1_2021年湖北省武汉市三中分配生数学试卷(含答案)(1)
- 格式:docx
- 大小:443.32 KB
- 文档页数:12
武汉三中寄宿中学新初一分班数学试卷含答案一、选择题1.订阅《中国少年报》的份数与所付的报款()。
A.成正比例B.成反比例C.不成比例2.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()。
A.B.C.D.3.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.一个三角形中,三个内角的度数比是2:3:5,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.如图,在相同的两个正方形里剪圆形,比较剩下部分的面积,结果是( )。
A.一样大B.甲大C.乙大D.无法确定6.观察立体图形 ,从右面看到的形状是( )A .B .C .7.在“某班男生人数是女生人数的45”中,以下说法错误的是( )。
A .女生人数是单位“1”B .女生比男生人数多15C .男生人数占全班人数的49D .男生比女生人数少158.如图,以点A 为圆心的圆内,三角形ABC 一定为等腰三角形。
做出这个判断是运用了圆的什么特征?( )A .圆的周长是它的直径的π倍B .同一个圆的直径相等C .同一个圆的直径为半径的2倍D .同一个圆的半径相等 9.一件商品提价10%以后又降价10%,现在这件商品的价格是原来价格的百分之几?正确的解答是( )A .110%B .90%C .100%D .99%10.已知22222233445522,33,44,55338815152424+=⨯+=⨯+=⨯+=⨯,若21010b b a a+=⨯,则+a b =( )。
A .19B .21C .99D .109 二、填空题11.23时=(______)分;4立方米30立方分米=(______)立方米。
武汉第三寄宿中学(汉阳三寄)初一入学数学分班试卷(时间:90分钟;满分:100分)一、填空题(每小题2分,共20分)。
1.90805300读作_______,改写成用“万”作单位的数是_______,省略万位后面的尾数约是_______。
2.甲数是24,甲、乙两数的最小公倍数是168,最大公约数是4,那么乙数是_______。
3.抽样检验一种商品,有38件合格,2件不合格,这种商品的合格率是_______。
4.250千克︰0.5吨化成最简整数比是_______,比值是_______。
5.一种精密零件长5毫米,把它画在比例尺是12︰1的图纸上,应画_______厘米。
6.13×______=_____÷18=____︰9=2。
7.一个圆柱的体积是12立方分米,4个与它等底等高的圆锥的体积是_______立方分米。
8.一个楼梯有7阶,上楼时每次可以跨一阶或两阶。
从地面到最上层共有_______种不同的走法。
9.为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成_______统计图。
10.六(1)班男生人数的13与女生人数的14共16人,女生人数的13和男生人数的14共19人,六(1)班共有_______人。
二、判断题(对的画“√”,错的画“×”。
每小题1分,共5分)。
11.一种商品先提价20%,然后又降价20%,结果与原价相等。
(▲) 12.所有的自然数不是质数就是合数。
(▲)。
13.锐角三角形中,如果一个角是30°,其余两个角可以是55°、95°。
(▲)14.一个圆柱体侧面展开后是一个正方形,这个圆柱体的底面直径与高的比是1︰π。
(▲)15.一个圆锥,底面直径和高都扩大到原来的2倍后,体积要扩大到原来的4倍。
(▲) 三、选择题(每小题2分,共10分)。
16.下列各组中,第一个数能被第二个数整除的是(▲)。
A.15÷3B.7÷14C.0.2÷0.517.一个半径是r 的半圆,它的周长是(▲)。
2021年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数﹣2的相反数是()A.2B.﹣2C.D.﹣2.(3分)式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x≤2C.x≥﹣2D.x≥23.(3分)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于64.(3分)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A.B.C.D.5.(3分)如图是由4个相同的正方体组成的立体图形,它的左视图是()A.B.C.D.6.(3分)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.(3分)若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>18.(3分)一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.389.(3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.(3分)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.(3分)计算﹣的结果是.14.(3分)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.15.(3分)抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=﹣4;②若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a﹣b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是(填写序号).16.(3分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(共8小题,共72分)17.(8分)计算:[a3•a5+(3a4)2]÷a2.18.(8分)如图直线EF分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(8分)为改善民生:提高城市活力,某市有序推行“地摊经济”改策.某社区志愿者随机抽取该社区部分居民,按四个类别:A表示“非常支持”,B表示“支持”,C表示“不关心”,D表示“不支持”,调查他们对该政策态度的情况,将结果绘制成如图两幅不完整的统计图.根据图中提供的信息,解决下列问题:(1)这次共抽取了名居民进行调查统计,扇形统计图中,D类所对应的扇形圆心角的大小是;(2)将条形统计图补充完整;(3)该社区共有2000名居民,估计该社区表示“支持”的B类居民大约有多少人?20.(8分)在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0).仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;(2)在线段AB上画点E,使∠BCE=45°(保留画图过程的痕迹);(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.21.(8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.22.(10分)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).23.(10分)问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB=4,AC=2,直接写出AD的长.24.(12分)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.2021年湖北省武汉市中考数学试卷试题解析一、选择题(共10小题,每小题3分,共30分)1.解:实数﹣2的相反数是2,故选:A.2.解:由题意得:x﹣2≥0,解得:x≥2,故选:D.3.解:∵两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3,∴从这两个口袋中分别摸出一个小球,两个小球的标号之和等于1,是不可能事件,不合题意;两个小球的标号之和等于6,是随机事件,符合题意;两个小球的标号之和大于1,是必然事件,不合题意;两个小球的标号之和大于6,是不可能事件,不合题意;故选:B.4.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.5.解:从左边看上下各一个小正方形.故选:A.6.解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,此不等式无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故选:B.8.解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5﹣(35﹣20)÷(16﹣4)=3.75(L/min),第24分钟时的水量为:20+(5﹣3.75)×(24﹣4)=45(L),a=24+45÷3.75=36.故选:C.9.解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.二、填空题(共6小题,每小题3分,共18分)11.解:==3.故答案为:3.12.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5,故答案为:4.5.13.解:原式=﹣===.故答案为:.14.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.15.解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(﹣4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=﹣4,故①正确;该抛物线的对称轴为直线x==﹣1,函数图象开口向下,若点C(﹣5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=﹣1时,函数取得最大值y=a﹣b+c,故对于任意实数t,总有at2+bt+c≤a﹣b+c,即对于任意实数t,总有at2+bt≤a﹣b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为﹣3和1或﹣2和0或﹣1和﹣1,故p的值有三个,故④错误;故答案为:①③.16.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(共8小题,共72分)17.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.证明:∵EM∥FN,∴∠FEM=∠EFN,∠BEF=∠CFE,又∵EM平分∠BEF,FN平分∠CFE,∴∠FEB=∠EFC,∴AB∥CD.19.解:(1)这次抽取的居民数量为9÷15%=60(名),扇形统计图中,D类所对应的扇形圆心角的大小是360°×=6°,故答案为:60,6°;(2)A类别人数为60﹣(36+9+1)=14(名),补全条形图如下:(3)估计该社区表示“支持”的B类居民大约有2000×=1200(名).20.解:(1)如图所示:线段CD即为所求;(2)如图所示:∠BCE即为所求;(3)连接AC,可得E是AB的,找到OA的七等分点,AF=OA,点F即为所求,如图所示:21.(1)证明:连接OD,如图,∵DE为切线,∴OD⊥DE,∵DE⊥AE,∴OD∥AE,∴∠1=∠ODA,∵OA=OD,∴∠2=∠ODA,∴∠1=∠2,∴AD平分∠BAE;(2)解:连接BD,如图,∵AB为直径,∴∠ADB=90°,∵∠2+∠ABD=90°,∠3+∠ABD=90°,∴∠2=∠3,∵sin∠1=,sin∠3=,而DE=DC,∴AD=BC,设CD=x,BC=AD=y,∵∠DCB=∠BCA,∠3=∠2,∴△CDB∽△CBA,∴CD:CB=CB:CA,即x:y=y:(x+y),整理得x2+xy+y2=0,解得x=y或x=y(舍去),∴sin∠3==,即sin∠BAC的值为.22.解:(1)由题意得:当产品的数量为0时,总成本也为0,即当x=0时,y=0,则有:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20﹣80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.23.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠ADM,∴∠BDC+∠CDM=∠ADM+∠ADC,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴AM===2,∴AD=.24.解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴x E+x F=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:x经过定点(0,2),即直线MN经过一个定点.。
2021年湖北省武汉市初中毕业生统一考试(中考)数学试卷及解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是( ) A .3B .3-C .13D .13-2.(3分)下列事件中是必然事件的是( ) A .抛掷一枚质地均匀的硬币,正面朝上 B .随意翻到一本书的某页,这一页的页码是偶数 C .打开电视机,正在播放广告D .从两个班级中任选三名学生,至少有两名学生来自同一个班级3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A.B.C.D.7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y钱,则下列方程正确的是()A.8(3)7(4)x x-=+B.8374x x+=-C.3487y y-+=D.3487y y+-=8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:)km与慢车行驶时间t(单位:)h的函数关系如图,则两车先后两次相遇的间隔时间是()A.53h B.32h C.75h D.43h9.(3分)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)计算2(5)-的结果是 .12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 . 城市 北京 上海 广州 重庆 成都 常住人口数万2189248718683205209413.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 .14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是(3 1.73nmile ≈,结果用四舍五入法精确到0.1).15.(3分)已知抛物线y =ax 2+bx +c (a ,b ,c 是常数),a +b +c =0.下列四个结论: ①若抛物线经过点(﹣3,0),则b =2a ; ②若b =c ,则方程cx 2+bx +a =0一定有根x =﹣2; ③抛物线与x 轴一定有两个不同的公共点;④点A (x 1,y 1),B (x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是 (填写序号).16.(3分)如图(1),在ABC ∆中,AB AC =,90BAC ∠=︒,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x AD =,y AE CD =+,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 .三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 ; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是 ,C 组所在扇形的圆心角的大小是 ; (2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h 的学生人数.