人教版《勾股定理》教学设计
- 格式:doc
- 大小:122.50 KB
- 文档页数:5
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
《17.1勾股定理》教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为,a b斜边长为c,那么222+=.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,a b c就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.二、目标和目标分析1.教学目标(1)理解并掌握运用面积关系得到勾股定理的证明及其应用.(2)通过勾股定理证明的学习,培养学生学会从特殊到一般的探索和证明方法.(3)通过合作探究,感受古代数学的伟大成就和贡献,培养学生的民族自豪感.2.目标分析(1)学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.(2)学生能运用勾股定理进行简单的计算,关键是通过直角三角形的两边长能求第三条边的长度.三、学生学情分析对于直角三角形,学生对角的关系已有学习,但对于边的数量关系了解不多。
新课标要求学生体验勾股定理的探索过程,会运用勾股定理解决简单问题。
教学中让学生直接发现“直角三角形两条直角边的平方和等于斜边的平方”有一定的难度,因此需要由浅入深地设置问题,先从等腰直角三角形入手,容易发现规律,再从特殊到一般,探究一般直角三角形是否满足规律。
其简单变形,而后过渡到其后的拓展练习,分层布置,有一定的梯度性,为学有余力的同学提供了展示才能的空间,体现了因材施教,符合新课标的要求.四、教学策略分析本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,倡导学生主动参与数学实践活动,让学生经历数学知识的形成与应用过程。
五、教学过程设计1.创设情景,引入新课展示2002年国际数学家大会会场的图片,指出会场上会徽图标。
提问: 你知道这个图案吗?有哪些基本图案组成?前面学习了三角形的有关知识,我们知道三角形有三个角和三个边。
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
—1—《勾股定理》教学设计一、教学内容:人教版九年义务教育三年制初级中学几何第二册(P96—P97)。
《勾股定理》 二、教学目标:1、双基目标:使学生了解勾股定理的证明,掌握勾股定理的内容,初步学会应用勾股定理进行有关计算及证明。
2、能力目标:培养学生观察、类比、实验、分析、综合、抽象、概括和逻辑推理的能力。
3、非智力目标:①培养学生勇于实践,大胆创新的精神和积极探求客观真理的科学态度。
②渗透数学中普遍存在的相互联系,相互转化,相互制约以及数学中来源于实践,又反过来作用于实践的辩证唯物主义观点。
③通过教学对学生进行爱国义务教育。
④通过小组探索性合作,培养学生的团队精神,发展学生的个性品质。
三、其中以知识目标为主线,能力、非智力目标渗透于知识目标中来体现。
为完成教学目标,设计知识线、渗导线、思维线三线合一的教学链。
诱导线三、教学重点:勾股定理的应用 四、教学难点:勾股定理证明五、教学方法:讲授、讨论、读书指导、演示、猜想、整体教学相结合。
探索方案(通过计算勾、股、弦三者关系, 揭示直角三角形三边关系) 勾股定理的证明 勾股定理的运用 观察、分析、类比、演绎、抽象、概括六、教学手段:模具、投影仪、电脑制作课件—2——3—教学手记勾股定理作为提示直角三角形三边之间数量关系的重要定理,在初中几何教学中起着非常重要的作用。
在课堂教学中注意发挥学生的主体参与作用,激发学生的创造性及学生自己发现规律的兴趣,从而培养观察、分析能力。
这节课的内容是初中几何第二册第三章的第十六节。
目标是:(1)使学生了解勾—4—股定理的内容,初步学生应用勾股定理进行有关计算。
(2)通过勾股定理的教学及应用,培养学生分析问题及逻辑推理能力。
(3)通过教学对学生进生爱国主义教育。
本节课的引入部分,给学生介绍有关勾股定理的相关材料。
通过对学生讲授我国古代学者们对勾股定理的研究的重要成就和勾股定量在应用方面的一些作用,以及对其他国家数学方面的影响,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养学生的民族自豪感,同时教育学生奋发图强,努力学习,为将来担负起振兴中华的重任打下基础,同时激发学生学习勾股定理的兴趣。
《勾股定理》教学设计一、教材分析1.本节知识在教材中的地位和作用勾股定理是人教版义务教育课程标准实验教科书八年级下册第十八章的内容。
勾股定理是几何中几个重要定理之一。
它解释了直角三角形三边之间的数量关系,它在数学发展中起着重要作用。
在现实生活中的地位也有举足轻重的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解,也是后续学习的基础。
