【排列组合(11)】排列组合综合题应用(3)
- 格式:docx
- 大小:75.89 KB
- 文档页数:14
专题11多面手问题【方法技巧与总结】解含有约束条件的排列组合问题,即多面手问题,可元素的性质进行分类,接事件发生的连续过程分步,做到标准明确.分步层次清楚,不重不漏,分类标准一旦确定,要贯穿于解题过程的始终.【典型例题】例1.(2023·全国·高三专题练习)我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有()种不同的选法.A .675B .575C .512D .545【答案】A【解析】根据题意可按照只会跳舞的2人中入选的人数分类处理.第一类2个只会跳舞的都不选,则从既能唱歌又能跳舞的5人中选择3人来跳舞,接着从剩余的5人中选择3人唱歌,故有3355C C 100⋅=种;第二类2个只会跳舞的有1人入选,有12C 种,再从从既能唱歌又能跳舞的5人中选择2人来跳舞,有25C 种,再从剩余的6人中选择3人唱歌,有36C 种,故有123256C C C 400⋅=种;第三类2个只会跳舞的全入选,有22C 种,再从从既能唱歌又能跳舞的5人中选择1人来跳舞,有15C 种,再从剩余的7人中选择3人唱歌,有37C 种,有213257C C C 175⋅=种,所以共有100400175675++=种不同的选法,故选:A .例2.(2023·全国·高三专题练习)某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有()种不同的选法A .225B .185C .145D .110【答案】B【解析】根据题意,按“2人既会英语又会法语”的参与情况分成三类.①“2人既会英语又会法语”不参加,这时有4454C C 种;②“2人既会英语又会法语”中有一人入选,这时又有该人参加英文或日文翻译两种可能,因此有134413254524C C C C C C +种;③“2人既会英语又会法语”中两个均入选,这时又分三种情况:两个都译英文、两个都译日文、两人各译一个语种,因此有22442213132545242514C C C C C C C C C C ++种.综上分析,共可开出441344132244221313542545242545242514185C C C C C C C C C C C C C C C C C C +++++=种.故选:B .例3.(2023·全国·高三专题练习)“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A .26种B .30种C .37种D .42种【答案】C【解析】根据题意,设{A =只会划左桨的3人},{B =只会划右桨的3人},{C =既会划左桨又会划右桨的2人},据此分3种情况讨论:①从A 中选3人划左桨,划右桨的在(B C ⋃)中剩下的人中选取,有35C 10=种选法,②从A 中选2人划左桨,C 中选1人划左桨,划右桨的在(B C ⋃)中选取,有213324C C C 24=种选法,③从A 中选1人划左桨,C 中2人划左桨,B 中3人划右桨,有13C 3=种选法,则有1024337++=种不同的选法.故选:C .例4.(2023·全国·高三专题练习)某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有()A .56种B .68种C .74种D .92种【答案】D【解析】根据划左舷中有“多面手”人数的多少进行分类:划左舷中没有“多面手”的选派方法有3336C C 种,有一个“多面手”的选派方法有123235C C C 种,有两个“多面手”的选派方法有1334C C 种,即共有3312313362353492C C C C C C C ++=(种)不同的选派方法.故选:D例5.(2023春·湖北十堰·高二统考期末)某龙舟队有8名队员,其中3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A .26种B .30种C .37种D .42种【答案】C【解析】根据题意,设{A =只会划左桨的3人},{B =只会划右桨的3人},{C =既会划左桨又会划右桨的2人},据此分3种情况讨论:①从A 中选3人划左桨,划右桨的在()B C 中剩下的人中选取,有3510C =种选法,②从A 中选2人划左桨,C 中选1人划左桨,划右桨的在()B C 中剩下的人中选取,有21332424C C C =种选法,③从A 中选1人划左桨,C 中2人划左桨,B 中3人划右桨,有133C =种选法,则有1024337++=种不同的选法;故选:C.例6.(2023春·安徽六安·高二六安一中阶段练习)在11名工人中,有5人只当钳工,4人只当车工,另外2人既会钳工又会车工,现从11人中选出4人当钳工,4人当车工,则共有()种不同的选法.A.120B.125C.180D.185【答案】D【解析】按即会钳工又会车工的2人分类:2人都不选的情况有4454C C种,只选1人且当钳工的情况有134254C C C种,只选1人且当车工的情况有143254C C C种,选2人其中1人钳工1人车工的情况有233254A C C种,选2人都当钳工的情况有2454C C种,选2人都当车工的情况有4254C C种,由分类加法原理得选法有441341432332442542542542545454C C+C C C+C C C+A C C+C C+C C=185种.故选:D.例7.(2023春·宁夏·高二宁夏长庆高级中学校考期中)某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为A.36种B.33种C.27种D.21种【答案】C【解析】第一类,P船两大人一小孩,Q船一大人一小孩:有21326C C⋅=种方法.第二类,P船一大人两小孩,Q船两大人:有233C=种方法.第三类,P船一大人两小孩,Q船一大人,R船一大人:有336A=种方法.第四类,P船一大人一小孩,Q船一大人一小孩,R船一大人:有313212A C=种方法.根据分类加法计数原理,共有6361227+++=种不同的方法.故选C.考点:排列、组合、分类加法计数原理.例8.(2023·全国·高三专题练习)有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为A.18B.15C.16D.25【答案】B【解析】4名会唱歌的从中选出两个有246C=种,3名会跳舞的选出1名有3种选法,但其中一名既会唱歌又会跳舞的有一个,两组不能同时用他,∴共有36315⨯-=种,故选B.例9.(2023秋·河南南阳·高二校考阶段练习)我校去年11月份,高二年级有9人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余4人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有______种不同的选法【答案】216【解析】根据题意可按照只会跳舞的2人中入选的人数分类处理.第一类:2个只会跳舞的都不选,有3344C C 16⋅=种;第二类:2个只会跳舞的有1人入选,有123245C C C 120⋅⋅=种;第三类:2个只会跳舞的全入选,有213246C C C 80⋅⋅=种,所以共有216种不同的选法,故答案为:216.例10.(2023春·上海长宁·高二上海市延安中学校考期末)“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,某单位龙舟队欲参加端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派3人划左桨、3人划右桨共6人去参加比赛,则不同的选派方法共有__________种.【答案】37【解析】第一类:参加比赛的6人中没有会划左右桨的,共有3333C C 1=种,第二类:参加比赛的6人中有1人会划左右桨的,共有1322332C C C 12=种,第三类:参加比赛的6人中有2人会划左右桨的,共有132233332C C 2C C 24+=种,则共有1122437++=种.故答案为:37例11.(2023秋·辽宁朝阳·高三校考期中)现有7名志愿者,其中只会俄语的有3人,既会俄语又会英语的有4人.从中选出4人担任“一带一路”峰会开幕式翻译工作,2人担任英语翻译,2人担任俄语翻译,共有_______种不同的选法.【答案】60【解析】因为英语翻译只能从多面手中选,所以有(1)当选出的多面手2人从事英语翻译,没人从事俄语翻译,所以有224318C C =种选法;(2)当选出的多面手2人从事英语翻译,1人从事俄语翻译,所以有12134236C C C =种选法;(3)当选出的多面手2人从事英语翻译,2人从事俄语翻译,所以有246C =种选法;共有18+36+6=60种选法.例12.(2023·上海·高三专题练习)6名男生4名女生共10人,要从这10个人中选出3人共同去完成某项任务,要求这3人中至少要有1个女生,则不同的选法有_________种.【答案】100【解析】由题意,从10个人中抽取3人所包含的基本事件个数为3101098120321C ⨯⨯==⨯⨯,从6个男生中抽取3人所包含的基本事件个数为3665420321C ⨯⨯==⨯⨯,所以这3人中至少要有1个女生所包含的基本事件个数为:3310612020100C C -=-=.故答案为:100.例13.(2023秋·海南·高二海南华侨中学校考期末)6名学生,其中3人只会唱歌,2人只会跳舞,剩下1人既会唱歌又会跳舞,选出2人唱歌2人跳舞,共有______种不同的选法.(请用数学作答)【答案】12【解析】根据既会唱歌又会跳舞的那1个人未选中,选中唱歌,选中跳舞分类:22211232323212C C C C C C ++=.故答案为:12.例14.