旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明——古希腊三大几何难题
- 格式:docx
- 大小:18.78 KB
- 文档页数:6
引人入胜的千古难题——三大尺规作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
古希腊三大几何问题既引人入胜,又十分困难。
数学名题欣赏第9讲1 . 古希腊三大几何作图难题的非尺规解法公元前四世纪,古希腊的智人学派(也称巧辩学派)提出并研究了三大几何作图问题:立方倍积问题、三等分角问题和化圆为方问题.立方倍积问题: 已知一个立方体. 仅用圆规和直尺, 作一个立方体, 使其体积等于已知立方体的体积的两倍.三等分角问题: 任意给定一个角. 仅用圆规和直尺, 把该角三等份.化圆为方问题: 已知一个圆. 仅用圆规和直尺, 作一个正方形, 使其面积等于已知圆的面积.直到十九世纪, 人们才证明了, 用圆规和直尺不可能解决上述三个几何作图问题. 1837年,旺策尔(P.Wantzel)证明了立方倍积和三等分角的不可能性. 1882年,林德曼(C. Lindemann)证明了 的超越性,从而推断,只用圆规和直尺不能化圆为方.虽然著名数学家克莱茵于1895年已经对三大作图问题作了总结,严格证明了, 仅用尺规绝不可解这些问题,彻底解决了两千多年的悬案,但用其他几何方法还是可以准确地(非测量地)解决这三个问题的.一立方倍积问题的丝线解法历史传说关于立方倍积问题的提出,传说很多. 埃拉托塞尼(Eratosthenes,公元前226年——公元前195年)在名著《柏拉图》一书中写道:太阳神阿波罗向提洛岛的人们宣布, 瘟疫即将流行. 为了摆脱灾难,必须把德里安祭坛的体积扩大,使之变为现在这个立方体祭坛的体积的两倍,而且要求仍然是一个立方体. 工匠们百般努力,百思不得其解,于是去请教柏拉图. 柏拉图提醒大家,神发布这个谕示,并不是想得到一个体积加倍的祭坛,而是以此难题来责难希腊人对数学的忽视和对几何学的冷淡.埃拉托塞尼是国王托勒密(Ptolemy)之子的家庭教师,他把自己关于立方倍积的工作上报给托勒密国王,引起了国王的重视,并在全国悬赏征解.又有一个传说, 说的是古代一位希腊悲剧诗人, 他描述过一位名叫弥诺斯的匠人为皇族格劳科斯修坟的故事. 弥诺斯说,原来设计的每边都是百尺的立方体坟墓,对于殉葬者众多的皇家而言还嫌太小,皇家要求他把其体积加倍.当时古希腊关于立方倍积的传说满天飞,可见人们对这一问题的重视和兴趣. 设k 是已知立方体的棱长,x 是所求立方体的棱长,于是, 332x k =.解法一 希腊数学家梅纳奇马斯(Menaechmus ,前375——前325)考虑了两条抛物线2x ky =和22y kx =的交点. 由于42232x k y k x ==,所以332x k =. 于是, 这两个抛物线的交点(非原点)的横坐标即为所求的立方体之棱长.解法二 笛卡儿(Descartes ,1596—1650)只用上面两条抛物线中的一条就求得了x . 事实上,上述两条抛物线的交点(), x y 满足222x y ky kx +=+, 此为中心在, 2k k ⎛⎫ ⎪⎝⎭、的圆. 此圆过两抛物线的交点,所以为求两抛物线的交点的横坐标x ,只需求上述圆与两条抛物线之一的交点即可(圆比抛物线容易作出).解法三 在上述方法中要作抛物线,这件事用尺规不能完成. 下面介绍一种巧妙的“丝线作图法”.1. 作边长为k 的正三角形ABC ,延长CA 到D ,使得AD k =;2. 作直线DB 和AB ;3. 取丝线一条, 在其上标出两点E 和F ,使EF k =;4. 拉直丝线,使其通过C 点,且点E 和F 分别落在DB 和AB 上. 于是可证:x =,即x 为体积加倍的立方体的棱长.注 x 的求法如下. 由上图, ||GC BE ,故2x k ky=. 在BCF ∆中使用余弦定理, 得()2222222cos3x k k y ky k y ky π+=+-=++, 即222x kx y ky +=+. 于是得332x k =. 故x =.二 用木工尺三等分任意角木工尺就是图中所示的直角尺. 设尺的拐角内点为B , 在和BD 垂直的尺边上取一点C , 使BC 等于尺宽AB . 任意给定一角EOF ∠. 用木工尺作一条与OE 相距为尺宽AB 的平行线l . 令尺边上的点A 落在l 上, C 落在OF 上, 尺边DB 过点O , 则沿DB 画出的直线l '与OF 的夹角等于13EOF ∠.事实上, Rt CBO Rt ABO Rt AGO ∆≅∆≅∆, 于是αβγ==.三 用割圆曲线化圆为方割圆曲线是古希腊数学家希庇亚斯为解决化圆为方问题而发明的. 设点A 是已知圆的圆心,AB 为一条半径.把线段AB 绕点A 顺时针匀速旋转90 到AD 的位置,同时, 与AD 平行的直线BC 匀速平移到AD 位置, 且AB 和BC 同时到达AD . 可以证明, 在运动过程中, 线段AB 和直线BC 始终相交. 它们的交点的轨迹称为割圆曲线(图中的粗实线).由于此曲线把以A 为圆心、以AB 为半径的14圆切割成两块, 所以该曲线称为割圆曲线. 如图建立坐标系, 设AB a =, 则割圆曲线的方程为tan2yx yaπ=.于是002lim limtan2y y y aAG x yaππ→→===. 由于我们利用割圆曲线, 所以AG 是已知线段. 于是,我们可用尺规作出线段2222AB a al a AG ππ===和线段b , 使得222b al a π==. 于是, 以b 为一边的正方形的面积等于已知圆的面积2a π.注1 证明: 在运动过程中, 线段AB 和直线BC 始终相交.设AB 旋转的角速度为ω,BC 平移的速度为v ,则因AB 和BC 同时到达AD , 所以2a vπω=. 于是2v a ωπ=.