2.教学重点、难点重点:勾股定理的证明与运用难点:用面积法和拼图法等方法证明勾股定理二、教学目标知识与技能:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
会用勾股定理进行简单的计算。
数学思考:经历通过实际分析、拼图等活动,使学生获得较为直观的印象;经历观察、归纳、猜想和验证的数学发现过程,发展合情合理的推理能力问题解决。
问题解决:能够运用勾股定理解决简单问题情感态度:通过获得成功的经验和克服困难的经历,增进数学学习的信心;对比介绍我国古代和西方数学家有关勾股定理的研究,对学生进行爱国主义教育。
三、教学策略勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,学生对几何图形的观察,几何图形的分析能力已初步形成。
学生对从一般直角三角形中找出存在的面积关系可能有难点,让学生充分交流,结合课件展示帮助学生解决问题。
学生在拼图游戏和通过拼图验证勾股定理这两个环节存在学习困难,因此学习过程中通过学习小组讨论,合作交流,教师引导帮助学生形成解决问题的思路。
本节课学习中渗透由特殊到一般、数形结合的数学思想。
学生通过自主探索,小组合作交流,结合信息化手段的使用,能够达到学习目标。
这样有利于提高学生的思维能力,能有效地激发学生的思维积极性。
四、教学过程(一)创设情境(课件-视频图像)毕达哥拉斯有一次应邀参加一位朋友的餐会,这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但他不只是欣赏磁砖的美丽,而是想到它们和数之间的关系。
《勾股定理》教学设计一、内容解析:本节课为人教版八年级数学上册第一章第一节的内容。
其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生实行爱国主义教育的良好素材。
教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这个事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理实行了详细的论证勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它能够解决很多直角三角形中的计算问题,在实际生活中用途很大。
它不但在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。
学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这个事实从学习的角度不难,包括对它的应用也不成问题。
但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。
学生接受起来有障碍(是第一次接触面积法),所以从面积的“分割”“补全”两种方法实行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。
有利的让学生经历了“感知、猜测、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提升学生学习习惯和水平。
教学重点:勾股定理的内容教学难点:勾股定理的论证二、教学目标及目标解析:1、教学目标理解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
在勾股定理的探索过程中,发展合情推理水平,体会数形结合的思想。
通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
、在对勾股定理历史的理解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
教学设计【教学目标】知识技术:了解勾股定理的文化背景,体验勾股定理的探讨进程。
数学试探:在勾股定理的探讨进程中,进展合情推理能力,体会数形结合的思想。
解决问题:1.通过拼图活动,体验数学思维的严谨性,进展形象思维。
2.在探讨活动中,学会与人合作并能与他人交流思维的进程和探讨结果。
情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情。
2.在探讨活动中,体验解决问题方式的多样性,培育学生的合作交流意识和探讨精神。
【教学重点与难点】重点:探讨和证明勾股定理。
难点:用拼图的方式证明勾股定理。
难点成因:关于勾股定理的得出,第一需要学生通过动手操作,在观看的基础上,斗胆猜想数学结论,而这需要学生具有必然的分析、归纳的思维方式和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并非是很成熟,从而形成困难。
冲破方法:1.创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“成心思”的状态下进入学习进程。
2.自主探讨,勇于猜想:充分让自己动手操作,斗胆猜想数学问题的结论,教师是整个活动的组织者,更是一名参入者,学生之间彼此交流、协作,从而形成生动的课堂环境。