(2023春·四川广安·高二四川省武胜烈面中学校校考期中)6名工人,其中2人只会电工,3人只会木工,还有1人既会电工又会木工,选出电工2人木工2人,共有______种不同的选法.【答案】12【解析】由题意可对选出的电工2人木工2人分类:①既会电工又会木工1人没入选,有22233C C =种选法;②既会电工又会木工1人入选充当电工,有12236C C =种选法;③既会电工又会木工1人入选充当木工,有21233C C =种选法;综上,共有36312++=种选法.故答案为:12.例15.(2023春·上海浦东新·高二上海市进才中学校考期中)在一次演唱会上共10名演员,其中8人能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有___________种选派方法(填数字).【答案】199【解析】设既会唱歌又会跳舞的演员人数为x ,则8510x +-=,解得3x =,所以,只会唱歌的演员人数为5,只会跳舞的演员人数为2,①若既会唱歌又会跳舞的演员一个人都没选,则不同的选派方法种数为2252C C 10=;②若既会唱歌又会跳舞的演员只选了1个人,则这个人要么唱歌,要么伴舞,此时,不同的选派方法种数为()1122135252C C C C C 75+=;③若既会唱歌又会跳舞的演员选了2个人,则这2个人可以同时唱歌、同时伴舞或1人唱歌1人伴舞,此时,不同的选派方法种数为()2221135252C C C 2C C 93++=;④若既会唱歌又会跳舞的演员全选,则这3个人有2人唱歌1人伴舞或2人伴舞1人唱歌,此时,不同的选派方法种数为21213235C C C C 21+=.综上所述,不同的选派方法种数为10759321199+++=.故答案为:199.例16.(2023春·山西·高二临汾第一中学校校考期中)某公园现有甲、乙、丙三只小船,甲船可乘3人,乙船可乘2人,丙船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由成人陪同方可乘船,则分乘这些船只的方法有______种(用数字作答).【答案】18【解析】一个大人带两个儿童时,大人的选法有3种,故方法数有2236A ⨯=种.两个大人各带一个儿童时,先排好大人,再排小孩,方法数有323212A A ⨯=种.故总的方法数有61218+=种.例17.(2023·高二课时练习)有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其他5人既会划左舷又会划右舷,现要从这12名运动员中选出6人平均分在左、右舷参加划船比赛,有多少种不同的选法?【解析】设集合A ={只会划左舷的3人},B ={只会划右舷的4人},C ={既会划左舷又会划右舷的5人}.先分类,以集合A 为基准,选择划左舷的3个人,有以下几类情况.①从A 中选3人;②从A 中选2人,C 中选1人;③从A 中选1人,C 中选2人;④从C 中选3人.对于①,划左舷的人已选定,划右舷的人可以在集合B ,C 中选3人,有3339C C 种选法,同理可得②③④的选法种树分别为213358C C C ,123357C C C ,033356C C C .故不同的选法种树为33213123033393583573562174C C C C C C C C C C C +++=.故答案为:2174例18.(2023·二年级单元测试)某公园有P,Q,R 三只小艇,P 艇最多可乘3人,Q 艇最多可乘2人,R 艇只能乘1人,现在3个大人和2个小孩打算同时分乘若干只小艇,规定有小孩的艇必须有大人,共有多少种不同的乘艇方法?【解析】乘艇方法可分为两类:①乘坐R 艇,则方法有()11113212C ·C ·C C 118+=(种),②不乘坐R 艇,则方法有11211223221322C ·C ·C C C C C 639+=+=(种),利用分类计数加法原理求解即可.详乘艇方法可分为两类:①乘坐R 艇,则方法有11113212C ·C ·C (C +1)=18(种)13.C 为选出1个大人坐R 艇的方法数,1121C C 为另外两个大人乘P,Q 艇,括号内12C +1为2个小孩乘P,Q 艇的方法数.②不乘坐R 艇,则方法有11211223221322C ·C ·C C C C C +=6+3=9(种).其中11213221C ·C ·C C 表示从3个大人中选1人坐Q 艇,从2个小孩中选1个坐Q艇,且另外2个大人及1个小孩乘P 艇122322.C C C 表示从3个大人中选1个坐P 艇,2个小孩乘P 艇,另外2个大人坐Q 艇.故不同的乘艇方法有18+9=27(种).例19.(2023春·上海闵行·高二闵行中学校考期中)在一次演唱会上共10名演员(每名演员都会唱歌或跳舞),其中7人能唱歌,6人会跳舞.(1)问既能唱歌又会跳舞的有几人?(2)现要选出一个2人唱歌2人伴舞的节目,有多少种选派方法?【解析】(1)设既能唱歌又会跳舞的有x 人,∴(7)(6)103x x x x -++-=⇒=,∴设既能唱歌又会跳舞的有3人。
排列与组合综合应用(二)一、选择题1.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是()A. 16B. 24C. 8D. 122.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A. 50B. 80C. 120D. 1403.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排,若小明的父母至少有一人与他相邻,则不同坐法的总数为()A. 60B. 72C. 84D. 964.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为()A. 72B. 96C. 120D. 1565.由0,1,2,3,5组成的无重复数字的五位偶数共有()A. 36个B. 42个C. 48个D. 120个6.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有()种.A. 27B. 30C. 33D. 367.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()A. 60种B. 90种C. 150种D. 240种8.某人连续投篮6次,其中3次命中,3次未命中.则他第1次、第2次两次均未命中的概率是()A. 12B. 310C. 14D. 15二、填空题(本大题共4小题,共20.0分)9.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有______种.10.用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2、5相邻,则这样的五位数的个数是______(用数字作答).11.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有______种.12.某高中高三某班上午安排五门学科(语文,数学,英语,化学,生物)上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.三、解答题(本大题共8小题,共96.0分)13.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.14.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲、乙必须相邻;(2)甲、乙不相邻;(3)甲、乙之间恰有两人;(4)甲不站在左端,乙不站在右端.15.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(写出计算过程,并用数字作答)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.16.4男3女站成一排,求满足下列条件的排法共有多少种?(1)任何两名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?17.6本不同的书,按如下方法分配,各有多少种分法:(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本,乙得2本,丙得3本;(3)分给甲、乙、丙3人,其中一人得1本,其中一人得2本,其中一人得3本.18.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?19.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(Ⅰ)选其中5人排成一排;(Ⅱ)排成前后两排,前排3人,后排4人;(Ⅲ)全体排成一排,女生必须站在一起;(Ⅳ)全体排成一排,男生互不相邻;(Ⅴ)全体排成一排,甲不站在排头,也不站在排尾。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加. 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1。
公式:1。
()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m(m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn .1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1。