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB 上画点E ,使2AE BE =,再过点E 画直线EF ,使EF 平分矩形ABCD 的面积;(2)在图(2)中,先画BCD ∆的高CG ,再在边AB 上画点H ,使BH D H =.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F . (1)求证:CE 是O 的切线; (2)若6DCDF=,求cos ABD ∠的值.22.(10分)在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系? 问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边). (1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.2021年湖北省武汉市初中毕业生统一考试(中考)数学参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)实数3的相反数是()A.3B.3-C.13D.13-【分析】直接利用相反数的定义分析得出答案.【解答】解:实数3的相反数是:3-.故选:B.2.(3分)下列事件中是必然事件的是()A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级【分析】根据事件发生的可能性大小判断即可.【解答】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.3.(3分)下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B .不是轴对称图形,是中心对称图形,故此选项不合题意;C .不是轴对称图形,是中心对称图形,故此选项不合题意;D .是轴对称图形,不是中心对称图形,故此选项不合题意; 故选:A .4.(3分)计算23()a -的结果是( ) A .6a -B .6aC .5a -D .5a【分析】根据幂的乘方的运算法则计算可得. 【解答】解:236()a a -=-, 故选:A .5.(3分)如图是由4个相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形. 故选:C .6.(3分)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( ) A .B .C .D .【分析】画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.【解答】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种, ∴两人恰好是一男一女的概率为=,故选:C .7.(3分)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( ) A .8(3)7(4)x x -=+ B .8374x x +=- C .3487y y -+=D .3487y y +-=【分析】根据人数=总钱数÷每人所出钱数,得出等式即可. 【解答】解:设物价是y 钱,根据题意可得: 3487y y +-=. 故选:D .8.(3分)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y (单位:)km 与慢车行驶时间t (单位:)h 的函数关系如图,则两车先后两次相遇的间隔时间是( )A .53hB .32hC .75hD .43h【分析】根据图象得出,慢车的速度为/6a km h ,快车的速度为/2akm h .从而得出快车和慢车对应的y 与t 的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.【解答】解:根据图象可知,慢车的速度为/6akm h . 对于快车,由于往返速度大小不变,总共行驶时间是4 h , 因此单程所花时间为2 h ,故其速度为/2akm h . 所以对于慢车,y 与t 的函数表达式为(06)6ay t t =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y 与t 的函数表达式为()()2(24),2646),2at t y a t t ⎧-<⋅⋅⋅⋅⋅⋅⋅⎪⎪=⎨⎪--⋅⋅⋅⋅⋅⋅⋅⎪⎩②③联立①②,可解得交点横坐标为3t =, 联立①③,可解得交点横坐标为 4.5t =, 因此,两车先后两次相遇的间隔时间是1.5, 故选:B .9.(3分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将沿BC 翻折交AB 于点D ,再将沿AB 翻折交BC 于点E .若=,设∠ABC =α,则α所在的范围是( )A .21.9°<α<22.3°B .22.3°<α<22.7°C .22.7°<α<23.1°D .23.1°<α<23.5°【分析】如图,连接AC ,CD ,DE .证明∠CAB =3α,利用三角形内角和定理求出α,可得结论. 【解答】解:如图,连接AC ,CD ,DE .∵=,∴ED =EB ,∴∠EDB =∠EBD =α, ∵==,∴AC =CD =DE ,∴∠DCE =∠DEC =∠EDB +∠EBD =2α, ∴∠CAD =∠CDA =∠DCE +∠EBD =3α, ∵AB 是直径, ∴∠ACB =90°, ∴∠CAB +∠ABC =90°, ∴4α=90°, ∴α=22.5°, 故选:B .10.(3分)已知a ,b 是方程2350x x --=的两根,则代数式3222671a a b b -+++的值是( ) A .25-B .24-C .35D .36【分析】根据一元二次方程解的定义得到2350a a --=,2350b b --=,即235a a =+,235b b =+,根据根与系数的关系得到3a b +=,然后整体代入变形后的代数式即可求得. 【解答】解:a ,b 是方程2350x x --=的两根, 2350a a ∴--=,2350b b --=,3a b +=, 235a a ∴-=,235b b =+, 3222671a a b b ∴-+++22(3)3571a a a b b =-++++10()6a b =++1036=⨯+36=.故选:D .二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(35 . 【分析】根据二次根式的性质解答.|5|5-=.12.(3分)我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是 2189 .【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可. 【解答】解:将这组数据重新排列为1868,2094,2189,2487,3205, 所以这组数据的中位数为2189, 故答案为:2189.13.(3分)已知点1(,)A a y ,2(1,)B a y +在反比例函数21(m y m x+=是常数)的图象上,且12y y <,则a 的取值范围是 10a -<< .【分析】根据反比例函数的性质分两种情况进行讨论,①当点1(,)A a y ,2(1,)B a y +在同一象限时,②当点1(,)A a y ,2(1,)B a y +在不同象限时.【解答】解:210k m =+>,∴反比例函数21(m y m x+=是常数)的图象在一、三象限,在每个象限,y 随x 的增大而减小, ①当1(,)A a y ,2(1,)B a y +在同一象限, 12y y <,此不等式无解;②当点1(,)A a y 、2(1,)B a y +在不同象限, 12y y <,0a ∴<,10a +>,解得:10a -<<, 故答案为10a -<<.14.(3分)如图,海中有一个小岛A .一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30︒方向上.小岛A 到航线BC 的距离是 10.4(3 1.73nmile ≈,结果用四舍五入法精确到0.1).【分析】过点A 作AE BD ⊥交BD 的延长线于点E ,根据三角形的外角性质得到BAD ABD ∠=∠,根据等腰三角形的判定定理得到AD AB =,根据正弦的定义求出AE 即可. 【解答】解:过点A 作AE BD ⊥交BD 的延长线于点E , 由题意得,60CBA ∠=︒,30EAD ∠=︒,30ABD ∴∠=︒,60ADE ∠=︒, 30BAD ADE ABD ∴∠=∠-∠=︒,BAD ABD ∴∠=∠,12AD AB nmile ∴==,在Rt ADE ∆中,sin AEADE AD∠=, sin 6310.4()AE AD ADE nmile ∴=⋅∠=, 故小岛A 到航线BC 的距离是10.4nmile , 故答案为10.4.15.(3分)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(﹣3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=﹣2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是①②④(填写序号).【分析】①由题意可得,抛物线的对称轴为直线x=﹣==﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,则=﹣,解得m=﹣2,即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(﹣3,0),∴抛物线的对称轴为直线x==﹣1,∴﹣=﹣1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,且二次函数y=cx2+bx+a过点(1,0),∴=﹣,解得m=﹣2,∴y=cx2+bx+a与x轴的另一个交点为(﹣2,0),即方程cx2+bx+a=0一定有根x=﹣2;故②正确;③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.16.(3分)如图(1),在ABC∠=︒,边AB上的点D从顶点A出发,向顶点B运BAC∆中,AB AC=,90动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x AD=,y AE CD=+,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是21-.【分析】观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造NBE CAD∆≅∆,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.【解答】解:图象过点(0,2),即当0x AD==时,点D与A重合,点E与B重合,此时2=+=+=,y AE CD AB AC∆为等腰直角三角形,ABC∴==,AB AC1过点A作AF BC=,如图所示:⊥于点F,过点B作NB BC⊥,并使得BN ACAD BE =,NBE CAD ∠=∠,()NBE CAD SAS ∴∆≅∆,NE CD ∴=,又y AE CD =+,y AE CD AE NE ∴=+=+,当A 、E 、N 三点共线时,y 取得最小值,如图所示,此时:AD BE x ==,1AC BN ==,2sin 45AF AC ∴=⋅︒=\又BEN FEA ∠=∠,NBE AFE ∠=∠NBE AFE ∴∆∆∽∴NB BEAF FE =22x=- 解得:21x =,∴21.21.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)解不等式组21,4101x x x x -⎧⎨+>+⋅⎩①②请按下列步骤完成解答.(1)解不等式①,得 1x - ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 .【分析】先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集. 【解答】解:21,4101x x x x -⎧⎨+>+⋅⎩①②(1)解不等式①,得1x -; (2)解不等式②,得3x >-;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是1x -. 故答案为:1x -;3x >-;1x -.18.(8分)如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F ,求证:DEF F ∠=∠.【分析】由平行线的性质得到DCF B ∠=∠,进而推出DCF D ∠=∠,根据平行线的判定得到//AD BC ,根据平行线的性质即可得到结论. 【解答】证明://AB CD ,DCF B ∴∠=∠,B D ∠=∠,DCF D ∴∠=∠, //AD BC ∴,DEF F ∴∠=∠.19.(8分)为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t (单位:)h ,按劳动时间分为四组:A 组“5t <”, B 组“57t <”, C 组“79t <”, D 组“9t ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是100,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.【分析】(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360︒即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.【解答】解:(1)这次抽样调查的样本容量是1010%100÷=,C组所在扇形的圆心角的大小是30360108100︒⨯=︒,故答案为:100,108︒;(2)B组的人数10015301045=---=(名),条形统计图如图所示,(3)30101500600100+⨯=(名).答:估计该校平均每周劳动时间不少于7h的学生人数为600.20.(8分)如图是由小正方形组成的57⨯网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使2AE BE=,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画BCD∆的高CG,再在边AB上画点H,使BH D H=.【分析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.21.(8分)如图,AB 是O 的直径,C ,D 是O 上两点,C 是BD 的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是O 的切线;(2)若6DC DF=,求cos ABD ∠的值.【分析】(1)连接OC 交BD 于点G ,可证明四边形EDGC 是矩形,可求得90ECG ∠=︒,进而可求CE 是O 的切线;(2)连接BC ,设FG x =,OB r =,利用6DC DF=,设DF t =,6DC t =,利用Rt BCG Rt BFC ∆∆∽的性质求出CG ,OG ,利用勾股定理求出半径,进而求解. 【解答】(1)证明:连接OC 交BD 于点G ,点C 是BD 的中点,∴由圆的对称性得OC 垂直平分BD , 90DGC ∴∠=︒,AB 是O 的直径,90ADB ∴∠=︒,90EDB ∴∠=︒,CE AE ⊥,90E∴∠=︒,∴四边形EDGC是矩形,90ECG∴∠=︒,CE OC∴⊥,CE∴是O的切线;(2)解:连接BC,设FG x=,OB r=,DCDF=设DF t=,DC=,由(1)得,BC CD=,BG GD x t==+, AB是O的直径,90ACB∴∠=︒,90BCG FCG∴∠+∠=︒,90DGC∠=︒,90CFB FCG∴∠+∠=︒,BCG CFB∴∠=∠,Rt BCG Rt BFC∴∆∆∽,2BC BG BF∴=⋅,2)()(2)x t x t∴=++解得1x t=,252x t=-(不符合题意,舍去),CG∴,OG r∴=,在Rt OBG∆中,由勾股定理得222OG BG OB+=,222()(2)r r r∴+=,解得r=,cosBGABDOB∴∠===.22.(10分)在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.【分析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.