3.张扬个性,展现风度:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论终止后,由小组的“发言人”汇报本小组的讨论结果,并可上台展现本组的优秀作品。
如此既保证讨论的有效性,也调动了学生的学习踊跃性。
【教法与学法分析】教法分析:数学是一门培育人的思维,进展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其因此然”。
针对初二年级学生的认知结构和心理特点,本节课可选择“引导探讨法”,由浅到深,由特殊到一样的提出问题。
引导学生自主探讨,合作交流,这种教学理念紧随新课改理念,也反映了时期精神。
大体的教学程序是“观看猜想──探讨验证──推理证明──学以致用──知识延伸──课堂小结──达标检测──布置作业”八个方面。
《勾股定理》教学设计一、概述1、使用教材:《义务教育教科书·数学》(八年级下册)(人教版)2、教学课题:第十七章第22-24页《勾股定理》3、教材分析:勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用.如,对直角三角形的判定定理“HL”,书中的拼接证明学生不易理解,但学过勾股定理后,可引导学生用“边边边”定理证明.勾股定理也是今后学习几何的一个重要的定理,它广泛应用于几何题的证明和计算中.二、教学目标分析1、知识与技能:(1)了解勾股定理的文化背景,体验勾股定理的探索过程。
(2)了解利用拼图法验证勾股定理的方法。
(3)能利用勾股定理的数学模型解决现实世界的实际问题。
2、过程与方法:(1)在勾股定理探索过程中,发展各情推理能力,体会数形合的思想。
(2)经历观察与发现直角三角形三边之间关系的过程,感受勾股定理的应用意识。
3、情感态度与价值观(1)通过对勾股定理历史的了解,感受数学文化、激发学习热情。
(2)在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神三、教学重点与难点分析1、重点:探索和验证勾股定理.解决方法:用特殊到一般的方法,由等腰直角三角形到一般直角三角形,通过学生观察,归纳,猜想和验证得出勾股定理.2、难点:勾股定理的证明.解决方法:本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.四、学习者特征分析在学习本章之前,学生已经学过很多与直角三角形有关的知识,直角三角形的概念、直角三角形的两个锐角互余及也有求值有关的方程和解方程的知识,还有乘方的意义,特别是平方的意义和运算等,这些都是学习勾股定理的基础,学生在此基础上学习勾股定理可以加深学生对勾股定理的理解,提高学生对数形结合的应用和理解,另外八年级学生具有好强、好胜、思维活跃的特点,在学习上有强烈的求知欲望,他们乐于探索及表现自我,为学生学习勾股定理奠定了良好地心理基础。
《勾股定理》教学设计
日照市东港区教育局电教站安伯玉
教学内容
人教版八年级下册18.1《勾股定理》第一课时
教材分析
勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的。
本节课的学习在教材中起到承上启下的作用,为下面学习勾股定理的逆定理作了铺垫,为以后学习“四边形”和“解直角三角形”奠定基础。
勾股定理的探索和证明蕴含着丰富的数学思想和科学研究方法,是培养学生具有良好思维品质的载体,它在数学的发展过程中起着重要的作用。
勾股定理是数与形结合的优美典范。
教学目标
一、了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。
二、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
三、通过拼图活动,体验数学思维的严谨性,发展形象思维。
在探究活动中,学会与人合作,并在与他人交流中获取探究结果。
四、通过对勾股定理历史的了解,感受数学文化,激发学习热情。
在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
教学重点及难点
重点:经历探索及验证勾股定理的过程。
难点:用拼图的方法证明勾股定理。
学具准备:
方格纸、全等的直角三角形纸片。
教法与学法
教法:在教学中要力求实现以教师为主导,以学生为主体,以知识为载体,以培养学生的“思维能力,动手能力,探究能力”为重点的教学思想。
尽量为学生创设“做数学、玩数学”的情境,让学生从“学会”到“会学”,使学生真正成为学习的主人。
学法:在探索勾股定理时,主要通过直观的,乐于接受的拼图法去验证勾股定理。
在本节课中,要充分体现学生的主体地位,主要采用小组合作、自主探究式学习模式。
通过拼图活动,体验数学思维的严谨性,发展形象思维。
在探究活动中,学会与人合作,并在与他人交流中获取探究结果。
教学过程
一、设置悬念,引出课题
师:请同学们观看大屏幕。
酷6网上曾经出现一个报道:人类一直想弄清楚其他星球上是否存在“人”,我们怎样才能与“外星人”取得联系呢?