小学数学《排列组合的综合应用》练习题(含答案)例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有 5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有 5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有 15+10+ 6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2C47+6C37+3C27+C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.习题六解答1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.五点共线有4组,四点共线的有9组,三点共线的有8组,利用排除法:C320-4C35-9C34-8C33=1140-4×10-9×4-8=1056.6.因为任一张人民币的币值都大于所有币值比它小的人民币的币值的和,例如1角的大于1分、2分、5分的和,因此不论取多少张,它们组成的币值都不重复,所以组成的币值与组合总数一致,有C110+C210+……+C1010=210-1=1023种.因为由这些人民币能组成的最小的币值是1分,最大的币值是十张币值的和,即1888分,而1023<1888,可见从1分到1888分中间有一些币值不能组成.。
排列组合典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?2296=个典型例题二例2 三个女生和五个男生排成一排(1)如果女生必须全排在一起,可有多少种不同的排法? 43203366=⋅A A (2)如果女生必须全分开,可有多少种不同的排法?144003655=⋅A A (3)如果两端都不能排女生,可有多少种不同的排法?144006625=⋅A A(4)如果两端不能都排女生,可有多少种不同的排法?360006615137715=⋅⋅+⋅A A A A A典型例题三例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
(1)任何两个舞蹈节目不相邻的排法有多少种?55A 46A =43200. (2)歌唱节目与舞蹈节目间隔排列的方法有多少种?44A 55A =2880典型例题四例4 某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法.5042445566=+-A A A (种). 下面再提出一个问题,请予解答.问题:有6个人排队,甲不在排头,乙不在排尾,问并肩多少种不同的排法.典型例题五例5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种?363333=⋅A A 种..例6 下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法?518423232334=⋅⋅⋅A A A A 种.典型例题七例5 7名同学排队照相.(1)若分成两排照,前排3人,后排4人,有多少种不同的排法?5040774437==⋅A A A 种.(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?1440551413=⋅⋅A A A 种.(3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?7203355=⋅A A 种(4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法?14403544=⋅A A 种.典型例题八例8 从65432、、、、五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和.26640)65432(11124=++++⋅⋅A .典型例题九例9 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法?6408551424551224=⋅⋅+⋅⋅A A A A A A说明:解法2可在学完组合后回过头来学习.例12 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有( D ).A .5544A A ⋅B .554433A A A ⋅⋅C .554413A A C ⋅⋅ D .554422A A A ⋅⋅典型例题十一例11 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有(B ).A .210B .300C .464D .600典型例题十四例12 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ).典型例题十五例16 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?分析:3位偶数要求个位是偶数且首位数字不能是0,由于个位用或者不用数字0,对确定首位数字有影响,所以需要就个位数字用0或者用42、进行分类.一个自然数能被3整除的条件是所有数字之和是3的倍数,本题可以先确定用哪三个数字,然后进行排列,但要注意就用与不用数字0进行分类.解:(1)443212=+(个). (2) 402416=+(个).典型例题十七例17 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻空位不相邻,共有几种坐法?4802544=⋅A A。
排列组合问题
1、10双互不相同的鞋子混装在一只口袋中,从中任意抽取4只,试求各有多少种情况出现如下结果:
(1)4只鞋子没有成双; (2) 4只鞋子恰好成双;
(3) 4只鞋子有2只成双,另2只不成双
2、有12名划船运动员,其中3人只会划左舷, 4人只会划右舷, 其它5人既会划左舷, 又会划右舷, 现要
从这12名运动员中选出6人平均分在左右舷参加划船比赛,有多少种不同的选法?
3、要从7个班级中选出10人来参加数学竞赛,每班至少选1人,这10个名额有多少种分配方法?
4、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法有多少种?
5、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有多少种方法?
6、从一楼到二楼的楼梯有17级,上楼时可以一步走一级,也可以一步走两级,若要求11步走完,则有多少种不同的走法?
7、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?
8、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至
少有1人参加,则有不同参赛方法______种.
9、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?
10、(1)6本不同的书分给5个人,每人至少一本,多少种不同的分法?
(2)6本相同的书,分给甲乙丙三人,每人至少一本,有多少种不同的分法?
(3)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?
(4)今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?。
四年级奥数:排列组合的综合应用1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.有两个小盒子,第一个盒子中有标有数字1,2,3,…,10的十张卡片,第二个盒子中有标有11,12,13,…,20的十张卡片.若从两个盒子中各拿出一张卡片相加,一共可列出多少种不同的加法式子?6.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?7.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.8.从19,20,21,…,97,98,99这81个数中,选取两个不同的数,使其和为偶数的选法总数是多少?9.现有五元人民币2张,十元人民币8张,一百元人民币3张,用这些人民币可以组成多少种不同的币值?参考答案1.若投一封信看作一个步骤,则完成投信的任务可分三步,每封信4个邮筒都可投,即每个步骤都有4种方法.故由乘法原理:共有不同的投法4×4×4=64种.2.甲(或乙)胜就写一个甲(或乙)字,画树形图:由图可见共有14种可能.甲甲、甲乙甲甲、甲乙甲乙甲、甲乙甲乙乙、甲乙乙甲甲、甲乙乙甲乙、甲乙乙乙、乙甲甲甲、乙甲甲乙甲、乙甲甲乙乙、乙甲乙甲甲、乙甲乙甲乙、乙甲乙乙、乙乙.3.现有4名女同学,3名男同学,男女相间站成一排,则站在两端的都是女同学.将位置从右到左编号,第1、3、5、7号位是女同学,第2、4、6号位是男同学.于是完成适合题意的排列可分两步:第一步:从6名女同学中任选4名排在第1、3、5、7号位.有P46种排法.第二步:从5名男同学中任选3名排在第2、4、6号位,有P35种排法.因此,由乘法原理排出不同队形数为P46·P35=6×5×4×3×5×4×3=21600.4.图示:分两类:第一类:十万位上是3或5之一的六位偶数有P12·P14·P45个.第二类:十万位上是4或6之一的六位偶数有P12·P13·P45个.∴P12P14P45+P12P13P45=1680.5.200种第一个盒子中的每一张卡片都可以与第二个盒子中的十张卡片组成20种加法式子(包括被加数与加数交换位置,例如将1+11与11+1看成为两个加法式子),而第一个盒子中共有十张卡片,则由乘法原理,共10×20=200种不同的加法式子。