在t 时刻, B ''的纵坐标cos a t ω=.B C ''的纵坐标221. ()y a vt a at a t ωωππ⎛⎫=-=-=-* ⎪⎝⎭今证2cos 1t t ωωπ>-. 令t ωα=, 则要证2cos 10. ()2παααπ⎛⎫>-<<** ⎪⎝⎭22cos 1sin ααααππ'⎛⎫+-=-+ ⎪⎝⎭.当20arcsin απ<<时, 2cos 10αααπ'⎛⎫+-> ⎪⎝⎭; 当2arcsin 2παπ<<时, 2cos 10αααπ'⎛⎫+-< ⎪⎝⎭. 又在0α=或2π时, 2cos 10ααπ+-=, 所以2cos 1002παααπ⎛⎫+-><< ⎪⎝⎭. 即 ()**成立. 所以线段AB和直线BC 始终相交.注 2 由 ()*, 得22y t aππω=-, 所以22y t aππϕω=-=, 于是割圆曲线的方程为tan2yx yaπ=.2 . 捆绑立方体若把橡皮筋套在一个立方体的顶点A 的近旁, 使此橡皮筋成一个三角形,那么只要一松手,则橡皮筋会向A 的方向滑过去而脱落. 再看与此立方体的一个面平行的平面, 它截得的正方形MNPQ 若是橡皮筋,我们将它弄成不与立方体的面平行,它仍然会凭它的“收缩成面积最小的特性”而恢复成一个与该立方体的面平行的正方形. 可见, 与立方体的面平行的正方形MNPQ 是稳定的捆绑.上述这种与立方体的面平行的正方形橡皮筋共三族,每个面上有两族橡皮筋垂直地分布于该面上. 在立方体表面上的每个点处, 都通过两条稳定(最牢靠)捆绑的橡皮筋. 除此之外,是否还可能有牢靠捆绑的橡皮筋呢? 有!-的棱长为1. 考虑其表面上的六边形ABCDEF, 并设其六边分别在立方体的六个面上. 若ABCDEF是一条橡皮筋且是稳定的捆绑,则其长度将在弹力作用下变为最短. 考虑立方体的侧面展开图. 由于ABCDEF达到了最短, 故A、B、C、D、E、F、A共线. 于是, 直线ABCDEFA与AQ夹45 角, 六边形ABCDEF 的各边与所在面上的一条对角线平行. 这些对角线组成了展开图中的两条平行虚线, 它们是ABCDEFA的两个极端位置. 对应在正方体上,这两个极端位置是PRX∆和QWU∆.显然, 六边形ABCDEF的周长为32正方体的一个面的对角线长度23倍).另外, AB CD EF ==, BC DE FA ==, ||AB DE , ||BC EF , ||CD FA , 且ABCDEF 是每个角都是120 的平面六边形, 它所在的平面平行于平面QWU 和平面PRX .稳定的捆绑ABCDEF 的位置是可变的, 它所在的平面可以平行于平面QWU 而在平面QWU 和平面PRX 之间平移(但ABCDEF 的周长始终保持为常数而各边也在自身所在的面内平移且保持平行于同一条对角线. 在平面展开图上, 两条虚线之间的带状区域被缠绕在立方体上(三棱锥S PRX -以外的各面上).若把稳定捆绑的六边形ABCDEF 的各边延长,则可形成两个中心重合且对应边平行的正三角形, 它们所围成的区域的公共部分的边界即六边形ABCDEF .一共有四族捆绑六边形,每族所在的平面互相平行,且平行于立方体的三个面上的三条对角线. 这四族捆绑线和开头讲的三族捆绑线(平行于立方体的面)合起来, 共有七族捆绑线.在立方体的表面上的每一点处, 恰有四条捆绑线通过. 于是, 在立方体的表面上,共编织了四层捆绑线.若要把棉纱绕在一个立方体上且不致使棉纱松脱,则应垂直于立方体的棱缠绕或缠在三棱锥S PRX∆所在的平面平行. 共有七种缠-以外的表面上,每圈线与PRX绕方式. 用垂直于棱的方式(三种)缠了两层之后改用平行于PRX∆等三角形的方式(四种)再缠两层,以后周期性地重复进行,则可缠绕成一个十分别致而结实的线团.3 . 糕点售货员的打包技术顾客买了一盒点心,要求售货员把长方体的点心盒用尼龙绳捆紧,便于携带. 售货员至少有两种捆绑方式.一是正交十字法. 如图. 这是一种牢固的包扎方法.二是上下压角法(这与前面讲的捆绑立方体很类似). 如图. 捆扎的尼龙绳形成了一个空间八边形ABCDEFGH. 要使捆扎最紧, 必须使该空间八边形的周长最短. 我们从纸盒的平面展开图上来分析.在展开图上, 仅当A、B、C、D、E、F、G、H共线时, 封闭折线ABCDEFGHA(尼龙绳)才最短. 设上述八点共线. 则直线AB可在一定的范围内平移. 图中的两条虚线是AB 的极限位置, AB 可在这两条虚线所夹的范围内平移. 设纸盒的长、宽、高分别为a 、b 、c , 则不论AB 在上述范围内的哪个位置, 八边形ABCDEFGH 的周长都是同一值L =周长的最小值), 相应的捆扎都是牢固的.这种别致、最优的捆扎方式, 样式新颖, 使得绳子不仅可以沿着自身的走向移动, 而且可在盒子的表面平移, 平移时, 绳子的总长还保持不变, 恒为L =另外, 该方法所用的绳子的长度L =字法所用的绳子的长度224a b c ++.绳子的第一个极端位置 绳子的一般位置绳子的第二个极端位置 以上三个位置画在同一图上在绳子的一般位置的图示中, 注意||AB FE 且AB FE =, ||DC GH 且DC GH =,AH ED =且68AHP EDP ∠=∠, BC FG =且68BCP FGP ∠=∠.如用多条绳子捆紧盒子, 并使各条绳子的位置不同(彼此平行),则图示如上. 把上述平面展开图中的两条虚线所夹的区域视为一条宽带子, 则可用该带子牢固地捆紧纸盒, 这就好像用多条绳子捆扎一样.4 . 怎样判断一个自然数能否被2,3,5,7,9,11和13整除?设n 是自然数, 则(1)n 可以被2(或5)整除⇔n 的个位数可以被2(或5)整除.换言之, n 可以被2(或5)整除⇔n 的个位数是偶数(或0和5之一).例如, 9034可以被2整除, 但21537不能被2整除. 24910和7729215可以被5整除,但28849不能被5整除.该方法的意义(实用价值)在于: 不需要实际做除法即可判断一个数n 能否被2或5整除, 这比计算2n ÷和5n ÷简便.(2)n 可以被3(或9)整除⇔n 的各位数字之和可以被3(或9)整除.