题约束条件的个数是产地与销地的数量和,即;而决策变量个数是二者的积,即。
由于在这个约束条件中,隐含着一个总产量等于总销量的关系式,所以相互独立的约束条件的个数是个。
运筹学运输问题例题数学建模运筹学是一门研究如何在有限的资源和多种约束条件下,寻求最优或近似最优解的科学。
运输问题是运筹学中的一个重要分支,它主要研究如何把某种商品从若干个产地运至若干个销地,使总的运费或总的运输时间最小。
本文将介绍运输问题的数学建模方法,以及用表上作业法求解运输问题的步骤和技巧。
同时,本文还将给出几个典型的运输问题的例题,帮助读者理解和掌握运输问题的求解过程。
运输问题的数学建模运输问题可以用以下的数学模型来描述:设有m 个产地(或供应地),分别记为A 1,A 2,…,A m ,每个产地i 的产量(或供应量)为a i ;有n 个销地(或需求地),分别记为B 1,B 2,…,B n ,每个销地j 的需求量为b j ;从产地i 到销地j 的单位运费(或单位运输时间)为c ij ;用x ij 表示从产地i 到销地j 的运量,则运输问题可以归结为以下的线性规划问题:其中,目标函数表示总的运费或总的运输时间,约束条件表示每个产地的供应量必须等于其产量,每个销地的需求量必须等于其销量,以及每条运输路线的运量不能为负数。
在实际问题中,可能出现以下几种情况:产销平衡:即∑m i =1a i =∑n j =1b j ,也就是说总的供应量等于总的需求量。
这种情况下,上述数学模型可以直接应用。
产大于销:即∑m i =1a i >∑n j =1b j ,也就是说总的供应量大于总的需求量。
这种情况下,可以增加一个虚拟的销地,其需求量等于供需差额,且其与各个产地的单位运费为零。
这样就可以把问题转化为一个产销平衡的问题。
产小于销:即∑m i =1a i <∑n j =1b j ,也就是说总的供应量小于总的需求量。
这种情况下,可以增加一个虚拟的产地,其产量等于供需差额,且其与各个销地的单位运费为零。
这样也可以把问题转化为一个产销平衡的问题。
弹性需求:即某些销地对商品的需求量不是固定不变的,而是随着商品价格或其他因素而变化。
运输问题的数学模型
运输问题是指将一定数量的物资从一个地点运输到另一个地点,
在实现最优运输方案的过程中,可能途径多个中间节点。
由于数据可
能很庞大,特别是考虑到影响运输成本的一系列不确定因素,因此,
将运输问题的解决变成一个数学优化模型就显得尤为重要。
数学优化模型是一种描述和尝试求解优化问题的表达型语言,其
中包括一系列变量、目标函数和约束。
根据优化原理,通常优化模型
可以定义为如下公式:
min/max f(x)
s.t. g(x,y) = 0
h(x,y) ≥ 0
其中,f(x)是目标函数,用来描述给定的优化问题的目标;g(x,y) = 0和h(x,y) ≥ 0分别是约束函数,用来限制优化变量的取值,以达到问题的最优解。
运输问题的数学模型包括以下三个部分:
首先,定义运输问题的优化变量。
一般来说,优化变量包括运输量、源点到各中间节点的运输量以及中间节点到收货站的运输量。
其次,描述给定优化变量的目标函数,也就是运输成本最低的最
优化目标,也称为最低成本目标函数:
Minimize Sum[i=1->n] (c(i,j)xij)
其中,c(i,j)是从源点i到收货点j的运输单价,xij是从源点i
到收货点j的运输量。
最后,定义运输问题的限制条件,比如发货量不能大于源点库存;收货量不能大于收货点需求;各中间节点运输出量不能大于运输入量,即xij-xji≥0。
由以上确定的运输问题数学模型,就可以通过解析或者随机算法
等方法进行优化,以获得最优运输解决方案,尽可能地降低运输成本。