排列组合综合应用(4)一、选择题1.4个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有()A. 576种B. 504种C. 288种D. 252种2.某地举办科技博览会,有3个场馆,现将24个志愿者名额分配给这3个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有()种A. 222B. 253C. 276D. 2843.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A. 24种B. 30种C. 36种D. 72种4.有6×6的方阵,3辆完全相同的红车,3辆完全相同的黑车,它们均不在同一行且不在同一列,排列方法种数为()A. 720B. 20C. 518400D. 144005.一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则A. 至多能剪成19块“L”形骨牌B. 至多能剪成20块“L”形骨牌C. 一定能剪成21块“L”形骨牌D. 前三个答案都不对6.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A. 120B. 204C. 168D. 2167.学校安排一天6节课,语文、数学、英语和三节不同的选修课,则满足“数学不排第一节和第六节,三节选修课至少2节相邻”的不同排法数是A. 288B. 324C. 360D. 420二、填空题(本大题共10小题,共50.0分)8.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中至少有3个连在一起,则不同的停放方法有______ 种.9.将4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有2个空盒的方法共有____________种(用数字作答).10.将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有______种.(用数字作答)11.某大学安排4名毕业生到某企业的三个部门A,B,C实习,要求每个部门至少安排1人,其中甲大学生不能安排到A部门工作,安排方法有______种(用数字作答).12.某校高一年级拟开设12门选修课程,规定每位学生从中选择6门.由于课程设置限制,某学生从A,B,C,D四门课程中最多选1门,从E,F两门课程中也最多选1门,则该学生共有______种不同的选课种数.(用数字作答)13.现有7名志愿者,其中只会俄语的有3人,既会俄语又会英语的有4人.从中选出4人担任“一带一路”峰会开幕式翻译工作,2人担任英语翻译,2人担任俄语翻译,共有________种不同的选法.14.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参加该项任务,另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被平均分成两组,一组去远处,一处去近处.则不同的搜寻方案有_______种。
【学生版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
【典例】题型1、特殊元素(位置)问题例1、大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在.某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【提示】;【答案】;【解析】;【说明】题型2、相邻、相间问题例2、(1)某大厦一层有A,B,C,D四部电梯,现有3人在同一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有()A.12种B.24种C.18种D.36种【答案】【解析】;(2)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【答案】【解析】;题型3、分组、分配问题例3、(1)现有三本相同的语文书和一本数学书,分发给三个学生,每个学生至少分得一本,不同分法的种数为()A.36 B.9 C.18 D.15(2)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有种不同的分法.题型4、涂色问题例4、(1)如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?(2)如图,一个地区分为5个行政区域,现给该地区的地图着色,要求相邻区域不得使用同一种颜色.现在有4种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【说明】解决涂色问题,关键还是阅读理解与用好两个计数原理;【归纳】排列、组合的混合问题是从几类元素中取出符合题意的几个元素,再安排到一定位置上的问题.其基本的解题步骤为:第一步:选,根据要求先选出符合要求的元素;第二步:排,把选出的元素按照要求进行排列;第三步:乘,根据分步乘法计数原理求解不同的排列种数,得到结果;均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关,有序分组要在无序分组的基础上乘以分组数的阶乘数;【即时练习】1、有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种2、从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C210P48B.C19P59C.C18P59D.C18P583、北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有种A.12种B.24种C.48种D.96种4、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有种5、在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)(1)三名女生不能相邻,有多少种不同的站法?(2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?(3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)(4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?6、现有7名师范大学应届毕业的免费师范生将被分配到育才中学、星云中学和明月湾中学任教.(1)若4人被分到育才中学,2人被分到星云中学,1人被分到明月湾中学,则有多少种不同的分配方案?(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?【教师版】微专题:排列组合问题的综合应用【主题】排列、组合问题的求解方法与技巧:1、特殊元素优先安排;2、合理分类与准确分步;3、排列、组合混合问题先选后排;4、相邻问题捆绑处理;5、不相邻问题插空处理;6、定序问题倍除法处理;7、分排问题直排处理;8、“整体”排列问题先整体后局部;9、构造模型;10、正难则反,等价条件。
高三数学排列组合综合应用试题答案及解析1.用数字1,2,3,4可以排成没有重复数字的四位偶数,共有____________个.【答案】12【解析】由题意,没有重复数字的偶数,则末位是2或4,当末位是时,前三位将,,三个数字任意排列,则有种排法,末位为时一样有种,两类共有:种,故共有没有重复数字的偶数个.【考点】排列组合.2.在高三(1)班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连续出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.24B.36C.48D.60【答案】D【解析】先排3个女生,三个女生之间有4个空,从四个空中选两个排男生,共有=72(种),若女生甲排在第一个,则三个女生之间有3个空,从3个空中选两个排男生,有=12(种),∴满足条件的出场顺序有72-12=60(种)排法,选D.3. 20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.【答案】120【解析】先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共有=120(种)方法.4.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有()A.18种B.36种C.48种D.60种【答案】D【解析】由题意知A,B,C三个宿舍中有两个宿舍分到2人,另一个宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有=6种分法;(2)A中1人,B中2人,C中2人,有=12种分法;(3)A中2人,B中2人,C中1人,有=12种分法,即甲被分到B宿舍的分法有30种,同样甲被分到C宿舍的分法也有30种,所以甲不到A宿舍一共有60种分法,故选D.5.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有()A.8种B.10种C.12种D.32种【答案】B【解析】从A到B若路程最短,需要走三段横线段和两段竖线段,可转化为三个a和两个b的不同排法,第一步:先排a有种排法,第二步:再排b有1种排法,共有10种排法,选B项.6. 5位同学站成一排准备照相的时候,有两位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么两位老师与同学们站成一排照相的站法总数为()A.6B.20C.30D.42【答案】D【解析】因为五位学生已经排好,第一位老师站进去有6种选择,当第一位老师站好后,第二位老师站进去有7种选择,所以两位老师与学生站成一排的站法共有6×7=42种.7.