【解答】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得﹣=100,解得m=3,经检验m=3是方程的解,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x﹣30)[500﹣10(x﹣60)]=﹣10x2+1400x﹣33000,∴w关于x的函数解析式为:w=﹣10x2+1400x﹣33000;(3)由(2)知w=﹣10x2+1400x﹣33000=﹣10(x﹣70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a <70时,每天的最大利润为(﹣10a 2+1400a ﹣33000)元.23.(10分)问题提出如图(1),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC ∆内部,直线AD 与BE 于点F .线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在ABC ∆和DEC ∆中,90ACB DCE ∠=∠=︒,BC kAC =,(EC kDC k =是常数),点E 在ABC ∆内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【分析】(1)证明()ACD BCE SAS ∆≅∆,则CDE ∆为等腰直角三角形,故2DE EF CF ==,进而求解;(2)由(1)知,()ACD BCE SAS ∆≅∆,再证明()BCG ACF AAS ∆≅∆,得到GCF ∆为等腰直角三角形,则2GF CF ,即可求解;(3)证明BCE CAD ∆∆∽和BGC AFC ∆∆∽,得到BG BC GC k AF AC CF===,则BG kAF =,GC kFC =,进而求解. 【解答】解:(1)如图(2),90ACD ACE ∠+∠=︒,90ACE BCE ∠+∠=︒,BCE ACD ∴∠=∠,BC AC =,EC DC =,()ACD BCE SAS ∴∆≅∆,BE AD AF ∴==,EBC CAD ∠=∠,故CDE ∆为等腰直角三角形,故2DE EF CF==,则2BF BD BE ED AF CF==+=+;即2BF AF CF-=;(2)如图(1),由(1)知,()ACD BCE SAS∆≅∆,CAF CBE∴∠=∠,BE AF=,过点C作CG CF⊥交BF于点G,90FCE ECG∠+∠=︒,90ECG GCB∠+∠=︒,ACF GCB∴∠=∠,CAF CBE∠=∠,BC AC=,()BCG ACF AAS∴∆≅∆,GC FC∴=,BG AF=,故GCF∆为等腰直角三角形,则2GF CF,则2BF BG GF AF CF=+=,即2BF AF CF-=;(3)由(2)知,BCE ACD∠=∠,而BC kAC=,EC kDC=,即BC ECk AC CD==,BCE CAD∴∆∆∽,CAD CBE∴∠=∠,过点C作CG CF⊥交BF于点G,由(2)知,BCG ACF ∠=∠,BGC AFC ∴∆∆∽, ∴BG BC GC k AF AC CF ===, 则BG kAF =,GC kFC =,在Rt CGF ∆中,22222()1GF GC FC kFC FC k FC =+=+=+⋅, 则21BF BG GF kAF k FC =+=++⋅,即21BF kAF k FC -=+⋅.24.(12分)抛物线21y x =-交x 轴于A ,B 两点(A 在B 的左边).(1)ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标. ②如图(2),若点D 在抛物线上,且ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF (不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG FH +的值是定值.【分析】(1)①点A 向右平移1个单位向上平移3个单位得到点C ,而四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,即可求解; ②利用6ACE CEN AEM CNMA S S S S ∆∆∆=--=梯形,求出5m =-(舍去)或2,即可求解;(2)由225()5()5sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=,即可求解. 【解答】解:(1)对于21y x =-,令210y x =-=,解得1x =±,令0x =,则1y =-, 故点A 、B 的坐标分别为(1,0)-、(1,0),顶点坐标为(0,1)-, ①当32x =时,2514y x =-=, 由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C , 四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D , 则35122+=,517344+=, 故点D 的坐标为5(2,17)4;②设点(0,)C n ,点E 的坐标为2(,1)m m -,同理可得,点D 的坐标为2(1,1)m m n +-+,将点D 的坐标代入抛物线表达式得:221(1)1m n m -+=+-, 解得21n m =+,故点C 的坐标为(0,21)m +;连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则()()()()()2111112111212162222ACE CEN AEM ACED CNMA S S S S m m m m m m m m S ∆∆∆=--=+++-⨯+--+--==⎡⎤⎣⎦梯形,解得5m =-(舍去)或2, 故点E 的坐标为(2,3);(2)F 是原点O 关于抛物线顶点的对称点,故点F 的坐标为(0,2)-, 由点B 、F 的坐标得,直线BF 的表达式为22y x =-①, 同理可得,直线AF 的表达式为22y x =--②, 设直线l 的表达式为y tx n =+, 联立y tx n =+和21y x =-并整理得:210x tx n ---=, 直线l 与抛物线只有一个公共点,故△2()4(1)0t n =----=,解得2114n t =--, 故直线l 的表达式为2114y tx t =--③, 联立①③并解得24H t x +=, 同理可得,24G t x -=, 射线FA 、FB 关于y 轴对称,则AFO BFO ∠=∠,设AFO BFO α∠=∠=, 则sin sin OB AFO BFO BF α∠=∠====,则22)5()sin sin 44G H H G x x t t FG FH x x αα-+-+=+=-=-=。
武汉三中分班考试数学试题汇编一、填空题(6分×10=60分)1.。
2.。
3.如果A※B=4A+3B.例如2※4=4×2+3×4=20.那么(2※3)※(4※5)的值是。
4.甲、乙、丙、丁四人去买电视机,甲带的钱是另外三人所带总钱数的一半,乙所带的钱是另外三人所带总钱数的,丙所带的钱是另外三人所带总钱数的,丁带910元,四人所带的总钱数是元。
5.一个班有45人,喜欢体育活动的有29人,喜欢文艺活动的有23人,有5人对这两项都没有兴趣,求两种活动都喜欢的有人。
6.把两个相同的硬币放入一个3×3的方格的两个不相邻小方格上,一共有种放法。
7.三角形ABC为直角三角形,AB是圆的直径,并且AB=20厘米,如果阴影(I)的面积比阴影(II)的面积大19平方厘米,那么BC的长度是厘米。
8.商店一次进货6桶,重量分别为15千克、16千克、18千克、19千克、20千克、31千克。
上午卖出去2桶,下午卖出去3桶,下午卖得的钱数正好是上午的2倍。
剩下的一桶重千克。
9.甲、乙两地之间的道路分上坡和下坡两种路段,共24千米,小明上坡速度为4千米/时,下坡速度为6千米/时,去时用了4.5小时,则返回时用小时。
10.在线段AB之间加入了7个点,则共增加了条线段。
二、解答题(10分×4=40分)1.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.2.从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行使了120千米后,再将车速提高16,到达上海时恰好11:10,上海、南京两市间的路程是多少千米?3.有浓度为36%的盐水若干,加入一定数量的水后稀释成浓度为30%的盐水,如果再稀释成浓度为24%的盐水,还需要加的水量是上次加的水的几倍?4.如图所示,正方形ABCD的边长为12,直角梯形CEFG的上底、下底和高分别为4、14和15。
武汉三中2020分配生数学测试题测试时间:120分钟 分值:120分一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若1x +有意义,则字母x 的取值范围是( )A .x≥1B .x≠2C .x≥1且x =2D .x≥-1且x ≠2 2.当3x =-时,多项式33ax bx x ++=.那么当3x =时,它的值是( ) A .3- B .5- C .7 D .17-3.如果一个三角形的三边a 、b 、c ,满足2ab bc b ac +=+,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .不等边三角形 D .直角三角形 甲组 158 159 160 160 160 161 169 乙组 158159160161161163165A .甲组同学身高的众数是160B .乙组同学身高的中位数是161C .甲组同学身高的平均数是161D .两组相比,乙组同学身高的方差大 5.抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(2,0),对称轴是直线x =1,其图象的一部分如图所示,对于下列说法:其中正确的是( )①抛物线过原点; ②a ﹣b +c <0; ③2a +b +c =0; ④抛物线顶点为(1,2b); ⑤当x <1时,y 随x 的增大而增大; A .①②③ B .①③④ C .①④⑤ D .③④⑤ 6.化简:633633-++的结果是( )A .6B .6C .33D .327. 小雨利用几何画板探究函数y =()||ax b x c -⋅-图象,在他输入一组a ,b ,c 的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A .a >0,b >0,c=0B .a <0,b >0,c=0C .a >0,b=0,c=0D .a <0,b=0,c >0 8. 已知1abc =,2a b c ++=,2223a b c ++=,则111111ab c bc a ca b +++-+-+-的值为( )A .-1B .12-C .2D .23- 9.如图,在直角坐标系xoy 中,已知A (0,1),B (3,0),以线段AB 为边向上作菱形ABCD ,且点D 在y 轴上.若菱形ABCD 以每秒2个单位长度的速度沿射线AB 滑行,直至顶点D 落在x 轴上时停止.设菱形落在x 轴下方部分的面积为S ,则表示S 与滑行时间t 的函数关系的图象为( )10.如图,在正方形ABCD 中,对角线AC BD 、相交于点O ,以AD 为边向外作等边6ADE AE =,,连接,CE 交BD 于,F 若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分AMC ∠,下列选项正确的有( ) ①31DF =-; ②()3132AECS+=;③60AMC =︒∠; ④2CM AM MF +=A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共18分)11.如图,点O为边长为2的正方形的中心,⊙O半径为1,则∠AED的正切值为_____.12.已知222233+=,333388+=,44441515+=,…,若99a ab b+=(a,b均为实数),则根据以上规律ab的值为__________.13.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形'''AB C D,图中阴影部分的面积为_________.14.若数a使关于x的不等式组36222()4xxx a x+⎧<+⎪⎨⎪-+⎩的解集为x<﹣2,且使关于y的分式方1311--=-++y ay y的解为负数,则符合条件的所有整数a有个。
2021年湖北省武汉市中考数学试卷一.选择题(共12小题)1.(2021武汉)在2.5,﹣2.5,0,3这四个数种,最小的数是()A. 2.5 B.﹣2.5 C. 0 D. 3考点:有理数大小比较。
解答:解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.2.(2021武汉)若在实数范围内有意义,则x的取值范围是()A. x<3 B. x≤3 C. x>3 D. x≥3考点:二次根式有意义的条件。
解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.3.(2021武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。
解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2021武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3 考点:随机事件。
解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2021武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B. 2 C. 3 D. 1考点:根与系数的关系。
解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.6.(2021武汉)某市2021年在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。
解答:解:23万=230 000=2.3×105.故选B.7.(2021武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。
2021年湖北省武汉市中考数学试卷解析2021年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑..(3分后)(2021•武汉)若代数式在实数范围内有意义,则x的取值范围是()6.(3分后)(2021•武汉)例如图,在直角坐标系则中,存有两点a(6,3),b (6,0),以原点o位似中心,相似比为,在第一象限内把线段ab缩小后得到线段cd,则点c的坐标为()7.(3分后)(2021•武汉)例如图,就是由一个圆柱体和一个长方体共同组成的几何体.其主视图就是()8.(3分)(2021•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()9.(3分后)(2021•武汉)在反比例函数y=图象上有两点a(x1,y1),b(x2,y2),10.(3分后)(2021•武汉)例如图,△abc,△efg均就是边长为2的等边三角形,点d是边bc、ef的中点,直线ag、fc相交于点m.当△efg绕点d旋转时,线段bm长的最小值是()二、填空题(共6小题,每小题3分后,共18分后)恳请将答案填上在答题卡对应题号的边线上.11.(3分后)(2021•武汉)排序:﹣10+(+6)=.12.(3分)(2021•武汉)中国的领水面积约为370000km,将数370000用科学记数法表示为.13.(3分)(2021•武汉)一组数据2,3,6,8,11的平均数是.14.(3分)(2021•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段oa和射线ab组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.15.(3分后)(2021•武汉)定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=.16.(3分后)(2021•武汉)例如图,∠aob=30°,点m、n分别在边oa、ob上,且om=1,on=3,点p、q分别在边ob、oa上,则mp+pq+qn的最小值就是.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2021•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)谋关于x的不等式kx+3≤6的边值问题.18.(8分后)(2021•武汉)例如图,点b、c、e、f在同一直线上,bc=ef,ac⊥bc于点c,df⊥ef于点f,ac=df.