例如, 80274可被3整除, 但不能被9整除, 因为8027421++++=可被3整除, 但不能被9整除. 直接验证:80274326758÷=,8027498919÷=余3.35441不能被3整除, 因为3544117++++=不能被3整除. 直接验证: 35441311813÷=余2.2041857可被9整除, 因为204185727++++++=可以被9整除. 直接验证:20418579226873÷=.该方法的意义(实用价值)在于: 用较小的计算量即可判断一个数n 能否被3或9整除, 这比计算3n ÷和9n ÷简便. 以下各方法的用处类此.(3)n 可以被11整除⇔n 的偶位数字之和与奇位数字之和的差可以被11整除.例如,6283706可以被11整除,因为()()687623022+++-++=可以被11整除.52416不能被11整除, 因为()()5462112++-+=不能被11整除.(4)判断n 能否被7(或11, 13)整除的方法 方法一 n 可以被7(或11, 13)整除⇔n 的最后三位数字组成的数和其余各位数字组成的数的差可以被7(或11, 13)整除.例如, 30445828可以被7整除, 因为3044582829617-=可被7整除.208832不能被7整除, 因为832208624-=不能被7整除.575344可以被11整除,因为575344231-=可被11整除. 39901不能被11整除, 因为90139862-=不能被11整除.58513可以被13整除, 因为51358455-=可以被13整除.78310不能被13整除,因为31078232-=不能被13整除. 注意 上述方法可以反复使用, 能达到简化计算的效果. 如判断30445828可否被7整除时, 先求出3044582829617-=, 然后, 对29617, 再计算61729588-=, 它可以被7整除, 从而29617也可以被7整除, 于是,30445828可以被7整除. 方法二 从n 的个位起, 每3位分为一段, (例如,28702448n =可以写成28,702,448n =), 则n 能被7(或11, 13)整除⇔奇数段数字之和与偶数段数字之和的差可以被7(或11, 13)整除.例如, 3,998,460,228可以被7整除, 因为()()9982283460763+-+=可以被7整除.4,879,201,421不能被7整除,因为()()87942142011095+-+=不能被7整除. 9,880,409,341可以被11整除, 因为()()8803419409803+-+=可以被11整除.125,789,641,237不能被11整除, 因为()()789237125641260+-+=不能被11整除.801,139,985,200,009可以被13整除,因为()()80198591392001456++-+=可以被13整除. 5,784,269,131,458不能被13整除, 因为()()7841315269458183+-++=不能被13整除. 注意 上述方法也可以反复使用, 以达到简化计算的目的. 如上面判断801,139,985,200,009可以被13整除时, 先计算出()()80198591392001456++-+=, 然后, 可以对1,456, 计算4561455-=, 它可以被13整除, 所以1,456也可以被13整除, 从而801,139,985,200,009可以被13整除.5 . 消九验算法例1 56385215⨯=对不对? 利用下面讲的消九验算法可以简便地加以验证.对乘数56,有5696÷=余2. 对乘数385, 有385942÷=余7.两个余数的乘积为14,1491÷=余5. 对乘积21560,有2156092395÷=余5.最后两个余数相同,我们可以基本..断定5638521560⨯=是正确的(事实上, 此计算确实正确).说基本..断定5638521560⨯=是正确的, 而不说肯定正确, 是因为可能有这种情况出现, 就是计算虽然有错, 但用上述方法仍然得到最后两个余数相同的结果.比如, 2417318⨯=显然是错的, 但2492÷=余6, 1791÷=余8, 6848⨯=, 4895÷=余3, 318935÷=余3. 最后两个余数相同.由此可见, 上述方法不是绝对可靠的!例2 38227103⨯=对不对?382942÷=余4, 2793÷=余0, 400⨯=, 090÷=余0, 1031291145÷=余7. 因07≠, 所以断定3822710312⨯=是错的.这就是说, 如果最后的两个余数不同, 则一定可以断定计算出错.例3 把消九验算法灵活变通一下, 可以简化验算时的计算.检验例1中的5638521560⨯=是否正确.对56: 5611+=;+=,112对385: 38516+=;++=,167+=;⨯=, 1452714对21560: 2156014+=.++++=,145最后的两个计算结果相同, 可基本断定5638521560⨯=正确.道理: 56被9除所得的余数=“5611+=”被9除所得的余+=”被9除所得的余数=“112数. 对385,14和21560有类似结果.我们看到, 本例中的方法比前两个例子中的方法在计算上简便多了!例4检验例2中的3822710312⨯=是否正确.对382: 38213+=;++=, 134对27: 279+=, 削去9, 得0;⨯=;400对10312: 103127++++=.最后的两个计算结果不同: 07≠, 于是可以断定3822710312⨯=是错的.6 . 素数的故事(1)名不符实的冠名素数并不素(朴素). 它的定义和名称似乎给人一种印象,认为素数是质朴简单的一种最基本的数. 其实, 算术中的麻烦事大都是由它惹起的. 例如,我们知道的哥德巴赫猜想和孪生素数的黎曼猜想就是典型的例子. 1989年,Amdabl Six小组在美国加利福尼亚圣克拉大学用Amdabl 1200超级计算机捕捉到一对孪生素数: 11235⨯±. 