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有种不同选法,从5名女男医生中选出2名有种不同选法,根据分步计数乘法原理可得,组成的医疗小组共有15×5=75种不同选法.【考点】计数原理和排列组合.8. [2014·南京模拟]用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)【答案】14【解析】分类讨论:若2出现一次,则四位数有C14个;若2出现二次,则四位数有C24个;若2出现3次,则四位数有C34个,所以共有C14++=14个.9.[2014·郑州模拟]将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.【答案】360【解析】将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有种取法;第2步,在余下的5名教师中任取2名作为一组,有种取法;第3步,余下的3名教师作为一组,有种取法.根据分步乘法计数原理,共有=60种取法.再将这3组教师分配到3所中学,有=6种分法,故共有60×6=360种不同的分法.10. [2013·浙江高考]将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).【答案】480【解析】如图六个位置.若C放在第一个位置,则满足条件的排法共有种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共·种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有·种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有·种排法;若C在第4个位置,则有+种排法;若C在第5个位置,则有种排法;若C在第6个位置,则有种排法.综上,共有2(+++)=480(种)排法.11.[2013·怀化模拟]将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种【答案】B【解析】先将1,2捆绑后放入信封中,有种方法,再将剩余的4张卡片放入另外两个信封中,有种方法,所以共有=18(种)方法.12.从6名教师中选4名开发A、B、C、D四门课程,要求每门课程有一名教师开发,每名教师只开发一门课程,且这6名中甲、乙两人不开发A课程,则不同的选择方案共有()A.300种 B.240种 C.144种 D.96种【答案】B【解析】依题意可得从除甲、乙外的四位老师中任取一位开发A课程共有种,再从剩下的5位老师中分别选3位开发其他项目共有.所以完成该件事共有种情况.【考点】1.排列组合问题.2.有特殊条件要先考虑.13.某写字楼将排成一排的6个车位出租给4个公司,其中有两个公司各有两辆汽车,如果这两个公司要求本公司的两个车位相邻,那么不同的分配方法共有________种.(用数字作答)【答案】24【解析】此问题相当于将4个公司全排列,因为,则此问题的不同分配方法共有24种。
高三数学排列组合综合应用试题1. 7个人排成一排,按下列要求各有多少种排法?(1)其中甲不站排头,乙不站排尾;(2)其中甲、乙、丙3人必须相邻;(3)其中甲、乙、丙3人两两不相邻;(4)其中甲、乙中间有且只有1人;(5)其中甲、乙、丙按从左到右的顺序排列.【答案】(1)3720种(2)720种(3)1440种(4)1200种(5)840种【解析】(1)方法一(直接法):如果甲站排尾,其余6人有种排法,如果甲站中间5个位置中的一个,而乙不站排尾,则有种排法,故共有排法+=3720种.方法二(间接法):7个人排成一排有种排法,其中甲在排头有种排法,乙在排尾有种排法,甲在排头且乙在排尾共有种排法,故共有排法--+=3720种.(2)(捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素作全排列有种,然后甲、乙、丙内部再作全排列有种,故有不同的排法=720种.(3)(插空法)先排甲、乙、丙外的4人有种排法,这四人之间及两端留出五个空位,然后把甲、乙、丙插入到五个空位中有种排法,故共有=1440种排法.(4)甲、乙两人有种排法,现从剩下的五人中选一个插入甲、乙中间,有种排法,然后再将这三人看作一个元素,和其他四个元素作全排列,有种排法,故共有=1200种排法.(5)七个人的全排列为,其中若只看甲、乙、丙不同顺序的排法有种排法,但只有一种顺序符合要求,故符合要求的不同排法有=840种.2.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有A.60种B.70种C.75种D.150种【答案】C.【解析】由已知可得不同的选法共有,故选C.【考点】排列组合.3.把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有种.【答案】36【解析】先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有种摆法,又当A、B相邻又满足A、C相邻,有种摆法,故满足条件的摆法有种.【考点】排列组合,容易题.4.甲乙两人从4门课程中各选修两门,则甲乙所选的课程中至少有1门不相同的选法共有( )种A.30B.36C.60D.72【答案】A【解析】甲、乙所选的课程中至少有1门不相同的选法可以分为两类:(1)甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有种.(2)甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有种选法;②甲从剩余的3门中任选1门乙从最后剩余的2门中任选1门有种选法,由分步计数原理此时共有种.综上,由分类计数原理,甲、所选的课程中至少有1门不相同的选法共有6+24=30种.【考点】计数原理,排列组合.5.设是的一个全排列,把排在左边且小于的数的个数称为的顺序数(),例如在排列6,4,5,3,2,1中,5的顺序数是1而3的顺序数是0.在的全排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数是( )A.48B.96C.144D.192【答案】C【解析】据题意,在8的左边有2个比8小的数,在7的左边有3个比7小的数,在5的左边有3个比5小的数.由于8是最大的数,故8必排在第3位,而7必须排在第5位:.若6在5的右边,则:,共有种;若6在5的左边,则5必在倒数第二位,,共有.所以总共有种.【考点】排列组合.6.一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种 .【答案】186【解析】设取红球个,白球个,则,取法为.【考点】古典概型.7.用0,1,2,3,4这五个数字组成没有重复数字的五位数中,奇数的个数是()A.24B.36C.48D.72【答案】B【解析】第一步排个位,有2种排法;第二步排万位,有3种排法;第三步排中间3位,有种排法.所以共有种排法.【考点】计数原理与排列.8.将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种【答案】A【解析】先安排老师有=2种方法,再安排学生有=6,所以共有12种安排方案,选A.9. 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.B.C.D.【答案】A【解析】8名学生共有种排法,把2位老师插入到9个空中有种排法,故共有种排法.10.在“学雷锋,我是志愿者”活动中,有名志愿者要分配到个不同的社区参加服务,每个社区分配名志愿者,其中甲、乙两人分到同一社区,则不同的分配方案共有()A.种B.种C.种D.种【答案】B【解析】由题意,将问题分成2步.第1步,甲乙分到3个社区中的1个社区,有种方法;第2步,将余下4个人分配到另外2个社区,有种方法,则最终不同的分配方案共有种.故选B.【考点】1.分步计数原理的应用;2.人员分配问题.11.某搬运工不慎将4件次品与6件正品混在一起,由于产品外观一样,需要用仪器对产品一一检测,直至找到所有次品为止,若至多检测6次就能找到所有次品,则不同的检测方法共有()种.A.1950B.2130C.7800D.8520【答案】D【解析】若恰好检测4次就能找到所有次品,不同的检测方法共有种;若恰好检测5次就能找到所有次品,不同的检测方法共有种;若恰好检测6次就能找到所有次品货所有正品,不同的检测方法共有.故满足条件的不同检测方法有种.【考点】排列组合.12.编号为1,2,3,4,5,6的六个同学排成一排,3、4号两位同学相邻,不同的排法()A.60种B.120种C.240种D.480种【答案】C【解析】将34看一个整体,连同1、2、5、6共5个元素进行全排列,共有5!种排法.由于3、4还要进行排列,故共有种排法.【考点】排列.13.科技活动后,名辅导教师和他们所指导的名获奖学生合影留念(每名教师只指导一名学生),要求人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.(用数字作答)【答案】.【解析】由于学生与其指导老师相邻,先将学生与其指导教师进行捆绑,形成三个整体,考虑每个整体中教师与学生的顺序,以及三个整体的排列,因此共有种不同的站法种数.【考点】排列组合14.从0,1,2,3,4,5这6个数字中任意取4个数字组成一个没有重复数字且能被3整除的四位数,这样的四位数有个.【答案】【解析】依题意,只需组成的四位数各位数字的和能被整除.将这六个数字按照被除的余数分类,共分为类:,,,若四位数含,则另外个数字为、之一、之一,此时有种;若四位数不含,则个数字为,此时有种,由分类计数原理,这样的四位数有个.