澄清:(1)△abc≌△def;(2)ab∥de.19.(8分)(2021•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,轻易写下“掏出的小球标号就是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次抽出标号就是1的小球且第二次抽出标号就是2的小球的概率.20.(8分)(2021•武汉)如图,已知点a(﹣4,2),b(﹣1,﹣2),平行四边形abcd的对角线交于坐标原点o.(1)恳请轻易写下点c、d的座标;(2)写出从线段ab到线段cd的变换过程;(3)直接写出平行四边形abcd的面积.21.(8分后)(2021•武汉)例如图,ab就是⊙o的直径,∠abt=45°,at=ab.(1)澄清:at就是⊙o的切线;(2)连接ot交⊙o于点c,连接ac,求tan∠tac.22.(10分后)(2021•武汉)未知锐角△abc中,边bc短为12,低ad短为8.(1)如图,矩形efgh的边gh在bc边上,其余两个顶点e、f分别在ab、ac边上,ef交ad于点k.①求②设eh=x,矩形efgh的面积为s,谋s与x的函数关系式,ZR19s的最大值;(2)若ab=ac,正方形pqmn的两个顶点在△abc一边上,另两个顶点分别在△abc的另两边上,直接写出正方形pqmn的边长.23.(10分后)(2021•武汉)例如图,△abc中,点e、p在边ab上,且ae=bp,过点e、p作bc的平行线,分别交ac于点f、q,记△aef的面积为s1,四边形efqp的面积为s2,四边形pqcb的面积为s3.(1)澄清:ef+pq=bc;(2)若s1+s3=s2,求(3)若s3+s1=s2,轻易写下24.(12分)(2021•武汉)已知抛物线y=x+c与x轴交于a(﹣1,0),b两点,交y轴于点c.(1)谋抛物线的解析式;(2)点e(m,n)就是第二象限内一点,过点e作ef⊥x轴交抛物线于点f,过点f作fg⊥y轴于点g,相连接ce、cf,若∠cef=∠cfg.谋n的值并轻易写下m的值域范围(利用图1顺利完成你的探究).(3)如图2,点p是线段ob上一动点(不包括点o、b),pm⊥x轴交抛物线于点m,∠obq=∠omp,bq交直线pm于点q,设点p的横坐标为t,求△pbq的周长.2021年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分后,共30分后)以下各题中均存有四个候选答案,其中存有且只有一个就是恰当的,恳请在答题卡上将恰当答案的代号涂黑.2.(3分)(2021•武汉)若代数式在实数范围内有意义,则x的取值范围是()6.(3分后)(2021•武汉)例如图,在直角坐标系则中,存有两点a(6,3),b(6,0),以原点o位似中心,相近比为,在第一象限内把线段ab增大后获得线段cd,则点c的座标为()7.(3分)(2021•武汉)例如图,就是由一个圆柱体和一个长方体共同组成的几何体.其主视图就是()8.(3分)(2021•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()9.(3分后)(2021•武汉)在反比例函数y=图象上有两点a(x1,y1),b(x2,y2),分后)(2021•武汉)例如图,△abc,△efg均就是边长为2的等边三角形,点d就是边bc、ef的中点,直线ag、fc平行于点m.当△efg绕点d转动时,线段bm短的最小值就是()二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2021•武汉)计算:﹣10+(+6)=﹣4.12.(3分)(2021•武汉)中国的领水面积约为370000km,将数370000用科学记数法表示为3.7×10.13.(3分)(2021•武汉)一组数据2,3,6,8,11的平均数是.14.(3分后)(2021•武汉)如图所示,出售一种苹果,所退款金额y(元)与购买量x(千克)之间的函数图象由线段oa和射线ab共同组成,则一次出售3千克这种苹果比分三次每次出售1千克这种苹果可以节省元.15.(3分)(2021•武汉)定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=10.16.(3分后)(2021•武汉)例如图,∠aob=30°,点m、n分别在边oa、ob上,且om=1,on=3,点p、q分别在边ob、oa上,则mp+pq+qn的最小值就是三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分后)(2021•武汉)未知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)谋关于x的不等式kx+3≤6的边值问题.18.(8分)(2021•武汉)如图,点b、c、e、f在同一直线上,bc=ef,ac⊥bc于点c,df⊥ef于点f,ac=df.求证:(1)△abc≌△def;(2)ab∥de.19.(8分后)(2021•武汉)一个不透明化的口袋中存有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后摆回去,再随机捏出来一个小球,轻易写下以下结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次抽出标号就是1的小球且第二次抽出标号就是2的小球的概率.20.(8分)(2021•武汉)如图,已知点a(﹣4,2),b(﹣1,﹣2),平行四边形abcd的对角线交于坐标原点o.(1)恳请轻易写下点c、d的坐标;(2)写下从线段ab至线段cd的转换过程;(3)直接写出平行四边形abcd的面积.21.(8分后)(2021•武汉)例如图,ab就是⊙o的直径,∠abt=45°,at=ab.(1)求证:at是⊙o的切线;(2)相连接ot交⊙o于点c,相连接ac,谋tan∠tac.22.(10分)(2021•武汉)已知锐角△abc中,边bc长为12,高ad长为8.(1)例如图,矩形efgh的边gh在bc边上,其余两个顶点e、f分别在ab、ac边上,ef交ad于点k.②设eh=x,矩形efgh的面积为s,求s与x的函数关系式,并求s的最大值;(2)若ab=ac,正方形pqmn的两个顶点在△abc一边上,另两个顶点分别在△abc的另两边上,轻易写下正方形pqmn的边长.23.(10分)(2021•武汉)如图,△abc中,点e、p在边ab上,且ae=bp,过点e、p作bc的平行线,分别交ac于点f、q,记△aef的面积为s1,四边形efqp的面积为s2,四边形pqcb的面积为s3.(1)澄清:ef+pq=bc;(2)若s1+s3=s2,求的值;的值.(3)若s3+s1=s2,轻易写下24.(12分)(2021•武汉)已知抛物线y=x+c与x轴交于a(﹣1,0),b两点,交y轴于点c.2(1)谋抛物线的解析式;(2)点e(m,n)是第二象限内一点,过点e作ef⊥x轴交抛物线于点f,过点f作fg⊥y轴于点g,连接ce、cf,若∠cef=∠cfg.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)例如图2,点p就是线段ob上一动点(不包括点o、b),pm⊥x轴交抛物线于点m,∠obq=∠omp,bq交直线pm 于点q,设点p的横坐标为t,求△pbq的周长.第21页(共23页)第22页(共23页)2021年7月23日第23页(共23页)。
2021年湖北省武汉市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数3的相反数是()A. 3B. −3C. 13D. −132.下列事件中是必然事件的是()A. 抛掷一枚质地均匀的硬币,正面朝上B. 随意翻到一本书的某页,这一页的页码是偶数C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.计算(−a2)3的结果是()A. a6B. −a6C. −a5D. a55.如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A. 13B. 12C. 23D. 347.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y 钱,则下列方程正确的是()A. 8(x−3)=7(x+4)B. 8x+3=7x−4C. y−38=y+47D. y+38=y−478.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:ℎ)的函数关系如图,则两车先后两次相遇的间隔时间是()A. 53ℎ B. 32ℎ C. 75ℎ D. 43ℎ9.如图,AB是⊙O的直径,BC是⊙O的弦,先将BC⏜沿BC翻折交AB于点D,再将BD⏜沿AB翻折交BC于点E.若BE⏜=DE⏜,设∠ABC=α,则α所在的范围是()A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5°10.已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是()A. −25B. −24C. 35D. 36二、填空题(本大题共6小题,共18.0分)11.化简√(−5)2的结果是______.12.我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是______ .城市 北京 上海 广州 重庆 成都 常住人口数万 2189248718683205209413. 已知点A(a,y 1),B(a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是______ .14. 如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A 在北偏东60°方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30°方向上.小岛A 到航线BC 的距离是______ nmile(√3≈1.73,结果用四舍五入法精确到0.1).15. 已知抛物线y =ax 2+bx +c(a,b ,c 是常数),a +b +c =0.下列四个结论:①若抛物线经过点(−3,0),则b =2a ;②若b =c ,则方程cx 2+bx +a =0一定有根x =−2; ③抛物线与x 轴一定有两个不同的公共点;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是______ (填写序号).16. 如图(1),在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD ,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是______ .三、解答题(本大题共8小题,共72.0分)17. 解不等式组{2x ≥x −1,①4x +10>x +1.②请按下列步骤完成解答.(1)解不等式①,得______ ; (2)解不等式②,得______ ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是______ .18.如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.19.为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:ℎ),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是______ ,C组所在扇形的圆心角的大小是______ ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.21.如图,AB是⊙O的直径,C,D是⊙O上两点,C是BD⏜的中点,过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⊙O的切线;=√6,求cos∠ABD的值.(2)若DCDF22.在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.23.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E 在△ABC内部,直线AD与BE于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.抛物线y=x2−1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是3,直接写出点A,D的坐标.2②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+ FH的值是定值.答案和解析1.【答案】B【知识点】实数的性质、相反数【解析】解:实数3的相反数是:−3.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【答案】D【知识点】随机事件【解析】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【知识点】利用轴对称设计图案、利用旋转设计图案【解析】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了利用轴对称设计图案和利用旋转设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【知识点】幂的乘方与积的乘方【解析】解:(−a2)3=−a6,故选:B.根据幂的乘方的运算法则计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是掌握幂的乘方法则:底数不变,指数相乘与积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.5.【答案】C【知识点】简单组合体的三视图【解析】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形.故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.【答案】C【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,∴两人恰好是一男一女的概率为812=23,故选:C.画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】D【知识点】由实际问题抽象出一元一次方程【解析】解:设物价是y钱,根据题意可得:y+3 8=y−47.故选:D.根据人数=总钱数÷每人所出钱数,得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确找出等量关系是解题关键.8.【答案】B【知识点】一次函数的应用【解析】解:根据图象可知,慢车的速度为a6 km/ℎ.对于快车,由于往返速度大小不变,总共行驶时间是4ℎ,因此单程所花时间为2h,故其速度为a2 km/ℎ.所以对于慢车,y与t的函数表达式为y=a6t (0≤t≤6)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y与t的函数表达式为y={a2(t−2)(2≤t<4)⋅⋅⋅⋅⋅⋅⋅②,−a2(t−6)4≤t≤6)⋅⋅⋅⋅⋅⋅⋅③,联立①②,可解得交点横坐标为t=3,联立①③,可解得交点横坐标为t=4.5,因此,两车先后两次相遇的间隔时间是1.5,故选:B.根据图象得出,慢车的速度为a6 km/ℎ,快车的速度为a2 km/ℎ.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.9.【答案】B【知识点】翻折变换(折叠问题)、圆周角定理、圆心角、弧、弦的关系【解析】解:如图,连接AC,CD,DE.∵ED⏜=EB⏜,∴ED=EB,∴∠EDB=∠EBD=α,∵AC⏜=CD⏜=DE⏜,∴AD=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α,可得结论.本题考查翻折变换,圆周角定理,等腰三角形的判定和性质,三角形内角和定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.【答案】D【知识点】代数式求值、一元二次方程的根与系数的关系*【解析】解:∵a,b是方程x2−3x−5=0的两根,∴a2−3a−5=0,b2−3b−5=0,a+b=3,∴a2−3a=5,b2=3b+5,∴2a3−6a2+b2+7b+1=2a(a2−3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.