为什么我国科学家向太空发射勾股图试图与外星人沟通?这个图形蕴含怎样的秘密?
师:2002年国际数学家大会在北京召开。
为什么把这个图案作为2002年在北京召开第24届国际数学家大会会徽?这个图案蕴含着怎样博大精深的知识呢?这就是我们这节课要解决的课题。
板书课题《勾股定理》
二、画图实践,大胆猜想
1.活动一:毕达哥拉斯是古希腊著名的数学家。
相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。
师:同学们,请你也来观察下图中的地面,看看能发现些什么?
地面图18.1-1
师:你能找出图18.1-1中正方形A、B、C面积之间的关系吗?
生:S
A +S
B
=S
C
师:图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?生:两直角边的平方和等于斜边的平方。
师:是否其余的直角三角形也有这个性质呢?
学生们思考。
2.活动二:在方格纸上,画一个顶点都在格点上的直角三角形;并分别以这个直角三角形的各边为一边向三角形外作正方形,思考以下问题:
(1)三个正方形面积有何关系?
(2)直角三角形三边长有何关系?
(3)依据活动一和活动二,请大胆提出你的猜想。
学生思考并回答给出的问题。
师:是否任意直角三角形三边都满足此关系?
(222c b a =+)
由学生归纳,得出命题:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+
师:这是个真命题吗?我们来探究一下。
三、动手拼图,定理证明
活动三:现有四个全等的直角三角形,两直角边为a 、b ,斜边为c ,请同学们动手拼一拼。
1.请用尽可能多的方法拼成一个正方形;
2.请从你拼的图形中验证222c b a =+;
教师巡回指导。
3.学生小组代表通过投影上台展示探究结论。
师:你还有别的方法来验证这个结论吗?(请把你探究报告中了解的方法与大家一起分享)
师生共同对几种拼法总结交流。
4.介绍赵爽关于勾股定理的证明和美国总统证法。
四、探古博今,感知勾股
1.师:被证明为正确的命题称为定理
勾股定理:如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+。
2.师:我们来看一下,古代数学家是怎么研究这个定理的。
(1)介绍古希腊毕达哥拉斯。
(2)介绍我国古代勾股定理的证明。
(3)介绍国内外关于勾股定理的应用。
五、学以致用,体会美境
课件展示练习:
1.求下图中字母所代表的正方形的面积。
2.求下列图中表示边的未知数x、y的值。
3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为__ _cm2。
4.教师用几何画板演示运动的勾股树。
六、总结升华,完善报告
师:通过本节课的学习,大家有什么收获?有什么疑问?你还有什么想要继续探索的问题?
师:牛顿——从苹果落地最终确立了万有引力定律
我们——从朝夕相处的三角板发现了勾股定理
虽然两者尚不可同日而语
但探索和发现的价值,也许就在身边。
也许就在眼前——
还隐藏着无穷的“万有引力定律”和“勾股定理”……
祝愿你们——
修得一个用数学思维思考世界的头脑
练就一双用数学视角观察世界的眼睛
开启新的探索——
发现平凡中的不平凡之谜……
3.作业:
把今天数学课的感受写进探究报告中,并发挥你的聪明才智,去探索、研究勾股定理,你又有什么新的发现?
板书设计
18.1勾股定理
S
A +S
B
=S
C
在直角三角形中,两直角边的平方和等于斜边的平方
教学反思
本节课以“问题情境——大胆猜想——动手操作——实践验证——学以致用——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变。
根据教材的特点,本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的。
教学中以教师为主导,以学生为主体,以知识为载体,以培养能力为重点。
为学生创设“做数学、玩数学”的教学情境,让学生从“学会”到“会学”,从“会学”到“乐学”。
这一课的学习通过让学生自主地探索知识,真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。
这堂课将信息技术融入利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为“数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。