可见素数名不符实.170659521还有一个在数学史上贻笑大方的、名不符实的故事,它是关于威尔逊定理的. 有一个关于素数的定理,用英国法官威尔逊(J.Wilson,1741——1793)的名字冠名.威尔逊定理 若2p ≥为自然数,则p 是素数p ⇔整除()1!1p -+.事实上,这条定理是莱布尼茨首先发现,后经拉格朗日证明的. 但威尔逊的一位擅长拍马屁的朋友沃润(E .Waring)在1770年出版的一本书中, 却吹嘘说是威尔逊发现的这一定理,而且还宣称这个定理永远不会被证明,因为人类没有好的符号来处理素数. 这种话传到高斯的耳朵里. 当时, 高斯也不知道拉格朗日证明了这一定理,他在黑板前站着想了五分钟,就向告诉他这一消息的人证明了这一定理! 高斯批评威尔逊说:“他缺乏的不是符号而是概念.”两百多年来,全世界的数论教科书上都照样把这一定理称为威尔逊定理. 看来还历史以本来面貌,更换本定理的冠名已无必要,也不易纠正这么多年来文献与教材上的称呼了.威尔逊定理应用很广. 例如, 对较大的素数p ,我们虽然无力算出()1!p -的值,但却知道()1!p -被p 除的余数是1p -.由于威尔逊定理的戏剧性的冠名以及它的内容的重要性,有人戏称:“如果一个人不知道威尔逊定理,那他就白学了算术.”(2)不能实施的素数判别法从字面上看,威尔逊定理已经明白无误地给出了一个简洁的四则运算算法,可以判断任何一个正整数是不是素数. 可惜()1!p -太无情了,它使得我们没有那么的多时间和抄写空间(纸张或计算机内存)来弄清()1!p -是几! 例如,1876年,法国数学家卢卡斯(A .Lucas)用手和笔发现了一个39位的素数12721170141183460469231731687303715884105727p =-=.若用威尔逊定理来判断p 是否是素数, 就需要计算()()1271!211!p ⎡⎤-=--⎣⎦,以每页书可排2000个阿拉伯数字计算,()127211!⎡⎤--⎣⎦可以印成500页的书至少33210⨯本,这比全世界的总藏书量还多得多! 因此, 用威尔逊定理去判断一个大数是否是素数, 这是行不通的! 可见,威尔逊定理只有理论价值,它是一个无实施价值的判别法,或者说,它是一个无效的坏算法.我们渴望设计出一个有效算法, 来判别任给的正整数是否是素数. 这种迫切性从费马数和哥德巴赫猜想等问题上可以感觉到.所谓费马数,是指形如221n n F =+的数,其中0, 1, 2, n = . 03F =, 15F =, 217F =, 3257F =, 465537F =, 54294967297F =.从0F 到4F , 容易判定它们都是素数,5F 是42亿多的大数,费马当年无力判断5F 是否是素数,他只是大胆地猜想, 一切n F 都是素数. 1732年,欧拉算出56416700417F =⨯,从而否定了费马关于费马数素性的猜想.1880年,法国数学家卢卡斯算出627417767280421310721F =⨯.1971年,有人对7F 得出素因子分解.1981年,有人得出8F 的素因子分解.1980年,有人得出9448F 的一个因子是94501921⨯+.1984年,有人得出23471F 的一个因子是23473521⨯+.1986年,有人用超级计算机连续运算十天, 得知20F 是合数.人们至今知道的素费马数还只是03F =, 15F =, 217F =, 3257F =, 465537F =.这个问题不能彻底解决的要害, 是人们至今没有搞出判别素数的有效算法.也有一种潜在的厄运,那就是判定一个数是否是素数和移动河内塔上的盘子一样,本质上就不存在有效算法!(3)素数病毒越来越多把π的小数点删去,π就改写成了一个阿拉伯数字的无穷序列. 问:长几的前缀是素数? 例如,3与31是素数;314159是第三个素前缀;1979年美国数学家贝利(R .Baillie)等人发现π上的第四个素前缀31415926535897932384626433832795028841. 敢问:π还有第五个素前缀吗? 第六个,第七个,……呢?把π换成 2.71828e =…,…, lg 2, lg 3,…, 再问同类问题,又该怎么解答呢? 即使是温和一些的问题,例如下面的问题, 其解答仍然是悬案!()121111110101011019n n n n --=++++=- 个. 问: 当n 为素数时,1111n 个是否是素数? 真是心血来潮! 随便一问就会难倒人! 这样提出问题会使人对素数产生一种反感. 在形形色色应接不暇的问题当中,似应首选那些具有重要应用背景或理论背景,又有能力解决的问题去研究.(4)重要的问题是落实算术基本定理算术基本定理告诉我们,任一大于1的整数n 都可以唯一地表成某些素数的乘积,即12m n p p p = , 其中1p , 2p , …, m p 是被n 唯一确定的素数.问题是,如何由n 具体地求出1p ,2p , …, m p ? 这是一个有重要实用背景和计算机计算的时间复杂度理论背景的大问题. 是数论的中心课题之一,也是计算机科学的主攻方向之一. 假设某年某人设计出了一个有效算法,能在多项式时间内求得12m n p p p = 中的1p , 2p , …, m p 的值,那么当n 是素数时,n 就是1p ,即此算法可以有效地判定素数,从而可以在多项式时间内解决前面提出的诸多问题. 例如, 费马数n F 是否为素数(n是任意给定的自然数),无理数(例如π)的前缀是否是素数等问题. 这里说的“多项式时间”是指对一个问题,存在一个多项式()p n ,n 是要判定的整数的输入长,即它的位数的一个倍数.在实用上,例如在保密通讯与密码破译当中,需要对大合数进行素因子分解. 一般地, 这种大合数有百位之大,所以, 目前各军事大国都集中大量人力物力,研究这种合数的素分解问题,但至今并未听说有明显进展.