故选:D.根据一元二次方程解的定义得到a2−3a−5=0,b2−3b−5=0,即a2=3a+5,b2= 3b+5,根据根与系数的关系得到a+b=3,然后整体代入变形后的代数式即可求得.本题考查了根与系数的关系的知识,解答本题要掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1⋅x2=ca.也考查了一元二次方程解的定义.11.【答案】5【知识点】二次根式的性质【解析】解:√(−5)2=|−5|=5.根据二次根式的性质解答.解答此题,要弄清二次根式的性质:√a2=|a|的运用.12.【答案】2189【知识点】中位数【解析】解:将这组数据重新排列为1868,2094,2189,2487,3205,所以这组数据的中位数为2189,故答案为:2189.将这组数据从小到大重新排列,再根据中位数的定义求解即可.本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】−1<a<0【知识点】反比例函数图象上点的坐标特征【解析】解:∵k=m2+1>0,∴反比例函数y=m2+1(m是常数)的图象在一、三象限,在每个象限,y随x的增大而减x小,①当A(a,y1),B(a+1,y2)在同一象限,∵y1<y2,∴a>a+1,此不等式无解;②当点A(a,y1)、B(a+1,y2)在不同象限,∵y1<y2,∴a<0,a+1>0,解得:−1<a<0,故答案为−1<a<0.根据反比例函数的性质分两种情况进行讨论,①当点A(a,y1),B(a+1,y2)在同一象限时,②当点A(a,y1),B(a+1,y2)在不同象限时.此题主要考查了反比例函数图象上点的坐标特征,分类讨论是解题的关键.14.【答案】10.4【知识点】解直角三角形的应用【解析】解:过点A作AE⊥BD交BD的延长线于点E,由题意得,∠CBA=60°,∠EAD=30°,∴∠ABD=30°,∠ADE=60°,∴∠BAD=∠ADE−∠ABD=30°,∴∠BAD=∠ABD,∴AD=AB=12nmile,,在Rt△ADE中,sin∠ADE=AEAD∴AE=AD⋅sin∠ADE=6√3≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.过点A作AE⊥BD交BD的延长线于点E,根据三角形的外角性质得到∠BAD=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据正弦的定义求出AE即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】①②④【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、二次函数图象与系数的关系、一元二次方程的根与系数的关系*、根的判别式【解析】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(−3,0),∴抛物线的对称轴为直线x=1+(−3)2=−1,∴−b2a=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,且二次函数y=cx2+bx+a过点(1,0),∴1+m2=−12,解得m=−2,∴y=cx2+bx+a与x轴的另一个交点为(−2,0),即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.①由题意可得,抛物线的对称轴为直线x=b2a =1+(−3)2=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,则1+m2=−12,解得m=−2,即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.本题考查了二次函数图象与系数的关系,根与系数的关系,二次函数图象与x轴的交点等问题,掌握相关知识是解题基础..16.【答案】√2−1【知识点】动点问题的函数图象【解析】解:∵图象过点(0,2),即当x=AD=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC⋅sin45°=√2,2∖又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE∴NBAF =BEFE,即1√22=x√22−x,解得:x=√2−1,∴图象最低点的横坐标为:√2−1.故答案为:√2−1.观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造△NBE≌△CAD,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.本题考查动点问题的函数图象,通过分析动点位置结合函数图象推出AB、AC的长再通过构造三角形全等找到最小值是解决本题的关键.17.【答案】x≥−1x>−3x≥−1【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:{2x≥x−1,①4x+10>x+1.②(1)解不等式①,得x≥−1;(2)解不等式②,得x>−3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x≥−1.故答案为:x≥−1;x>−3;x≥−1.先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集.本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.18.【答案】证明:∵AB//CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD//BC,∴∠DEF=∠F.【知识点】平行线的性质【解析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD//BC,根据平行线的性质即可得到结论.本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定是解决问题的关键.19.【答案】100 108°【知识点】加权平均数、扇形统计图、总体、个体、样本、样本容量、用样本估计总体、条形统计图【解析】解:(1)这次抽样调查的样本容量是10÷10%=100,=108°,C组所在扇形的圆心角的大小是360°×30100故答案为:100,108°;(2)B组的人数=100−15−30−10=45(名),条形统计图如图所示,(3)1500×30+10=600(名).100答:估计该校平均每周劳动时间不少于7h的学生人数为600.(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360°即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.【知识点】尺规作图与一般作图、矩形的性质【解析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.本题考查作图−应用与设计作图,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】(1)证明:连接OC交BD于点G,∵点C是BD⏜的中点,∴由圆的对称性得OC垂直平分BD,∴∠DGC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°,∵CE⊥AE,∴∠E=90°,∴四边形EDGC是矩形,∴∠ECG=90°,∴CE⊥OC,∴CE是⊙O的切线;(2)解:连接BC,设FG=x,OB=r,∵DC=√6,DF设DF=t,DC=√6t,由(1)得,BC=CD=√6t,BG=GD=x+t,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCG+∠FCG=90°,∵∠DGC=90°,∴∠CFB+∠FCG=90°,∴∠BCG=∠CFB,∴Rt△BCG∽Rt△BFC,∴BC2=BG⋅BF,∴(√6t)2=(x+t)(x+2t)解得x1=t,x2=−52t(不符合题意,舍去),∴CG=√BC2−BG2=√(√6)2−(2t)2=√2t,∴OG=r−√2t,在Rt△OBG中,由勾股定理得OG2+BG2=OB2,∴(r−√2t)2+(2r)2=r2,解得r=3√22t,∴cos∠ABD=BGOB =3√22t=2√23.【知识点】解直角三角形、切线的判定与性质、圆周角定理、相似三角形的判定与性质【解析】(1)连接OC交BD于点G,可证明四边形EDGC是矩形,可求得∠ECG=90°,进而可求CE是⊙O的切线;(2)连接BC,设FG=x,OB=r,利用DCDF=√6,设DF=t,DC=√6t,利用Rt△BCG∽Rt△BFC的性质求出CG,OG,利用勾股定理求出半径,进而求解.本题综合考查了圆周角定理,勾股定理,切线的性质等知识,解决本题的关键是能够利用圆的对称性,得到垂直平分,利用相似与勾股定理的性质求出边,即可解答.22.【答案】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得900m −9001.5m=100,解得m=3,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x−30)[500−10(x−60)]=−10x2+1400x−33000,∴w关于x的函数解析式为:w=−10x2+1400x−33000;(3)由(2)知w=−10x2+1400x−33000=−10(x−70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a<70时,每天的最大利润为(−10a2+1400a−33000)元.【知识点】分式方程的应用、二次函数的应用【解析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.本题主要考查二次函数的性质和分式方程,熟练应用二次函数求最值是解题的关键.23.【答案】解:(1)如图(2),∵∠ACD+∠ACE=90°,∠ACE+∠BCE=90°,∴∠BCE=∠ACD,∵BC=AC,EC=DC,∴△ACD≌△BCE(SAS),∴BE=AD=AF,∠EBC=∠CAD,故△CDE为等腰直角三角形,故DE=EF=√2CF,则BF=BD=BE+ED=AF+√2CF;即BF−AF=√2CF;(2)如图(1),由(1)知,△ACD≌△BCE(SAS),∴∠CAF=∠CBE,BE=AF,过点C作CG⊥CF交BF于点G,∵∠FCE+∠ECG=90°,∠ECG+∠GCB=90°,∴∠ACF=∠GCB,∵∠CAF=∠CBE,BC=AC,∴△BCG≌△ACF(AAS),∴GC=FC,BG=AF,故△GCF为等腰直角三角形,则GF=√2CF,则BF=BG+GF=AF+√2CF,即BF−AF=√2CF;(3)由(2)知,∠BCE=∠ACD,而BC=kAC,EC=kDC,即BCAC =ECCD=k,∴△BCE∽△CAD,∴∠CAD=∠CBE,过点C作CG⊥CF交BF于点G,由(2)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴BGAF =BCAC=k=GCCF,则BG=kAF,GC=kFC,在Rt△CGF中,GF=√GC2+FC2=√(kFC)2+FC2=√k2+1⋅FC,则BF=BG+GF=kAF+√k2+1⋅FC,即BF−kAF=√k2+1⋅FC.【知识点】相似形综合【解析】(1)证明△ACD≌△BCE(SAS),则△CDE为等腰直角三角形,故DE=EF=√2CF,进而求解;(2)由(1)知,△ACD≌△BCE(SAS),再证明△BCG≌△ACF(AAS),得到△GCF 为等腰直角三角形,则GF =√2CF ,即可求解; (3)证明△BCE∽△CAD 和△BGC∽△AFC ,得到BG AF =BC AC =k =GC CF ,则BG =kAF ,GC =kFC ,进而求解.本题是相似形综合题,主要考查了三角形全等和相似、勾股定理的运用等,综合性强,难度适中. 24.【答案】解:(1)对于y =x 2−1,令y =x 2−1=0,解得x =±1,令x =0,则y =−1, 故点A 、B 的坐标分别为(−1,0)、(1,0),顶点坐标为(0,−1),①当x =32时,y =x 2−1=54,由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C ,∵四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,则32+1=52,54+3=174,故点D 的坐标为(52,174);②设点C(0,n),点E 的坐标为(m,m 2−1),同理可得,点D 的坐标为(m +1,m 2−1+n),将点D 的坐标代入抛物线表达式得:m 2−1+n =(m +1)2−1,解得n =2m +1,故点C 的坐标为(0,2m +1);连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则S △ACE =S 梯形CNMA −S △CEN −S △AEM =12(m +1+m)(2m +1)−12×(m +1)(m 2−1)−12m[2m +1−(m2−1)]=12S ▱ACED =6,解得m=−5(舍去)或2,故点E的坐标为(2,3);(2)∵F是原点O关于抛物线顶点的对称点,故点F的坐标为(0,−2),由点B、F的坐标得,直线BF的表达式为y=2x−2①,同理可得,直线AF的表达式为y=−2x−2②,设直线l的表达式为y=tx+n,联立y=tx+n和y=x2−1并整理得:x2−tx−n−1=0,∵直线l与抛物线只有一个公共点,故△=(−t)2−4(−n−1)=0,解得n=−14t2−1,故直线l的表达式为y=tx−14t2−1③,联立①③并解得x H=t+24,同理可得,x G=t−24,∵射线FA、FB关于y轴对称,则∠AFO=∠BFO,设∠AFO=∠BFO=α,则sin∠AFO=∠BFO=OBBF =√1+22=√5=sinα,则FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5为常数.【知识点】二次函数综合【解析】(1)①点A向右平移1个单位向上平移3个单位得到点C,而四边形ACDE为平行四边形,故点E向右平移1个单位向上平移3个单位得到点D,即可求解;②利用S△ACE=S梯形CNMA−S△CEN−S△AEM=6,求出m=−5(舍去)或2,即可求解;(2)由FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