【考点】排列和组合.15.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答).【答案】324【解析】∵个位、十位和百位上的数字之和为偶数,∴这三个数或者都是偶数,或者有两个奇数一个偶数.当个位、十位和百位上的都为偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=6×3=18(个).当个位、十位和百位上有两个奇数一个偶数时,则①此三位中有0,则有·4=3×6×4=72(个);②此三位中没有0,则有·3=162(个),∴总共有72+18+72+162=324(个).【方法技巧】1.解决排列组合综合问题,应遵循三大原则:先特殊后一般、先取后排、先分类后分步的原则.2.解决排列组合综合问题的基本类型基本类型主要包括:排列中的“在与不在”、组合中的“有与没有”,还有“相邻与不相邻”“至少与至多”“分配与分组”等.3.解决排列组合综合问题中的转化思想转化思想就是把一些排列组合问题与基本类型相联系,从而把问题转化为基本类型,然后加以解决.16.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36【答案】A【解析】从集合A,B,C中各取一个数有1×2×3=6种取法.其中1,1,5三数可确定空间不同点的个数为3个,另5种每种可确定空间不同点的个数都是6.所以可确定空间不同点的个数为3+5×6=33.17.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【答案】A【解析】【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余元素就可以确定了.解:先排第一列,由于每列的字母互不相同,因此共有3×2×1种不同的方法;再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法,因此共有3×2×1×2=12(种)不同的方法.18.某化工厂生产中需要依次投放2种化工原料,现已知有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲先投放,则不同的投放方案有()A.10种B.12种C.15种D.16种【答案】C【解析】分类完成此事,一类是使用甲原料,则不同的投放方案有1×3=3(种);一类是不使用甲原料,不同的投放方案有4×3=12(种);由分类加法计数原理可知,不同的投放方案有3+12=15(种).19.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数为()A.11B.12C.13D.14【答案】D【解析】数字2出现一次的四位数有4个,数字2出现2次的四位数有6个,数字2出现3次的四位数有4个,故总共有4+6+4=14个.20.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【答案】B2=6种方法;②选1本画【解析】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C41=4种方法.所以不同的赠送方法共有6+4=10(种).册,3本集邮册送给4位朋友,有C421.将甲、乙、丙、丁、戊共五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,且甲不能被保送到北大,则不同的保送方案共有多少种().A.150B.114C.100D.72【答案】C【解析】先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1,或者3,1,1,所以共有=25种分组方法.因为甲不能去北大,所以有甲的那组只有交大和浙大两个选择,剩下的两组无约束,一共4种排列,所以不同的保送方案共有25×4=100种.22.某班有38人,现需要随机抽取5人参加一次问卷调查,抽到甲同学而未抽到乙同学的可能抽取情况有种. (结果用数值表示)【答案】【解析】甲乙是两个特殊的元素,甲抽到了,而乙未抽到,因此还要从余下的36人中抽4人,共有种抽法.【考点】组合.23.某高校从5名男大学生志愿者和4名女大学生志愿者中选出3名派到3所学校支教(每所学校一名志愿者),要求这3名志愿者中男、女大学生都有,则不同的选派方案共有 ().A.210种B.420种C.630种D.840种【答案】B【解析】从这9名大学生志愿者中任选3名派到3所学校支教,则有种选派方案,3名志愿者全是男生或全是女生的选派方案有+种,故符合条件的选派方案有-(+)=420种.24.数列共有12项,其中,,,且,则满足这种条件的不同数列的个数为()A.84B.168C.76D.152【答案】A【解析】∵,∴前一项总比后一项大一或小一,到中4个变化必然有3升1减,到中必然有5升2减,是排列组合的问题,∴.【考点】1.数列的递推公式;2.排列组合问题.25.桌面上有形状大小相同的白球、红球、黄球各3个,相同颜色的球不加以区分,将此9个球排成一排共有种不同的排法.(用数字作答)【答案】1680【解析】可以考虑将此9个球同色加以区分的排成一排,然后再加以区分,除以相同颜色的球的排列数即可.所以满足题意的排列种数共有.【考点】排列组合26.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.5040【答案】B【解析】先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.【考点】排列组合.27.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为( )A.B.C.D.【答案】A【解析】先安排2,4,因为2,4不在个位和万位,所以2,4只能在十、百、千三个位置,①若2,4均为在百位,即2,4只占十位和千位,则数字5只能从个位和万位选择一个位置,这样共有个五位数;②若2,4某一个数字占据了百位,另一数字占据十位或千位,共有种可能,此时剩下的三个数字安排到余下的三个位置即可,这样的五位数就有个.由①②可知,这样的五位数一共有32个,故选A.【考点】排列组合综合.28. 2011年西安世园会组委会要派五名志愿者从事翻译、导游、礼仪三项工作,要求每项工作至少有一人从事,则不同的派给方案共有()A.25种B.150种C.240种D.360种【答案】B【解析】5个人全部参加工作,可以分先分组为2人、2人、1人或3人、1人、1人,故5个人全部工作共有安排方案种。
排列组合综合题(3)一、选择题1.在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为()A. 1200B. 2400C. 3000D. 36002.用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A. 12B. 24C. 30D. 363.将4名学生分配到甲、乙、丙3个实验室准备实验,每个实验室至少分配1名学生的不同分配方案共有()A. 12种B. 24种C. 36种D. 48种4.用四种不同颜色给图中的A,B,C,D,E,F6个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A. 168种B. 240种C. 264种D. 288种5.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A. 8种B. 12种C. 16种D. 20种6.4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A. 24种B. 36种C. 48种D. 60种7.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A. 3600种B. 1440种C. 4820种D. 4800种8.第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种()A. 60B. 90C. 120D. 1509.定义“三角恋写法”为“三个人之间写信,每人给另外两人之一写一封信,且任意两个人不会彼此给对方写信”,若五个人a,b,c,d,e中的每个人都恰好给其余四人中的某一个人写了一封信,则不出现“三角恋写法”写法的写信情况的种数为()A. 704B. 864C. 1004D. 101410.4种不同产品排成一排参加展览,要求甲、乙两种产品之间至少有1种其它产品,则不同排列方法的种数是()A. 12B. 10C. 8D. 6二、填空题(本大题共7小题,共35.0分)11.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.12.“五一”黄金周将至,小明一家5口决定外出游玩,购买的车票分布如下:窗口 6排A座 6排B座 6排C座走廊 6排D座 6排E座窗口其中爷爷喜欢走动,需要坐靠近走廊的位置;妈妈需照顾妹妹,两人必须坐在一起,则座位的安排方式一共有______种.13.有甲乙丙三项任务,甲乙各需一人承担,丙需2人承担且至少一个是男生,现从3男3女共6名学生中选出4人承担这三项任务,不同的选法种数是______.(用数字作答)14.将红、黄、蓝三种颜色的三颗棋子分别放入3×3方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在3×3方格图所在正方形的同一条对角线上,则不同的放法共有____种.15.12名同学站成前后两排,前排4人,后排8人,现要从后排8人中选2人站到前排,若其他同学的相对顺序不变,则不同的调整方法种数为______ 种.16.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是______.