如果真搞出素分解算法,则对任给定的大偶数,可以在多项式时间内把它表成两个素数之和或发现哥德巴赫猜想的反例.我们期望的这种素分解的有效算法能解决这么多非常之难的问题,可见设计出它的难度是诸多数论难题难度之集大成! 即使这种算法存在,也是很难设计出来. 我们甚至还应想到它根本就不存在,以免望梅止渴,水中捞月!7 . 蚂蚁在砖上爬行的最佳行迹一只蚂蚁从一块砖的一个顶点爬向对角顶点,它应沿着怎样的路线爬行,才能使其行迹(所用时间)最短?''''-. 蚂蚁欲从点A爬向对角顶点C'.它可以有种种不同的爬行方式. 如图所示. 不失一般性, 我们设蚂蚁沿路径A F C'→→爬行, 最后到达C'. 设AB a=, AD b=, AA c'=. 在长方体的侧面展开图上, 显然当点F使A、F、C'共线时,路径A F C'→→最短. 此时, 该路径的长度同理,AEC'=,AGC'在图示的从A 到C '的所有六条路径中, 最短者即为所求的最短路径. 另一方面, 由平面展开图可知,AHC AFC ''=且AFC H '是平行四边形, AJC AEC ''=且AEC J '是平行四边形, AIC AGC ''=且AGC I '是平行四边形. 因此, 我们只需考虑路径AFC '、AEC '和AGC ', 并从中挑选最短者. 设a b c >>, 则易知AFC '(也就是AHC ')是最短路径且AFC AHC ''=.一般地, 在展开图是平面图形的立体表面上,蚂蚁从一点爬向另一点时,其最省时的行迹皆为展开图上连接此两点的各直线段中的最短者对应的立体上的那条曲线段.例如, 在圆柱上,蚂蚁要从A点爬向B点. 把此圆柱的侧面展开, 则图中的两个线段AB中的较短者对应的圆柱面上的曲线(圆柱螺线)即为从A到B的最短路径.蚂蚁在圆锥上爬行的最佳路线也可用前面的展开图方法加以解决. 有趣的是,如果它是从圆锥底面圆周上一点A爬向此圆周上的另一点B,则最短路径不是沿圆周爬行,而是先向上爬,到达一个最高点后再向下爬行. 其最佳爬行路线在展开图上是直线段AB.对于不可展开成平面的曲面,寻求蚂蚁从其上一点爬向另一点的最佳路线就不像上面的解法那么方便了. 一般而言,不能用初等数学的方法来讨论. 例如在球面上,蚂蚁从一点A爬向另一点B,则应沿A、B所在的大圆上的劣弧AB爬行. 沿大圆爬行时,路径弯曲的程度最小,最接近直线段,但证明这一点并非易事.设在某曲面上存在一条蚂蚁的最佳行迹l ,使它从A 点爬到B 点, 所走路径最短. 现在l 上穿一个洞(点洞), 蚂蚁爬行时不能从该洞上走过, 则这时可能已不存在最佳行迹了. 事实上,设无洞时最佳行迹是唯一的. 因蚂蚁爬到洞附近时必须绕行,因此有无穷条行迹,都与无洞时的最佳行迹相差无几,且越来越接近于原最佳行迹,但哪一条也不是最佳的,都可以再缩短,可见这时已找不到最短行迹了.。
数学的分类纵向:初等数学和古代数学 17世纪以前数量数学 17-19世纪近代数学 19世纪现代数学 20世纪横向:基础数学(代数、几何、分析)应用数学计算数学概率论与数理统计运筹学与控制论国外:纯粹数学、应用数学、概率论第一讲数学科学前沿简介一、20世纪数学研究的简单回顾站在数学内部看,上个世纪的数学必须归结到1900年8月6日,在巴黎召开的第二届国际数学家大会代表会议上,38岁的德国数学家希尔伯特(Hilbert, 1862--1943)所发表的题为《数学问题》的著名讲演。
他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。
这23个问题通称希尔伯特问题。
这一演说成为世界数学史发展的里程碑,为20世纪的数学发展揭开了光辉的一页。
在这23个问题中,头6个问题与数学基础有关,其他17个问题涉及数论、不定积分、二次型理论、不变式理论、微分方程、变分学等领域。
到了1905年,爱因斯坦创立了狭义相对论(事实上,有两位数学家,庞加莱和洛伦兹也已经走到了相对论的门口),1907年,他发现狭义相对论应用于物理学的其他领域都很成功,唯独不能应用于万有引力问题。
为了解决这个矛盾,爱因斯坦转入了广义相对论的研究,并很快确立了“广义相对论”和“等效理论”,但数学上碰到的困难使他多年进展不大。
大约在1911年前后,爱因斯坦终于发现了引力场和空间的几何性质有关,是时空弯曲的结果。
因此爱因斯坦应用的数学工具是非欧几何。
1915年,爱因斯坦终于用黎曼几何的框架,以及张量分析的语言完成了广义相对论。
德国女数学家诺特(Emmy Noether 1882~1935)发表的论文《Idealtheorie in Ringbereiche(环中的理想论)》标志着抽象代数现代化开端。
她教会我们用最简单、最经济、最一般的概念和术语去进行思考:如同态、理想、算子环等等。
还有其它许多数学大成果。
20世纪近50名菲尔兹数学奖得主的工作都是数学内部的大成果。
古希腊神话中的数学数学百科:古希腊神话中的数学古希腊三大几何问题古希腊三大几何问题既引人入胜,又十分困难。
问题的妙处在于它们看非常简单,而实际上却有着深刻的内涵。
它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。
但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。
某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。
经过2000多年的艰苦探索,数学家们终于弄清楚了这3个难题是“不可能用尺规完成的作图题”。
认识到有些事情确实是不可能的,这是数学思想的一大飞跃。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
另外两个著名问题是三等分任意角和化圆为方问题。
然而,一旦改变了作图的条件,问题则就会变成另外的样子。
比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。