绝密★启用前2021年湖北省武汉市中考数学试卷第I 卷 (选择题)一、 选择题(共10题) 1. 实数3的相反数是( )A.3B.−3C.13D.−132. 下列事件中是必然事件的是( )A.抛掷一枚质地均匀的硬币,正面朝上B.随意翻到一本书的某页,这一页的页码是偶数C.打开电视机,正在播放广告D.从两个班级中任选三名学生,至少有两名学生来自同一个班级3. 下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.4. 计算(−a 2)3的结果是( )A.a 6B.−a 6C.−a 5D.a 55. 如图是由4个相同的小正方体组成的几何体,它的主视图是( )A.B.C.D.6. 学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )A.13B.12C.23D.347. 我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A.8(x −3)=7(x +4)B.8x +3=7x −4C.y−38=y+47 D.y+38=y−478. 一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:ℎ)的函数关系如图,则两车先后两次相遇的间隔时间是( )A.53ℎB.32ℎC.75ℎD.43ℎ 9. 如图,AB 是⊙O 的直径,BC 是⊙O 的弦,先将BC ⏜沿BC 翻折交AB 于点D ,再将BD ⏜沿AB 翻折交BC 于点E.若BE⏜=DE ⏜,设∠ABC =α,则α所在的范围是( )A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°10. 已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是( )A.−25B.−24C.35D.36第Ⅱ卷(非选择题)二、填空题(共6题)11. 化简的结果是______.12. 我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是______ .城市北京上海广州重庆成都常住人口数万2189248718683205209413. 已知点A(a,y1),B(a+1,y2)在反比例函数y=m 2+1x(m是常数)的图象上,且y1<y2,则a的取值范围是______ .14. 如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A在北偏东60°方向上;航行12nmile 到达C点,这时测得小岛A在北偏东30°方向上.小岛A到航线BC的距离是______nmile(√3≈1.73,结果用四舍五入法精确到0.1).15. 已知抛物线y =ax 2+bx +c(a,b,c 是常数),a +b +c =0.下列四个结论:①若抛物线经过点(−3,0),则b =2a ;②若b =c ,则方程cx 2+bx +a =0一定有根x =−2; ③抛物线与x 轴一定有两个不同的公共点;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是 ______ (填写序号).16. 如图(1),在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD ,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是 ______ .三、 解答题(共8题)17. 解不等式组{2x ⩾x −1,①4x +10>x +1.②请按下列步骤完成解答.(1)解不等式①,得 ______ ; (2)解不等式②,得 ______ ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是 ______ .18. 如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.19. 为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:ℎ),按劳动时间分为四组:A组“t<5”,B组“5⩽t<7”,C组“7⩽t<9”,D组“t⩾9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是______ ,C组所在扇形的圆心角的大小是______ ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7ℎ的学生人数.20. 如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.21. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上两点,C 是BD ⏜的中点,过点C 作AD 的垂线,垂足是E.连接AC 交BD 于点F.(1)求证:CE 是⊙O 的切线; (2)若DCDF=√6,求cos∠ABD 的值.22. 在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品.A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg.生产该产品每盒需要A 原料2kg 和B 原料4kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x 元(x 是整数),每天的利润是w 元,求w 关于x 的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a 元(a 是大于60的常数,且是整数),直接写出每天的最大利润.23. 问题提出如图(1),在△ABC 和△DEC 中,∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在△ABC 内部,直线AD 与BE 于点F.线段AF ,BF ,CF 之间存在怎样的数量关系? 问题探究(1)先将问题特殊化如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立. 问题拓展如图(3),在△ABC 和△DEC 中,∠ACB =∠DCE =90°,BC =kAC ,EC =kDC(k 是常数),点E 在△ABC内部,直线AD 与BE 交于点F.直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.24. 抛物线y =x 2−1交x 轴于A ,B 两点(A 在B 的左边).(1)▱ACDE 的顶点C 在y 轴的正半轴上,顶点E 在y 轴右侧的抛物线上; ①如图(1),若点C 的坐标是(0,3),点E 的横坐标是32,直接写出点A ,D 的坐标.②如图(2),若点D 在抛物线上,且▱ACDE 的面积是12,求点E 的坐标.(2)如图(3),F 是原点O 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段AF ,BF(不含端点)于G ,H 两点.若直线l 与抛物线只有一个公共点,求证:FG +FH 的值是定值.参考答案及解析一、选择题1. 【答案】B【解析】解:实数3的相反数是:−3.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2. 【答案】D【解析】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3. 【答案】A【解析】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2020-2021武汉三中寄宿小学数学小升初一模试题带答案一、选择题1.一段路,甲走完用小时,乙走完用25分钟,甲乙的速度比是()A. 3:5B. 8:5C. 5:8D. 5:3 2.如果少年宫在邮局的北偏东30°方向400m处,那么邮局在少年宫的()处。
A. 北偏西60°方向400 mB. 南偏西30°方向400mC. 南偏西60°方向400m 3.已知○、△、□各代表一个数,根据○+△=52,△+□=46,△-□=28,可知下列选项正确的是()。
A. △=37B. □=15C. ○=94.比的前项扩大3倍,比的后项不变,比值() .A. 扩大3倍B. 缩小3倍C. 不变5.生产一批零件,其中有100个合格,1个不合格,这批零件的合格率是()。
A. ×100%B. ×100%C. ×100%D. ×100%6.如果m=9n(m和n≠0,都是整数),那么m和n的最大公因数是()。
A. mB. nC. 9D. mn7.如果甲× =乙× (甲和乙都不为0),那么甲和乙相比()。
A. 甲>乙B. 甲<乙C. 甲=乙D. 无法确定8.一块玉璧的形状是一个圆环,外圆半径是3cm,内圆半径是1cm,这个圆环的面积是()(π取3.14)A. 3.14cm2B. 12.56cm2C. 25.12cm2D. 28.26cm2 9.小丽从家里出发,先向东偏南45°方向走500m,再向正西方走100m,现在她的位置在家的()方向.A. 东北B. 西北C. 东南D. 西南10.在一个圆中剪掉一个圆心角是90°的扇形,其余部分占整个圆面积的()A. B. C. D.11.如图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的()倍。
A. 2B. 4C. 6D. 812.下面三幅图中,图()表示6× 的意思。
数学测试题测试时间:90分 分值:90分一、选择题〔共十题,每题3分〕1.在一些汉字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是〔 〕 A.吉 B. 祥 C. 如 D. 意2.反比例函数2y x=-的图像与直线y kx b =+交于(1,)A m -,(,1)B n 两点,那么OAB ∆的面积为〔 〕A. 132B. 32C. 2D.1543.如图,平行四边形ABCD 中,15.AB =点E 、F 三等分对角线AC ,DE 的延长线交AB 于M ,MF 的延长线交DC 于N ,那么DN 等于〔 〕A.152 B. 154C. 454D.54.1ab a b =+,2bc b c =+,3cac a=+,那么c 的值等于〔 〕 A. 12 B.125 C. 512D. 12- 5.二次函数2(0)y ax bx c a =++≠的图像如图,那么函数a by x+=与函数y bx c =+的图像可能是〔 〕 6.方程〔〕 的所有整数解的个数是〔 〕 A. 5 B. 4 C. 3 D. 27.在ABC ∆中,30B ∠=,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分ACB ∠, 连4BE =,那么AE 的长为〔 〕A.B. 2C. D.48.由 的个数是〔 〕 A. 4 B. 5 C. 6 D.79.如图,O 为ABC ∆的外心,AD 为BC 边上的高,60CAB ∠=,45ABC ∠=,那么OAD ∠=〔 〕A. 32B. 25C. 20D. 1510.如图,AB 是定长线段,圆心O 是AB 中点,AE BF 、为切线,E F 、为切点,满足AE BF =,在EF 所在的圆弧上的动点G ,过点G 作切线交AE BF 、的延长线于点D C 、.当点G 运动时,设AD ,x =BC y =,那么y 与x 所满足的函数关系式为〔 〕 A. 正比例函数y kx =〔k 为常数,0k ≠,0x >〕NMFED BAB. 反比例函数ky x=〔k 为常数,0k ≠,0x >〕 C. 一次函数y kx b =+〔k 、b 为常数,0kb ≠,0x >〕D.二次函数2y ax bx c =++〔a 、b 、c 为常数,0a ≠,0x >〕 二、填空题〔共四题,每题3分〕11.2(2)()x x a x x b -+=-+对任意实数x 恒成立,那么a =____________. 12.假设一元二次方程220160ax bx --=有一根为1x =-,那么a b +=____________.13.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 上的1A 处,称为第1次操作,折痕DE 到BC 的间隔 记为1h ;复原纸片后,再将ADE ∆沿着过AD中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的间隔 记为2h ;按上述方法不断操作下去...,经过第2021次操作后得到的折痕20142014D E 到BC 的间隔 记为2015h .假设11h =,那么2015h 的值为〔 〕14.如图,在直角ABC ∆中,90ABC ∠=,1AB BC ==,将ABC ∆绕点C 逆时针旋转60,得到11A B C ∆,连接1A B ,那么1A B 的长度是__________.三、解答题15.国务院办公厅在2021年3月16日发布了?中国足球开展改革总体方案?,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边〞知识竞赛活动,各类获奖学生人数的比例情况如下图,其中获得三等奖的学生共50名,请结合图中信息,解答以下问题:〔1〕求获得一等奖的学生人数;〔2〕在本次知识竞赛活动中,A ,B ,C ,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛.请使用画树状图或列表的方法求恰好选到A ,B 两所学校的概率.16.〔6分〕滨海广场装有可利用风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,太阳能板的支架BC 垂直于灯杆OF ,路灯顶端E间隔 地面6米, 1.8DE =米,60CDE ∠=.且根据我市的地理位置设定太阳能板AB 的倾斜角为43. 1.5AB =米,1CD =米,为保证长为1米的风力发电机叶片无障碍平安旋转,对叶片与太阳能板顶端A 的最近间隔 不得少于0.5米,求灯杆OF 至少要多高?〔利用科学计算器可求得sin 430.6820≈,cos430.7314≈,tan 430.9325≈,结果保存两位小数〕17.〔6分〕如图,四边形ABCD 中,AD BC ∕∕,90BCD ∠=,AD =6,4BC =,DE AB ⊥于E ,AC 交DE 于F . 〔1〕求AE AB ⋅的值;A 1A 2E 1D 1EDCBAB 1A 1ABC一等奖三等奖优胜奖 40%二等奖 20%〔2〕假设CD =4,求AFFC的值; 〔3〕假设CD =6,过A 点作//AM CD 交CE 的延长线于M ,求MEEC的值. 18.〔8分〕如图,在Rt ABC ∆中,90C ∠=,BAC ∠的平分线AD 交BC 边于点D ,以AB 上一 点O 为圆心作O ,使O 经过点A 和点D . 〔1〕判断直线BC 与O 的位置关系,并说明理由; 〔2〕假设2,AC =30B ∠= ①求O 的半径②设O 与AB 边的另一个交点为E ,求线段BD ,BE 与劣弧DE 所围成的阴影局部的面积 〔结果保存根号和π〕19.〔10分〕抛物线1l :23y x bx =-++交x 轴于点A 、B 〔A 在B 的左侧〕,交y 轴于点C ,其对称轴为1x =,抛物线2l 经过点A ,与x 轴的另一个交点为(4,0)E ,与y 轴交于点(0,2)D -. 〔1〕求抛物线2l 的函数表达式;〔2〕P 为直线1x =上一点,连接PA 、PC ,当PA PC =时,求点P 的坐标;〔3〕M 为抛物线2l 上一动点,过M 作直线//y MN 轴,交抛物线1l 于点N ,求点M 从点A 运动至点E 的过程中,线段MN 长度的最大值.20.〔10分〕如图1,在平面直角坐标系中,直线12y x =-+x 轴、y 轴分别交于A 、B 两点,将ABO ∆绕原点O 逆时针旋转得到A B O ''∆,使得OA AB '⊥,垂足为D ,动点E 从原点O 出发,以2个单位/秒的速度沿x 轴负方向运动,设动点E 运动的时间为t 秒. 〔1〕求点D 的坐标;〔2〕当t 为何值时,直线DE //A B ''〔如图2〕,并求此时直线DE 的解析式;〔3〕假设以动点E为圆心,以E ,连接A E ',当t 为何值时,1tan 8EA B ''∠= ?并判断此时直线A O '与E 的位置关系,并说明理由.。