(用数字作答)17.在“2022北京冬奥会”宣传活动中,甲、乙、丙、丁等4人报名参加了A、B、C三个项目的志愿者活动,每个项目至少需要1名志愿者,则共有种不同的方案.(用数字填写答案)三、解答题18.五个人站成一排,求在下列条件下的不同排法种数:⑴甲必须在排头;⑴甲、乙相邻;⑴甲不在排头,并且乙不在排尾;⑴其中甲、乙两人自左向右从高到矮排列且互不相邻19.已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有4名男生,1名女生,舞蹈组有2名男生,2名女生,学校计划从两兴趣小组中各选2名同学参加演出.(1)求选出的4名同学中至多有2名女生的选派方法数;(2)记X为选出的4名同学中女生的人数,求X的分布列和数学期望.20.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单.(1)前4个节目中要有舞蹈,有多少种排法?(2)3个舞蹈节目要排在一起,有多少种排法?(3)3个舞蹈节目彼此要隔开,有多少种排法?21.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.22.五个人站成一排.求分别有多少种不同排法?(1)2人站前排,3人站后排;(2)其中甲必须站在中间;(3)其中甲、乙两人必须相邻;(4)其中甲、乙两人不相邻;(5)其中甲、乙两人不相邻,但甲始终在乙的左边;(6)其中甲、乙两人不站排头和排尾;(7)其中甲不站排头,乙不站排尾;(8)其中甲、乙必须相邻,并且丙、丁不能相邻。
23.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,求选出的2名教师性别相同的概率;(Ⅱ)若从报名的6名教师中任选2名,求选出的2名教师来自同一学校的概率.排列组合综合题(3)一、选择题1.在某市记者招待会上,需要接受本市甲、乙两家电视台记者的提问,两家电视台均有记者5人,主持人需要从这10名记者中选出4名记者提问,且这4人中,既有甲电台记者,又有乙电视台记者,且甲电视台的记者不可以连续提问,则不同的提问方式的种数为()A. 1200B. 2400C. 3000D. 3600【答案】B【解析】解:由题意,甲电台记者选1名,乙电视台记者选3人,不同的提问方式的种数为C51C53C41A33=1200;甲电台记者选2名,乙电视台记者选2人,不同的提问方式的种数为C52C52(A22⋅2A22+ A22A22)=1200,总共不同的提问方式的种数为2400,故选:B.由题意,甲电台记者选1名,乙电视台记者选3人,不同的提问方式的种数为C51C53C41A33=1200;甲电台记者选2名,乙电视台记者选2人,不同的提问方式的种数为C52C52(A22⋅2A22+A22A22)=1200,即可得出结论.本题考查排列组合知识的运用,考查分类讨论的数学思想,属于中档题.2.用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是()A. 12B. 24C. 30D. 36【答案】C【解析】【分析】本题考查排列、组合及简单计数问题,体现了分类讨论的数学思想,属于中档题.先涂前三个圆,再涂后三个圆.若涂前三个圆用3种颜色,求出不同的涂法种数.若涂前三个圆用2种颜色,再求出涂法种数,把这两类涂法的种数相加,即得所求.【解答】解:先涂前三个圆,再涂后三个圆.因为种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,分两类,第一类,前三个圆用3种颜色,三个圆也用3种颜色,若涂前三个圆用3种颜色,有A33=6种方法;则涂后三个圆也用3种颜色,有C21C21= 4种方法,此时,故不同的涂法有6×4=24种.第二类,前三个圆用2种颜色,后三个圆也用2种颜色,若涂前三个圆用2种颜色,则涂后三个圆也用2种颜色,共有C31C21=6种方法.综上可得,所有的涂法共有24+6=30种.故选:C.3.将4名学生分配到甲、乙、丙3个实验室准备实验,每个实验室至少分配1名学生的不同分配方案共有()A. 12种B. 24种C. 36种D. 48种【答案】C【解析】【分析】本题考查分步计数原理以及排列、组合的综合应用.根据题意首先把4名学生分为3组,则有C42种分法,再把分好的3组分到甲、乙、丙3个实验室,则有A33种分法,进而再利用分步计数原理计算出答案.【解答】解:因为4名学生分配到甲、乙、丙3个实验室准备实验,每个实验室至少分配1名学生,所以首先把4名学生分为3组,则有一个组有2人,共有C42种分法,再把分好的3组分到甲、乙、丙3个实验室,则有A33种分法,所以共有C42A33=36种分法.故选C.4.用四种不同颜色给图中的A,B,C,D,E,F6个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A. 168种B. 240种C. 264种D. 288种【答案】C【解析】【分析】本题主要考查排列组合的基础知识与分类讨论思想,属于较难题.【解析】解:∵图中每条线段的两个端点涂不同颜色,可以根据所涂得颜色的种类来分类,B,D,E,F用四种颜色,则有A44×1×1=24种涂色方法;B,D,E,F用三种颜色,则有A43×2×2+A43×2×1×2=192种涂色方法;B,D,E,F用两种颜色,则有A42×2×2=48种涂色方法;根据分类计数原理知共有24+192+48=264种不同的涂色方法.故选C.5.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A. 8种B. 12种C. 16种D. 20种【答案】C【解析】解:若在物理、历史两门科目中只选一门,则有C21C42=12种,若在物理、历史两门科目中选两门,则有C22C41=4种,根据分类计数原理可得,共有12+4=16种,故选:C.若在物理、历史两门科目中只选一门,若在物理、历史两门科目中选两门,根据分类计数原理可得本题考查了分类计数原理,考查了运算能力和转化能力,属于基础题.6. 4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( )A. 24种B. 36种C. 48种D. 60种【答案】D【解析】【分析】本题考查排列、组合的综合运用,解题时要先确定分几类,属于基础题.分两类,第一类,有3名被录用,第二类,4名都被录用,则有一家录用两名,根据分类计数原理即可得到答案.【解答】解:分两类,第一类,有3名被录用,有A 43=24种,第二类,4名都被录用,则有一家录用两名,有C 31⋅C 42⋅A 22=36种,根据分类计数原理,共有24+36=60(种),故选:D .7. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A. 3600种B. 1440种C. 4820种D. 4800种【答案】A【解析】【分析】本题考查了排列组合中的不相邻问题,属基础题.由排列组合中的不相邻问题插空法运算即可得解.【解答】解:①除甲乙外,其余5个排列数为A 55种,②用甲乙去插6个空位有A 62种,综合①②得:不同的排法种数是A 55A 62=3600种,故选:A .8. 第十一届全国少数民族传统体育运动会在河南郑州举行,某项目比赛期间需要安排3名志愿者完成5项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式共有多少种( )A. 60B. 90C. 120D. 150【答案】D【解析】解:根据题意,分2步进行分析①、将5项工作分成3组若分成1、1、3的三组,有C 53C 21C 11A 22=10种分组方法, 若分成1、2、2的三组,有C 52C 32C 11A 22=15种分组方法, 则将5项工作分成3组,有10+15=25种分组方法;②、将分好的三组全排列,对应3名志愿者,有A 33=6种情况;所以不同的安排方式则有25×6=150种,故选:D .根据题意,分2步进行分析:①、分两种情况讨论将5项工作分成3组的情况数目,②、将分好的三组全排列,对应3名志愿者由分步计数原理计算可得答案; 本题考查排列、组合的应用,注意分组时要进行分类讨论;9.定义“三角恋写法”为“三个人之间写信,每人给另外两人之一写一封信,且任意两个人不会彼此给对方写信”,若五个人a,b,c,d,e中的每个人都恰好给其余四人中的某一个人写了一封信,则不出现“三角恋写法”写法的写信情况的种数为()A. 704B. 864C. 1004D. 1014【答案】A【解析】【分析】利用间接法即可求出.【解答】解:由题意写信的情况共有45=1024种,出现三角恋写法的情况有4×4×2×C53=320,所以不出现三角恋写法的情况有1024−320=704,故选A.10.4种不同产品排成一排参加展览,要求甲、乙两种产品之间至少有1种其它产品,则不同排列方法的种数是()A. 12B. 10C. 8D. 6【答案】A【解析】解:4种不同产品排成一排所有的排法共有A44=24种,其中甲、乙两种产品相邻的排法有A22A33=12种,故甲、乙两种产品之间至少有1种其它产品,则不同排列方法的种数是排法有24−12=12种.故选:A.先求出所有的排法,再排除甲乙相邻的排法,即得甲、乙两种产品之间至少有1种其它产品,则不同排列方法的种数.本题主要考查排列与组合及两个基本原理的应用,相邻的问题用捆绑法,属于中档题.二、填空题11.如图,将标号为1,2,3,4,5的五块区域染上红、黄、绿三种颜色中的一种,使得相邻区域(有公共边)的颜色不同,则不同的染色方法有______种.【答案】30【解析】解:1有3种,若2和3相同,则有2种,5有2种,4有1种,若2和3不同,则有2有2,3有1种,若5与2相同,则4有2种,若5与2不同,则4有1种,根据分类分步计数原理可得,共有3[2×2×1+2×1×(2+1)]=30种,故答案为:30根据题意,分2和3相同,2与5相同,根据分类分步计数原理可得本题考查排列、组合的实际应用,涉及分步、分类计数原理的应用,属于基础题.12.