数学家们在这些问题上又演绎出很多故事。
中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。
或描述如下:这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:1.立方倍积即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
2.化圆为方即作一正方形,使其与一给定的圆面积相等。
3.三等分角即分一个给定的任意角为三个相等的部分。
具体内容立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。
尺规作图不能问题就是不可能用尺规作图完成的作图问题。
这其中最著名的是被称为几何三大问题的古典难题:■三等分角问题:三等分一个任意角;■倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;■化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。
在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。
1882年德国数学家林德曼证明π是超越数后,“化圆为方”也被证明为尺规作图不能问题。
【尺规作图不能问题的另类做法】[编辑本段]■总述人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.■关于三等分一任意角问题★作法一尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法,对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法,对于∠AOB,在它的两边上截取OA=OB.连结AB 并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法:交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA■关于立方倍积问题★作法一柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边.★作法二门纳马斯(Menaechmus,约公元前375—325年)方法:从a∶x=x∶y=y∶2a可得y2=2ax,x2=ay.所以,在直角坐标平面上画出上述两个二次方程所对应的两条抛物线(图16).这两条抛物线交于O、A两点,那么点A在x轴上的投影到原点的距离,就是所求的立方体的棱长.★作法三阿波罗尼(Apollonius de Perge,约公元前260—200年)方法:作一矩形ABCD,这里AB=a、AD=2a.以此矩形对角线交点G为圆心,以适当长度为半径作圆,与AB、AD之延长线分别交于E、F,使E、C、F三点共线,则AB∶DF=DF∶BE=BE∶AD,线段DF之长即为所求立方体的棱长.■化圆为方问题★作法:对于已知圆O,作出它在第一象限的圆积线①l.连结这一圆积线的两个端点B、F,过点B引BF的垂线BG,交x轴于G.在OA上取一点H,使HA=1/2GO.以H为圆心,HG 为半径画弧,交y轴于点K.则以OK为一边的正方形,即为所求作的与圆O等积的正方形.【尺规作图不能问题的积极意义】[编辑本段]我们可以看出,几何三大问题如果不限制作图工具,便很容易解决.从历史上看,好些数学结果是为解决三大问题而得出的副产品,特别是开创了对圆锥曲线的研究,发现了一批著名的曲线,等等.不仅如此,三大问题还和近代的方程论、群论等数学分支发生了关系.【尺规作图不能问题的相关趣事】[编辑本段]阿纳克萨戈勒斯是古希腊著名学者,在天文学中,他曾因解释日,月食的成因而闻名遐迩,并且认识到月球自身并不发光.正是他出色的研究成果给他带来了不幸, 在他大约50岁的时候,横祸从天而降,蒙受了冤狱之苦.灾难的起因是他认为太阳是一块炽热的石头.由于当时的宗教早已一口咬定太阳是神灵,而这位学者却无视宗教的权威,说太阳是一块石头,因而被投入监狱.尽管被囚禁的时间并不太长,可是,在被囚禁的日子里冤屈,苦闷,无聊实在让人度日如年.在阴暗,潮湿的牢房里,阿纳克萨戈勒斯看不到外面的朝霞暮霭,每天只有不长时间,阳光能穿过牢房那狭小的方形窗户进入室内.每当阳光进入囚室,在墙壁上撒下一片光亮时,总会引起作为学者的他的种种联想.有一天,他在凝视圆圆的太阳赏赐给他的方形的光亮时,他那习惯于思索的头脑突发奇想:能不能(仅用直尺和圆规)作一个正方形,使其面积与一个已知圆的面积恰好相等呢就这样,一道世界名题——"化圆为方"问题诞生了,它与"立方倍积"问题,"三等分任意角"问题一起被后人称作古希腊几何作图三大难题. 阿纳克萨戈勒斯想到化圆为方问题之后非常兴奋,因为他身边没有书籍,没有笔,很难研究别的问题,而这个问题却不同,只要用草棍在地上画就行了,草棍在牢房里有的是.他在进入高墙之前做梦也没有想到,在他最痛苦的时候,是数学排除了他的几分烦恼.不过,他一生也未能解决他提出的这个问题。
古希腊的成绩:欧氏几何最初的几何概念,来源于生活。
自从人类有了意识,人类所接触的物体,都为咱们提供了这些概念的来源。
尤其是古代的经活动,包括土地的丈量(用来决定税收,古代是按照土地的大小来纳税的),各类衡宇的建造,各类物品工具的制造,使得人们有了几何概念的大体雏形。
目前较为一致的观点是,一个较为系统的几何学的产生是从古代埃及进展起来的(由于尼罗河水的按期泛滥冲垮农田,人们为了从头丈量土地,产生了“测地术”,英文中的,geometry一词中的“geo-”有大地的意思,而“-metry”又有测量的意思,而中文中的“几何”则是“geo-”的译音。
)虽然几何学的产生起源于古代的埃及而从科学进展的历程来看,数学的进展,真正从一门比较完善学科学科的形成来讲,几何学的进展较为迅速,而且也较早形成一个完整的学科体系。