2021-2021学年湖北省武汉市第三中学高一下学期5月月考数学试题一、单选题1.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值是( ) A .12-B .12C .2-D .2【答案】B【解析】本道题目利用三点共线,得到AB BC λ=,说明向量对应坐标成比例,建立等式,即可. 【详解】因为A,B,C 三点共线,故AB BC λ=,而()55,5,,22AB BC m ⎛⎫=-=-+ ⎪⎝⎭,建立等式 55522m -=+-,12m =,故选B.【点睛】本道题目考查了向量平行问题,向量平行满足对应坐标成比例,即可得出答案. 2.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC =++=+, 所以3144EB AB AC =-,故选 A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.3.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .3,1)- B .(3)-C .(3,1)--D .(1,3)-【答案】B【解析】先利用向量坐标运算求出向量2m n +,然后利用向量平行的条件判断即可. 【详解】()()0,2,3,1m n =-=()23,3m n ∴+=-()()333,33-=--故选B 【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位. 4.已知数列{}n a 满足递推关系:11n n n a a a +=+,112a =,则2020a =( )A .12019B .12020C .12021D .12022【答案】C【解析】利用数列递推关系,结合等差数列的定义得数列1n a ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列,再利用等差数列的通项公式计算即可. 【详解】 解:11nn n a a a +=+, 1111n na a +∴-=, 又112a =,∴数列1n a ⎧⎫⎨⎬⎩⎭是首项为2,公差为1的等差数列,即11n n a =+ 20201220192021a ∴=+=,即202012021a =. 故选C . 【点睛】本题考查了数列递推关系,等差数列的概念和等差数列的通项公式,属于基础题. 5.已知等比数列{}n a 的各项均为正数,且132a ,34a ,2a 成等差数列,则20191817a a a a +=+( )A .9B .6C .3D .1【答案】A【解析】易得2220191817181718217a a a q a q a a a a q ++==++,于是根据已知条件求等比数列的公比即可. 【详解】 设公比为q .由132a ,34a ,2a 成等差数列,可得312322a a a +=,所以2111322a a q a q +=,则2230q q --=,解1q =-(舍去)或3q =.所以22 201918171817181279a a a q aqa a a aq++===++.故选A.【点睛】本题考查等比数列、等差数列的基本问题.在等比数列和等差数列中,首项和公比(公差)是最基本的两个量,一般需要设出并求解.6.已知两点()2,1A-,()B5,3--,直线l过点()1,1,若直线l与线段AB相交,则直线l的斜率取值范围是()A.(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭B.22,3⎡⎤-⎢⎥⎣⎦C.2,23⎡⎤-⎢⎥⎣⎦D.[)2,2,3⎛⎤-∞-+∞⎥⎝⎦【答案】A【解析】根据直线过定点P()1,1,画出图形,再求出PA,PB的斜率,然后利用数形结合求解.【详解】如图所示:若直线l与线段AB相交,则PAk k≤或PBk k≥,因为11221PA k --==--,312135PB k --==--, 所以直线l 的斜率取值范围是(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭. 故选:A. 【点睛】本题主要考查直线斜率的应用,还考查了数形结合的思想方法,属于基础题. 7.若正数a,b 满足a+b=2,则1411a b +++ 的最小值是( ) A .1 B .94C .9D .16【答案】B【解析】由2a b +=可得()()114a b +++=,所以可得()()()411411411111411411411a b a b a b a b a b +⎡⎤+⎛⎫+=++++=+++⎡⎤⎢⎥ ⎪⎣⎦++++++⎝⎭⎣⎦,由基本不等式可得结果. 【详解】∵2a b +=,∴()()114a b +++=, 又∵0a >,0b >,∴()()141141111411a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭()()411119145441144a b a b +⎡⎤+=+++≥⨯+=⎢⎥++⎣⎦, 当且仅当()41111a b a b ++=++, 即13a =,53b =时取等号,1411a b +++ 的最小值是94,故选B.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C【解析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.9.在ABC 中,角A ,B 的对边分别是a ,b ,且60A =︒,2b =,a x =,若解此三角形有两解,则x 的取值范围是( ) A.x >B .02x <<C2x << D2x ≤【答案】C【解析】由三角形有两解可得,6090B ︒<<︒或90120B ︒<<︒,得到sin B 的取值范围,再由正弦定理,即可求解. 【详解】由正弦定理得sin sin b A B a x==,60A =︒,0120B ∴︒<<︒,要使此三角形有两解,则60120B ︒<<︒,且90B ≠︒,即sin 12B <<,1<<2x <<. 故选:C. 【点睛】本题考查正弦定理解三角形,确定角的范围是解题的关系,考查数学运算能力,属于基础题.10.已知ABC ∆中,5,AB AC ==AD 为边BC 的中线,且4=AD ,则BC 边的长为( ) A .3 B.C.D .4【答案】D【解析】设2BC x =,在ABC 和ABD △中同时用余弦定理表示出cos B ,列出关于x 的方程,解出即可. 【详解】解:设2BC x =,在ABC 中()22222252104cos 225220x AB CB AC x B AB CB x x++-+===⋅⨯⨯, 在ABD △中2222222549cos 22510AB DB AD x x B AB DB x x +-+-+===⋅⨯⨯, 2210492010x x x x++∴=,解得2x =. 则4BC =. 故选:D . 【点睛】本题考查余弦定理解三角形,其中在不同三角形中表示同一角的余弦,然后构造方程是关键,考查了学生计算能力,是中档题. 11.设102m <<,若212212k k m m +≥--恒成立,则k 的取值范围为( ) A .[)(]2,00,4-⋃ B .[)(]4,00,2- C .[]4,2-D .[]2,4-【答案】D【解析】由于102m <<,则1212m m +-=()()()21228122122124m m m m m m =≥=--⎛⎫+- ⎪ ⎪⎝⎭当2m=1-2m 即m=14时取等号;所以212212k k m m +≥--恒成立,转化为1212m m +-的最小值大于等于22k k -,即22k k -824k ≤∴-≤≤故选D12.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11 D .12【答案】D【解析】由题意结合向量共线的充分必要条件首先确定,m n 的关系,然后结合均值不等式的结论整理计算即可求得最终结果. 【详解】由题意可知:3AP mAB nAC mAB nAE =+=+,,,A B E 三点共线,则:31m n +=,据此有:()3131936612n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当11,26m n ==时等号成立. 综上可得:31m n+的最小值是12.本题选择D 选项. 【点睛】本题主要考查三点共线的充分必要条件,均值不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.已知向量(2,1)a →=,(3,1)b →=-,则向量a →在b →方向上的投影为______【答案】2【解析】根据向量在向量方向上投影的定义计算即可. 【详解】向量a →在b →方向上的投影为:||||cos ,||cos ,||||a b a b a b a a b b b →→→→→→→→→→→<>⋅<>====,故答案为:2【点睛】本题主要考查了向量在向量方向上的投影,向量数量积、向量模的坐标运算,属于基础题.14.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为_____________. 【答案】22【解析】由等差数列{}n a 的前n 项和的公式求解149S S =,解出1a 、d 的关系式,再求出0n S =的临界条件,最后得解. 【详解】解:等差数列{}n a 的前n 项和为n S ,149S S =,所以()114579a a a +=,1117(13)9(4)a a d a d ++=+,111a d =-, 所以()12n a n d =-,其中10a >,所以0d <,当0n a =时,解得12n =,()2312312232302S a a a =+==, 1222222()1102a a S d +==->,所以0n S >的最大自然数n 的值为22. 故答案为:22. 【点睛】 本题应用公式()12n n n a a S +=,等差数列的性质:若m n p q +=+,则m n p q a a a a +=+.对数列的公式要灵活应用是快速解题的关键,解出1a 、d 的关系式,再求出0n S =的临界条件,判断满足0n S >的最大自然数n 的值.15.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为60︒和30︒,如果这时气球的高是30米,则河流的宽度BC 为______米.【答案】3【解析】由题意画出图形,利用特殊角的三角函数,可得答案. 【详解】解:由题意可知30C ∠=︒,30BAC ∠=︒,30DAB ∠=︒,30AD m =, 30203cos30BC AB ∴===︒.故答案为3【点睛】本题给出实际应用问题,着重考查了三角函数的定义,属于简单题. 16..已知实数x ,y 满足0x y >≥,则4x x yx y x y+++-的最小值是______ 【答案】222+【解析】将所求代数式变形为2()2x y x yx y x y-++++-,然后利用基本不等式可求最小值. 【详解】0x y >≥,0,42[()()]x y x y x x y x y ∴+>->=++-,42()2()2()2()222222x x y x y x y x y x y x y x y x yx y x y x y x y x y x y x y x y+++-+-+-++=+=++≥+⋅=++-+-+-+-,2()x y x y -=+时,即当(32)x y =+时,等号成立,因此4x x yx y x y+++-的最小值为222+. 故答案为:222+ 【点睛】本题主要考查了利用基本不等式求代数式的最值,解题的关键就是对所求代数式进行变形,考查了计算能力,属于难题.三、解答题17.已知,,a b c →→→在同一平面内,且(1,2)a →=.(1)若c →=//a c →→,求c →;(2)若b →=,且(2)()a b a b →→→→+⊥-,求a →与b →的夹角的余弦值.【答案】(1)(3,6)或(3,6)--.(2) 【解析】(1)设(,)c x y →=,根据向量的模及//a c →→,列出方程求解即可;(2)由(2)()a b a b →→→→+⊥-,得(2)()0a b a b →→→→+⋅-=,化简得1a b →→⋅=-,代入夹角公式即可得结果. 【详解】(1)设(,)c x y →= ∵//a c →→,(1,2)a →=,20x y ∴-=, 2y x ∴=∵c →== ∴225x y +=, 即22445x x +=,∴36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩∴(3,6)c →=或(3,6)c →=-- (2)∵(2)()a b a b →→→→+⊥-,∴(2)()0a b a b →→→→+⋅-=, ∴2220a a b b →→→→+⋅-=, 即22||2||0a a b b →→→→+⋅-= 又∵225,2a b →→==,∴1a b →→⋅=-,∴cos10a ba bθ→→→→===-⋅⋅∴a →与b →的夹角的余弦值为10- 【点睛】本题主要考查了向量数量积、模的坐标运算,向量共线的坐标运算,夹角公式,属于中档题.18.(1)不等式2210mx mx -+>,对任意实数x 都成立,求m 的取值范围; (2)求关于x 的不等式()2110(0)ax a x a -++<>的解集.【答案】(1){|01}m m ≤<;(2)当1a =时,不等式的解集为φ;当01a <<时,不等式的解集为11,a ⎛⎫⎪⎝⎭;当1a >时,不等式的解集为1,1a ⎛⎫ ⎪⎝⎭.【解析】(1)由不等式2210mx mx -+>,对任意实数x 都成立,结合一元二次函数的性质,分类讨论,即可求解; (2)由0a >,原不等式化为()110x x a ⎛⎫--< ⎪⎝⎭,根据根的大小,分类讨论,即可求解. 【详解】(1)由题意,不等式2210mx mx -+>,对任意实数x 都成立, ①当0m =时,可得10>,不等式成立,所以0m =; ②当0m ≠时,则满足00m >⎧⎨∆<⎩,即240m m m >⎧⎨∆=-<⎩,解得01m <<, 所以实数m 的取值范围{|01}m m ≤<.(2)不等式()2110ax a x -++<可化为()()110ax x --<,可得不等式对应一元二次方程的根为11x =,21x a=, 当11a=时,即1a =时,不等式的解集为φ; 当11a >时,即01a <<时,不等式的解集为11,a ⎛⎫ ⎪⎝⎭; 当11a <时,即1a >时,不等式的解集为1,1a ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了不等式的恒成立问题,以及含参数的一元二次不等式的求解,其中解答中熟练应用一元二次函数的性质,以及熟记一元二次不等式的解法是解答的关键,着重考查了分类讨论数学,以及运算与求解能力.19.已知{}n a 为等差数列,前n 项和为*()n S n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.【答案】(Ⅰ)32n a n =-. 2n n b =.(Ⅱ)2(34)216n n +-+.【解析】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.试题解析:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2n n b =.(Ⅱ)解:设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有()2342102162622n n T n =⨯+⨯+⨯++-⨯,()()2341242102162682622n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()23142626262622n n n T n +-=⨯+⨯+⨯++⨯--⨯()()()12121246223421612nn n n n ++⨯-=---⨯=----.得()234216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为()234216n n +-+.【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和方法有倒序相加法,错位相减法,裂项相消法和分组求和法等,本题考查错位相减法求和.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);()II 2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元.【解析】(Ⅰ)根据销售额减去成本(固定成本250万和成本()R x )求出利润函数即可.(Ⅱ)根据(Ⅰ)中的分段函数可求出何时取最大值及相应的最大值. 【详解】(Ⅰ)当040x <<时,()()227001010025010600250W x x x x x x =-+-=-+-;当40x ≥时,()100001000070070194502509200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,∴ ()210600250,040100009200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩. (Ⅱ)若040x <<,()()210308750W x x =--+, 当30x =时,()max 8750W x =万元 . 若40x ≥,()10000920092009000W x x x ⎛⎫=-++≤-= ⎪⎝⎭, 当且仅当10000x x=时,即100x =时,()max 9000W x =万元 . ∴2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元.【点睛】解函数应用题时,注意根据实际意义构建目标函数,有时可根据题设给出的计算方法构建目标函数.求函数的最值时,注意利用函数的单调性或基本不等式. 21.在ABC ∆中,角,,A B C 的对边分别为,,a b c,且sin 1cos a CA=-.(1)求角A 的大小;(2)若10b c +=,ABC ∆的面积ABC S ∆=a 的值. 【答案】(1)3A π=;(2)【解析】(1)把sin 1cos a CA=-中的边化为角的正弦的形式,再经过变形可得sin()32A π+=,进而可求得3A π=.(2)由ABC S ∆=16bc =,再由余弦定理可求得a =. 【详解】(1)由正弦定理及sin 1cos a C A =-得sin sin 1cos A CC A=-,∵sin 0C ≠,∴)sin 1cos A A =-,∴sin 2sin 3A A A π⎛⎫=+= ⎪⎝⎭∴sin 32A π⎛⎫+= ⎪⎝⎭, 又0A π<<, ∴4333A πππ<+<, ∴233A ππ+=, ∴3A π=.(2)∵1sin 24ABC S bc A ∆==, ∴16bc =.由余弦定理得()()222222cos 233a b c bc b c bc bc b c bc π=+-=+--=+-,又10b c +=,∴221031652a =-⨯=,a ∴=【点睛】解三角形经常与三角变换结合在一起考查,解题时注意三角形三个内角的关系.