“五一”黄金周将至,小明一家5口决定外出游玩,购买的车票分布如下:窗口 6排A座 6排B座 6排C座走廊 6排D座 6排E座窗口其中爷爷喜欢走动,需要坐靠近走廊的位置;妈妈需照顾妹妹,两人必须坐在一起,则座位的安排方式一共有______种.【答案】16【解析】【分析】本题考查利用数学知识解决实际问题,考查分类讨论的数学思想,属于中档题.先安排爷爷,再安排妈妈、妹妹,即可得出结论.【解答】解:爷爷选D座,妈妈、妹妹,有2A22A22=8种,爷爷选C座,妈妈、妹妹,有A22A22A22=8种,所以座位的安排方式一共有16种,故答案为16.13.有甲乙丙三项任务,甲乙各需一人承担,丙需2人承担且至少一个是男生,现从3男3女共6名学生中选出4人承担这三项任务,不同的选法种数是______.(用数字作答)【答案】144【解析】【分析】本题考查分类分步计数原理,以及排列组合的综合应用,关键是分类,属于基础题.由题意,分两类,若丙选择一名男生一名女生,若丙选择两名男生,根据分类计数原理即可求出.【解答】解:若丙选择一名男生一名女生,甲乙任意选,故有C31C31A42=108种,若丙选择两名男生,甲乙任意选,故有C32A42=36种,根据分步计数原理可得共有108+36=144种,故答案为:144.14.将红、黄、蓝三种颜色的三颗棋子分别放入3×3方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在3×3方格图所在正方形的同一条对角线上,则不同的放法共有____种.【答案】24【解析】【分析】本题考查分步计数原理的应用,注意用间接法分析.根据题意,用间接法分析,先计算三颗棋子分别放入3×3方格图中的三个方格中任意两颗棋子不同行、不同列的放法数目,再排除其中在同一条对角线上的数目,分析即可得答案.【解答】解:根据题意,用间接法分析:若三颗棋子分别放入3×3方格图中的三个方格内,且任意两颗棋子不同行、不同列;第一颗棋子有3×3=9种放法,第二颗棋子有2×2=4种放法,第三颗棋子有1种放法,则任意两颗棋子不同行、不同列的放法有9×4×1=36种,其中在正方形的同一条对角线上的放法有2×A33=12种,则满足题意的放法有36−12=24种;故答案为:24.15.12名同学站成前后两排,前排4人,后排8人,现要从后排8人中选2人站到前排,若其他同学的相对顺序不变,则不同的调整方法种数为______ 种.【答案】840【解析】【分析】先从后排的8人中抽2人,再把抽出的2人插入前排,其他人的相对顺序不变,利用乘法原理可得结论.本题考查排列、组合知识的运用,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.【解答】解:从后排的8人中抽2人有C82种方法,把抽出的2人插入前排,其他人的相对顺序不变有A62种方法,故共有C82A62=840种不同调整方法故答案为:84016.有6张卡片分别写有数字1,1,1,2,3,4,从中任取3张,可排出不同的三位数的个数是______.(用数字作答)【答案】34【解析】【分析】本题考查排列、组合的应用,注意6张卡片中相同的情况.根据题意,按取出3张的卡片中写有1的卡片的张数分4种情况讨论,求出每种情况下排出不同的三位数的个数,由加法原理计算可得答案.【解答】解:根据题意,分4种情况讨论:①、取出3张的卡片全部是写有数字1的,有1种情况,②,取出3张的卡片有2张写有数字1的,有C31C31=9种情况,③,取出3张的卡片有1张写有数字1的,有C32A32=18种情况,④,取出3张的卡片没有写有数字1的,有A33=6种情况,则一共有1+9+18+6=34种情况,即可以排出34个不同的三位数;故答案为34.17.在“2022北京冬奥会”宣传活动中,甲、乙、丙、丁等4人报名参加了A、B、C三个项目的志愿者活动,每个项目至少需要1名志愿者,则共有种不同的方案.(用数字填写答案)【答案】36【解析】解:4人选2人1组,有C42=6种,然后进行全排列有C42A33=6×6=36,故答案为:36先分组,然后全排列进行计算即可.本题主要考查计数问题的应用,先分组后排列是解决本题的关键.三、解答题(本大题共6小题,共72.0分)18.五个人站成一排,求在下列条件下的不同排法种数:⑴甲必须在排头;⑴甲、乙相邻;⑴甲不在排头,并且乙不在排尾;⑴其中甲、乙两人自左向右从高到矮排列且互不相邻【答案】解:(1)特殊元素是甲,特殊位置是排头;首先排“排头”不动,再排其它4个位置,所以共有:A44=24种,(2)把甲、乙看成一个人来排有A22=2种,而甲、乙也存在顺序变化,所以甲、乙相邻排法种数为A22⋅A44=48种;(3)甲不在排头,并且乙不在排尾排法种数为:A55−2A44+A33=78种;(4)先将其余3个全排列A33=6种,再将甲、乙插入4个空位C42=6种,所以,一共有6×6=36种不同排法.【解析】本题考查了排队问题中的几种常用的方法,审清题意,选择合理的方法是关键,属于中档题.(1)特殊元素是甲,特殊位置是排头;首先排“排头”不动,再排其它4个位置,(2)利用捆绑法,把甲乙二人看作一个复合元素,再和另外3的全排列.(3)利用间接法,先任意排,再排除甲在排头,乙在排尾的情况,(4)先排剩余的3人,形成4个空,再插入甲乙即可.19.已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有4名男生,1名女生,舞蹈组有2名男生,2名女生,学校计划从两兴趣小组中各选2名同学参加演出.(1)求选出的4名同学中至多有2名女生的选派方法数;(2)记X为选出的4名同学中女生的人数,求X的分布列和数学期望.【答案】解:(1)由题意知,所有的选派方法共有C52⋅C42=60种,其中有3名女生的选派方法共有C41⋅C11⋅C22=4种,所以选出的4名同学中至多有2名女生的选派方法数为60−4=56种;(2)X的可能取值为0,1,2,3,,P(X=1)=C41C11C22+C42C21C21C52C42=4+2460=715,,P(X=3)=C41C11C22C52C42=460=115,所以X的分布列为10153015所以.【解析】本题主要考查了排列组合与概率的综合应用,属于基础题.(1)根据排列组合的知识求解即可;(2)写出X的所有取值情况,并求解对应的概率即可.20.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单.(1)前4个节目中要有舞蹈,有多少种排法?(2)3个舞蹈节目要排在一起,有多少种排法?(3)3个舞蹈节目彼此要隔开,有多少种排法?【答案】解(1)∵8个节目全排列有A88=40320种方法,若前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44,∴前4个节目中要有舞蹈有A88−A54A44=37440;(2)∵3个舞蹈节目要排在一起,∴可以把三个舞蹈节目看做一个元素和另外5个元素进行全排列,三个舞蹈节目本身也有一个排列,有A66A33=4320;(3)3个舞蹈节目彼此要隔开,可以用插空法来解,先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列,有A55A63=14400.【解析】本题是一个排列组合典型,实际上所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题.(1)先不考虑限制条件,8个节目全排列有A88种方法,前4个节目中要有舞蹈的否定是前四个节目全是唱歌有A54A44,用所有的排列减去不符合条件的排列,得到结果;(2)要把3个舞蹈节目要排在一起,则可以采用捆绑法,把三个舞蹈节目看做一个元素和另外5个元素进行全排列,不要忽略三个舞蹈节目本身也有一个排列;(3)3个舞蹈节目彼此要隔开,可以用插空法来解,即先把5个唱歌节目排列,形成6个位置,选三个把舞蹈节目排列.21.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.【答案】解:基本事件总数为A44=24种,(1)4名学生排成一排,A在边上先排A,有2种排法,再排另外3名学生,共有2A33= 12种排法,∴A在边上的概率为:p1=1224=12;(2)A和B都在边上,先排A和B,有A22种排法,再排另外两人,有A22种排法,共有2×2=4种,∴A和B都在边上的概率为:p2=424=16;(3)A和B都不在边上的排法有种,有A22种排法,再排另外两人,有A22种排法,共有2×2=4种,∴A或B在边上的概率:p3=1−424=56;(4)A和B都不在边上的排法有种,有A22种排法,再排另外两人,有A22种排法,共有2×2=4种,∴A和B都不在边上的概率为:p4=424=16.【解析】本题考查概率的求法,是中档题,解题时要注意排列组合知识和对立事件概率计算公式的合理运用.(1)4名学生排成一排,先求出基本事件总数,A在边上先排A,再排另外3名学生,由此能求出A在边上的概率;(2)4名学生排成一排,先求出基本事件总数,A和B都在边上,先排A和B,再排另外两人,由此能求出A和B都在边上的概率;(3)先求出A和B都在中间的概率,再由对立事件概率计算公式能求出A或B在边上的概率;(4)4名学生排成一排,先求出基本事件总数,先排A和B都不在边上,再排另外两人,由此能求出A和B都不在边上的概率.22.五个人站成一排.求分别有多少种不同排法?(1)2人站前排,3人站后排;(2)其中甲必须站在中间;(3)其中甲、乙两人必须相邻;(4)其中甲、乙两人不相邻;(5)其中甲、乙两人不相邻,但甲始终在乙的左边;(6)其中甲、乙两人不站排头和排尾;(7)其中甲不站排头,乙不站排尾;(8)其中甲、乙必须相邻,并且丙、丁不能相邻。