对于几何概念的科学,能够追溯到古希腊文明。
泰勒斯,比达格拉斯的老师,被誉为世界上第一个科学家和数学家,对那时从经验得来的事实进行了理论解释,朝几何学的系统化迈出了第一步。
他研究了图形全等、图形相似的概念,将实际的经验归纳为抽象的原理,使得原来的经验,能够有更广漠的应用。
他还提出了一个逻辑推理系统。
而物理空间的提出,成为以后几何研究的一个重要内容。
研究了平方数、三角形数。
更重要的一个发现是比达格拉斯定理,也就是中国古代的勾股定理:直角三角形的两个直边长度的平方和,等于斜边长度的平方。
在研究正方形对角线长度时,比达格拉斯已经发现这个数无法精确表示。
这已经很接近无理数的概念,可惜他放弃了,只好由两千多年后的德国数学家康托来完成无理数理论的基础。
几何学的一个里程碑是欧几里德的《几何原本》的出版。
《几何原本》集当时几何学研究的大成,对希腊人所了解的几何学知识进行了条理化和系统化。
《几何原本》首先定义了几何学中的概念和符号,使得几何学便于交流。
同时,《几何原本》开创现代科学研究的公理化系统:基于有限的公理,一门学科中其他的定理都可以被推导出来。
古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规,这种作图工具的限制使得三大几何作图问题成为数学史上的难解之题.三等分角问题即将任意一个角进行三等分.1837年,法国数学家旺策尔第一个证明了三等分角问题是古希腊那种尺规作图不可能的问题.但如果放宽作图工具的限制,该问题还是可以解决的.阿基米德创立的方法被誉为最简单的方法,他仅利用只有一点标记的直尺和圆规就巧妙地解决了这个问题.三等分角问题的深入研究导致了许多作图方法的发现及作图工具的发明.倍立方体问题即求作一个立方体,使其体积是已知一立方体的两倍,该问题起源于两千年希腊神话传说:一个说鼠疫袭击提洛岛(爱琴海上的小岛),一个预言者宣称己得到神的谕示,须将立方体的阿波罗祭坛的体积加倍,瘟疫方能停息;另一个说克里特旺米诺斯为儿子修坟,要体积加倍,但仍保持立方体的形状.这两个传说都表明倍立方体的问题起源于建筑的需要.1837年,洁国数学家旺策尔证明了倍立方体问题是古希腊那种尺规作图不可能的问题.倍立方体问题的研究促进了圆锥曲线理论的建立和发展.化圆为方问题即求作一正方形,使其面积等于一已知圆的面积.这是历史上最能引起人们强烈兴趣的问题之一,早在公元前5世纪就有许许多多的人研究它.希腊语中甚至有一个专门名词表示“献身于化圆为方问题”.1882年,德国数学家林德曼证明了化圆为方问题是古希腊那种尺规作图不可能的问题,从而解决了2000多年的悬案.如果放宽作图工具的限制,则开始有多种方法解决这个问题,其中较为巧妙的是文艺复兴时期的著名学者达·芬奇设计的:用一个底与己知圆相等,高为己知圆半径一半的圆柱在平面上滚动一周;所得矩形的面积等于已知圆面积,再将矩形化为等面积的正方形即化圆为方问题的研究促使人们开始用科学的方法计算圆周率的值,对穷竭法等科学方法的建立产生了直接影响.。
旺策尔三等分角结论译文【最新版】目录1.引言:古希腊三大几何难题的背景和智者学派2.旺策尔的证明方法3.三等分角的概念和证明过程4.结论:三等分角不可能用尺规作图5.总结:几何难题对数学和哲学的影响正文1.引言:古希腊三大几何难题的背景和智者学派古希腊三大几何难题是指化圆为方、倍立方和三等分角。
这些难题最早由古希腊的智者学派提出,这个学派以诡辩著称,其代表人物包括希比阿斯、安提丰和普罗泰格拉等。
在当时,几何学非常流行,哲学家和数学家常常将几何学应用于他们的研究和思考中。
2.旺策尔的证明方法旺策尔(Wantzel)是一位德国数学家,他在 19 世纪中叶对这三大几何难题进行了深入研究。
他通过严密的数学证明,得出了三等分角不可能用尺规作图的结论。
3.三等分角的概念和证明过程三等分角,即把一个角分成三个相等的部分。
旺策尔在证明过程中,首先假设存在一个角 A,可以被分成三个相等的部分,即∠B=∠C=∠D。
然后,他通过一系列几何变换和数学推理,证明了在这种情况下,必然存在一个正方形,其面积等于已知圆的面积。
但这与另一个著名的几何定理——化圆为方定理相矛盾。
因此,旺策尔得出结论:三等分角不可能用尺规作图。
4.结论:三等分角不可能用尺规作图根据旺策尔的证明,古希腊三大几何难题中的三等分角问题被证明不可能用尺规作图解决。
这一结论对数学界产生了深远的影响,也让人们更加认识到几何学和数学的严谨性和挑战性。
5.总结:几何难题对数学和哲学的影响古希腊三大几何难题不仅推动了几何学的发展,还对哲学和数学产生了深远的影响。
这些难题促使数学家们不断探索和创新,推动了数学的发展。
三等分已知角
古希腊著名的尺规作图问题有三个,除了前面介绍过的化圆为方和立方倍积问题之外,还有一个三等分已知角问题。
这里所说的已知角不光可是特殊角,如90°,135°,180°,等等,还可以是一个任意度数的角。
所谓把已知角三等分,是指按尺规作图的一般要求,即只使用直尺(无刻度,只能用来画直线)和圆规,依靠画直线和画圆弧,并仅用图中的已知点和画出的直线或弧线的交点。
通过有限的步聚,把已知角分成相等的三份。
1837年,P•L。
旺策尔既给出了立方倍积不能用尺规作图的证明,又给出了三等分已知角不能用尺规作图的证明,于是人们知道了,三等分已知角和立方倍积都是尺规作图的不可能问题,这也就宣告了三等分已知角和立方倍积问题的终结。
在人们知道古希腊三大几何问题都是尺规作图的不可能问题之前,千千万万人的试图正面解决这些问题的努力当然都不能成功,但也不是毫无收获。
正如中国大百科全书上所说的,正因为这些问题不能用尺规作图来解决,常常使人闯入新的领域中去。
例如激发了圆锥曲线,割圆曲线,以及三、四次代数曲线的发现。
旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明——古希腊三大几何难题
古希腊三大几何难题
提出者:智者学派