另外,使用余弦定理解三角形时,注意公式的变形及整体思想的运用,如()2222b c b c bc +=+-等,可简化运算提高解题的速度.22.已知数列{}n a 的前n 项和()1*12N 2n n n S a n -⎛⎫=--+∈ ⎪⎝⎭,数列{}n b 满足2n n n b a =.(Ⅰ)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)设()()()1121n nn n n n c n a n a ++=-+-,数列{}n c 的前n 项和为n T ,求满足()*124N 63n T n <∈的n 的最大值. 【答案】(Ⅰ) 2n n na =;(Ⅱ)4.【解析】(Ⅰ)利用11112n n n n n n a S S a a ---⎛⎫=-=-++ ⎪⎝⎭,整理可得数列{}n b 是首项和公差均为1的等差数列,求出{}n b 的通项公式可得数列{}n a 的通项公式;(Ⅱ) 由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭ 11122121n n +⎛⎫=- ⎪--⎝⎭,利用裂项相消法求得11124212163n n T +⎛⎫=-< ⎪-⎝⎭,解不等式可得结果.【详解】 (Ⅰ)()1122n n n S a n N -+⎛⎫=--+∈ ⎪⎝⎭,当2n ≥时,211122n n n S a ---⎛⎫=--+ ⎪⎝⎭,11112n n n n n n a S S a a ---⎛⎫∴=-=-++ ⎪⎝⎭,化为11221n n n n a a --=+,12,1n n n n n b a b b -=∴=+,即当2n ≥时,11n n b b --=,令1n =,可得11112S a a =--+=,即112a =. 又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列. 于是()1112nn n b n n a =+-⋅==,2n nn a ∴=. (Ⅱ)由(Ⅰ)可得()1112122n n n n n n c n n n n ++=+⎛⎫⎛⎫-+- ⎪⎪⎝⎭⎝⎭()()111211221212121n n n n n +++⎛⎫==- ⎪----⎝⎭, 22311111121...2121212121n n n T +⎡⎤∴=-+-++-⎢⎥-----⎣⎦11124212163n +⎛⎫=-< ⎪-⎝⎭,可得162642n +<=,5n <, 因为n 是自然数,所以n 的最大值为4. 【点睛】本题主要考查利用递推公式求通项以及裂项相消法求数列的和,属于难题. 由数列的递推公式求通项常用的方法有:(1)等差数列、等比数列(先根据条件判定出数列是等差、等比数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法.。
2020-2021学年湖北省武汉市第三初级中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知等比数列满足则()A、64B、81C、128 D、243参考答案:A2. 函数的最小值为()A. B. C.D.参考答案:A略3. 相切,则等于()A, B, C, D,参考答案:A4. 原点和点在直线的两侧,则的取值范围是()A. B. C. D.参考答案:C 5. 右图是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A. 84,4.84B. 84,1.6C. 85,1.6D. 85,4参考答案:C6. 若在区间(0,5]内随机取一个数m,则抛物线的焦点F到其准线的距离小于的概率为()A. B. C. D.参考答案:B7. 国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前)为( ).A.2 800元 B.3 000元 C.3 800元 D.3 818元参考答案:C8. 设为两条不同的直线,为两个不同的平面,下列命题中为真命题的是()A.若,则 B.若,则C.若,则; D.若,则参考答案:D9.参考答案:B10. 在正方体ABCD-A1B1C1D1中,E、F是分别是棱A 1B 1、A 1D 1的中点,则A 1B 与EF 所成角的大小为( )A .B .C .D .参考答案: C二、 填空题:本大题共7小题,每小题4分,共28分 11. 把正奇数数列的各项从小到大依次排成如下三角形状数表:记表示该表中第s 行的第t 个数,则表中的奇数2007对应于参考答案:12. 命题“对任何,”的否定是________参考答案: 存在,。
武汉三中数学测试题分值:120分 测试时间:120分钟一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) 1.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为( ) A .0.24-10⨯米 B .5-102⨯米 C .2×4-10米 D .2×510米2.如果0122=-+a a ,那么代数式2)42-⋅-a a a a (的值是( )A 1-B 3-C 3D 13.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表: 捐款的数额(单位:元)510 20 50 100 人数(单位:个) 24531关于这15名学生所捐款的数额,下列说法正确的是( )A .中位数是20B .平均数是30C .极差是20D .众数是1004.如图,在ABC Rt ∆中,030=∠A ,BC=1,点D,E 分别是直角边BC,AC 的中点,则DE 的长为( ) A 1+3 B 2 C 3 D 15.如图,直径为10的圆A 经过C (0,5)和O (0,0),B 是y 轴右侧圆A 上一点,则OBC ∠的余弦值为( )A 43B 23C 21D 546.如图是正方形的一种展开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“6”相对的面上的数字是A .1B .5C .3D .47.“五·一”节,爸爸开车带李明回老家看望爷爷、奶奶.一路上,李明发现在经过A 、B 、C 、D 每一个村庄前的500米处均立有下图所示的交通告示牌.现给出这四个路段爸爸开车的速度v(km/h)与离开告示牌的距离s(m)之间的函数关系图象,则其中表示爸爸违章的路段的图象是( )8.已知acb a bc b a c c b a k ++-=+-=-+=,且n n m 6952=++-,则关于自变量x 的一次函数mn kx y -=的图像一定经过第( )象限A 一、二B 三、四C 二、三D 一、四9.如图,边长为1的正三角形ABC ,分别以顶点A,B,C 为圆心,1为半径作圆,则这三个圆所覆盖的图形面积为( )A323+π B 323-π C 3227-π D 232+π 10.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形. 若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形标号为( )A. ①②B. ②③C. ①③D. ①②③二、填空题(每题3分,共18分)11.计算32)2-xy (= 12. 如图,在正方形ABCD 中AC 与BD 交于点O ,正方形外有一点E , 使∠AED =90°,且DE=3,OE=,则AE=13. 如图在矩形ABCD 中,AB=5,AD=3,动点P 满足ABCD PAB S S 矩形31=∆,则点P 到A,B 两点距离之和PA+PB 的最小值是14. 如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆与对角线 AC 交于点E ,则图中阴影部分的面积为______.(结果保留π)15.从-1,1, 2这三个数字中,随机抽取一个数,记为a.那么,使关于x 的一次函数的图象与x 轴、y 轴围成的三角形面积为,且使关于x 的不等式组有解的概率为 .16. 有一张矩形风景画,长为90cm ,宽为60cm ,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm ,左、右边衬的宽都为bcm ,那么ab= ___. 三、解答题(本大题共8小题,共72分)17.(本小题8分)已知m,n 是方程0132=++x x 的两根,求mm m m m 23102)5165---⋅--+(的值。
18.(本小题8分)如图,△ABC 中,AC=BC ,I 为△ABC 的内心,O 为BC 上一点,过B 、I 两点的圆O交BC于D点,tan∠CBI=,AB=6,(1)求线段BD的长;(2)求线段BC的长.19.(本小题8分)某校团委要组织班级歌咏比赛,为了确定一首喜欢人数最多的歌曲作为每班必唱歌曲,团委提供了代号为A,B,C,D四首备选曲目让学生选择(每个学生只选一首),经过抽样调查后,将采集的数据绘制如下两幅不完整的统计图,请根据图1,图2所提供的信息,解答下列问题:(1)在抽样调查中,求选择曲目代号为A的学生人数占抽样总人数的百分比;(2)请将图2补充完整;(3)若该校共有1530名学生,根据抽样调查的结果,估计全校选择曲目代号为D的学生有多少名?20.(本小题8分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:上升时间/min10 30 … x 1号探测气球所在位置的海拔/m 15 … 2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?21.(本小题8分)已知:Rt △A′BC′和 Rt △ABC 重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt △A′BC′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C 和线段AA′相交于点D,连接BD .(1)当α=60°时,A’B 过点C ,如图1所示,判断BD 和A′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明; (3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.22.(本小题10分)在ABC ∆中,090=∠BAC ,045=∠ABC ,点D 为直线BC 上一动点(点D 不与点B,C 重合),以AD 为边作正方形ADEF,连CF 。
(1)如图①,当点D 在线段BC 上时,求证:CF+CD=BC;(2)如图②,当点D 在BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;(3)如图③,当点D 在BC 的反向延长线上,且点A,F 分别在直线BC 的两侧时,其他条件不变。
i 请直接写出CF,BC,CD 三条线段之间的关系ii 若正方形ADEF 的边长为22,对角线AE 和DF 相交于点O ,连OC ,求OC 的长度。
23(本小题10分)二次函数y=n mx x +-242的图像与x 轴交于A (1x ,0),B(2x ,0),(21x x <)两点,与y 轴交于C 点。
(1)若AB=2,且抛物线的顶点在直线y=2--x 上,试确定m, n 的值。
(2)在(1)中,点P 为直线BC 下方抛物线上一点,当PBC ∆面积最大时,求P 点坐标。
24. (本小题12分)如图,已知A (-1,0),E (0,-),以点A 为圆心,以AO 长为半径的圆交x 轴于另一点B ,过点B 作BF ∥AE 交⊙A 于点F ,直线FE 交x 轴于点C . (1)求证:直线FC 是⊙A 的切线; (2)求点C 的坐标及直线FC 的解析式;(3)有一个半径与⊙A 的半径相等,且圆心在x 轴上运动的⊙P .若⊙P 与直线FC 相交于M ,N 两点,是否存在这样的点P ,使△PMN 是直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.数学测试题答案一、选择题(每题3分,共30分在每小题给出的四个选项中,只有一项是符合题目要求的) B D A D B A B B A A二、填空题(每题3分,共18分)11.638y x - 12. 5 13. 41 14. π-10 15. 16. 542cm 三、解答题(本大题共8小题,共72分)17.(本小题8分)解析: m,n 是方程0132=++x x 的两根,所以0132=++m m ,0132=++n n ,m+n=-3,mn=1 ∴原式=mm m m m m m m m m m 23)5(25)3)(3(23102516-252----⋅--+=---⋅--066326)1(2622-6-2=+-=-⨯--=+--=-=mmm m m m18.(本小题8分)(1)如图连接CI 并延长交AB 于E ,连接ID , ∵I 是△ABC 的内心,∴CI 平分∠ACB ,∵AC=BC ,,321,BEI BHI AB BH AB CH ∆≅∆==⊥∴,易证 3==∴BH BE ,,131,31tan ==∴=∠BE IE CBI 因为BD 是圆O 的直径,所以090=∠BID又相似与易证于IED BEI E BD IE ∆∆⊥,,,ED IE IE BE =∴∴ED=31,310313=+=+=∴ED BE BD (2)连OI,I为三角形ABC的内心,∴ABI OBI ∠=∠,OIB ABI OIB OBI OB OI ∠=∠∴∠=∠∴=,,AB OI //∴,CH OI AB CH ⊥∴⊥, ,易证相似与IEC OEI ∆∆,易证BEI BHI ∆≅∆,所以BE=BH=3,1,=⋅∴=∴EC OE EC IE IE OE ,OE=OD-ED=34313521=-=-ED BD ,,43=∴EC415433=+=+=∴EC BE BC19.(本小题8分)解析(1)分别观察扇形、条形统计图获取信息,求出调查的总人数为30÷36060=180(人), 再由唱A 的人数与总调查人数的比计算A 的百分比:100﹪=20%(2)选C 的有180 – 36 – 30 – 44= 70人。
补全图2如图:(3)1530(人)37418044=⨯20,0.5x+15.(Ⅱ)两个气球能位于同一高度, 根据题意得:x+5=0.5x+15, 解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度. (Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球, 设两个气球在同一时刻所在位置的海拔相差ym , 则y=(x+5)-(0.5x+15)=0.5x-10, ∵0.5>0,∴y 随x 的增大而增大,∴当x=50时,y 取得最大值15,答:两个气球所在位置海拔最多相差15m . 21.(本小题8分)(1)当α=60°时,BD ⊥A'A(2)补全图形如图2,BD ⊥A'A 仍然成立;(3)猜想BD ⊥A'A 仍然成立.证明:作AE ⊥C'C ,A'F ⊥C'C ,垂足分别为点E ,F ,如图3, 则∠AEC=∠A'FC'=90°.∵BC=BC', ∴∠BCC'=∠BC'C .∵∠ACB=∠A'C'B=90°, ∴∠ACE+∠BCC'=90°,∠A'C'F+∠BC'C=90°.∴∠ACE=∠A'C'F .在△AEC 和△A'FC'中,∠AEC=∠A'FC'=90°, ∠ACE=∠A'C'F ,AC=,,C A ∴△AEC ≌△A'FC'. ∴AE=A'F .在△AED 和△A'FD 中,∠AEC=∠A'FD=90°,∠ADE=∠ADF .AE=A'F∴△AED ≌△A'FD .∴AD=A'D .∵AB=A'B ,∴△ABA'为等腰三角形.∴BD ⊥A'A .22(本小题10分)解析;(1)证明: 090=∠BAC ,045=∠ABC ,∴045=∠ACB ,∴AB=AC四边形ADEF 是正方形,090=∠=∴DAF AF AD ,DAC BAD ∠=∠-900 ,DAC CAF ∠=∠-900,CAF BAD ∠=∠∴ACF ABD ∆≅∆,CF BD =∴.∴CF+CD=BD+CD=BC (2)CF -CD=BC (3) i CD -CF=BCii 090=∠BAC ,045=∠ABC ,∴045=∠ACB ,∴AB=AC 四边形ADEF 是正方形,090=∠=∴DAF AF AD ,,BAF BAD ∠=∠-900 ,BAF CAF ∠=∠-900 ,,CAF BAD ∠=∠∴ ACF ABD ∆≅∆,ABD ACF ∠=∠∴,045=∠ABC ,0135=∠∴ABD ,ABD ACF ∠=∠∴=1350∴090=∠FCD ,∴FCD ∆是直角三角形。