展开
雅典有一个智者学派,代表人物有希比阿斯、安提丰、普罗泰格拉等。
智者学派以诡辩著称,当时流行几何,哲学家、数学家常常看口闭口都是几何。
于是三大几何难题就诞生了。
(1)化圆为方:作一个正方形,使其面积与已知圆面积相等。
(2)倍立方:作一个正方体,使其体积是已知正方体的2倍
(3)三等分角:三等分任意角
于是呢,有一堆数学家就开始做。
题目规则是尺规作图。
可他们没做出来,于是就做,做呀做呀,他们殚精竭虑、千方百计,就是没做出来,一个都没有,但是一直有人做,于是阿基米德螺线诞生了,于是圆锥曲线诞生了……但是这么多几何线诞生,也没把题目做出来,于是两千年过去了。
19世纪有一个人叫旺策尔,证明了这个题目光用尺规是作不出来的。
证明这个几何题目的方法,竟然是代数。
推理方法很值得借鉴。
简单说一下
---------------------------------------------------------------------------------
推理
第一步:尺规作图可以怎么折腾
归纳只有5点:
①做连接两点的直线段,或延长此线段;
②作两直线的交点;
③以已知点为圆心;
④作圆与直线交点;
⑤作两圆交点;
第二步:只用尺规可以作出什么样的线段
设a1、a2、a3、a4、…… an是已知线段,同时用ai表示它们的长度,并设a1=1. 则光用尺规只能将之进行+、一、×、÷、√(根号),即进行加、减、乘、除、开偶次方根。
ai+aj没问题,ai -aj没问题,若x=ai× aj,则有1/ai=aj/x ,作一个相似三角形即可。
同样,若x=ai÷aj则1/x=ai/aj,若x=√(ai),则x^2=ai/×a1,x 是ai/与a1的比例中项,仿照射影定理的模型可以作出。
第三步:几何问题代数化
①做连接两点的直线段,或延长此线段;
代数化:已知两点A(x1,y1)B(x2 y2 ),那么线段AB长度d=√[(x2 一x1)^2+y2 一y1)^2],根据第二步,这些是可以作出来的;
②作两直线的交点;
代数化: A(x1,y1),B(x2 y2 ), C(x3, y3 ), D(x4 ,y4 )则AB 与CD交点为一个比较复杂的式子,不过只有减法乘法除法运算,也是可以作出的。
可以化一化试一试。
③以已知点为圆心、以已知半径作圆;
代数化:圆的方程谁都知道,是可以用减法、乘方、加法、乘法表示的;
④作圆与直线交点;
代数化:联立方程组,一个二元二次方程组,用换元法可以化为一元二次方程组,最后用韦达定理求根。
是可以用+、一、×、÷、√表示的。
⑤作两圆交点;
代数化:联立方程组,相减,得到一个二元一次和一个二元二次方程,换元法
同上可解,多组解,可以用+、一、×、÷、√表示。
好了,现在我们知道尺规作图就这么大出息。
第四步:问题转换
(1)化圆为方:设已知单位圆,求做一个边长为x的正方形,使得x^2=π ,x=√(π)。
问题转化为作一条长度为√(π)的线段;
(2)倍立方:已知单位立方体,求一立方体,棱长x满足x^3=2,问题转化为做一条长度为x的线段,x^3=2,;
(3)三等分角:三等分任意角,证明不可能作成,只需证明一个反例,不妨设要三等分的角大小为60°(别的度数也可以,但是60度方案可行)。
取直角坐标系XOY,在第一象限内作直角三角形△AOB,A在X轴上,∠AOB=60°,OA=1,把∠AOB三等分,即作出∠AOC=∠COD=∠DOB=20°,C,D两点在AB上,这相当于用规尺做了一条线段OC使得1/OC=COS20°。
如图。
好,问题转化为作一条长为COS20°的线段。
具体一点求COS20°的值:公式COS3α=(4COSα)^3-3COSα,令α=20°,CO Sα=X,则X满足方程:1/2=4X^3-3X;即COS20°为方程8X^3-6X-1=0的一个解。
结果:三大难题实质上就是让我们作三条线段,长度分别为√(π)、(3)√(2)(三次根号2)、8X^3-6X-1=0的一个解。
第五步:范围
最后一步了。
感觉上,(√(π))、(3)√(2)(三次根号
2)、8X^3-6X-1=0的一个解,这么长的线段是没办法作出来的,实际上是的。
为什么是的,高中范围只能解释第一个问题,第二第三个问题要用到什么数域扩域的,目前我看不懂。
那么就解决第一个问题吧。
1,数字1,怎么弄,用+、一、×、÷、√,都一定可以写成一个有理数次项方程的解。
(怎么变是你来变,只需要根据你变的方法倒推就可以了)。
好,那么尺规作图的范围就是作出一个有理数次项方程的解。
现在看一看,√(π)是不是有理数次项方程的解。
不是,当然不是,要是的话π现在都表示出来了,圆的大小都可以为一个确定的数值了,π的值也不用π表示了。
但是还要经过严格的推理证明来消除侥幸心理。
反证:假设√(π)是方程P(X)=x^n+a1*x^(n-1)+a2*x^(n-2)+……a(n-1)*x+an=0的根,那么就有,√(π)^n+a1*√(π)^(n-1)+a2*√(π)^(n-2)+……a(n-1)*√(π)+an=0。
n为偶数时,(奇数时可类比推理),有
√(π)^n+a2*√(π)^(n-2)+a4*√(π)^(n-4)+……a(n-2)*√(π)^2+an=—[a1√(π)^(n-1)+a3*√(π)^(n-3)+a5*√(π)^(n-5)+……a(n-1)*√(π)]
平方:
Q1(π)=Q2(π),Q1Q2是有理数系数多项式,那么π必然是有理数系数方程Q1(π)-Q2(π)=0的根,所以π可以表示为一个有理数方程的根。
但是已知π不可以,所以√(π)也不可以。
所以√(π)是不可以用1变
出来的,所以化圆为方,尺规作图无法作出。
结局
一个2000多年的难题解决了,很明显,智者学派提出问题,超越了历史发展阶段,但是看到这个悬而未决了2000多年的难题竟然这么简单给解决了,还真有些感慨。
不过陈省身前辈的“数学好玩”,倒可以从某一个角度体现出来——这要看你怎么看了。