椭圆的几何性质2(第二定义)
- 格式:pptx
- 大小:485.31 KB
- 文档页数:20
二、椭圆的简单几何性质一、知识要点椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ace 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.e dMF =||∴准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆12222=+b x a y 的准线方程是ca y 2±=.焦半径公式:由椭圆的第二定义可得:右焦半径公式为ex a c a x e ed MF -|-|||2===右; 左焦半径公式为ex a ca x e ed MF +===|)-(-|||2左二、典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;练习:椭圆81922=+y x 的长轴长为_________,短轴长为_________,半焦距为_________,离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________.例2、已知椭圆方程13610022=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF ,求P 到右准线的距离.例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求||35||1MF MA +的最小值.变式、若椭圆:3 \* MERGEFORMAT 13422=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMATMF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。
椭圆第二定义的证明推导【摘要】本文通过引角法证明了椭圆的第二定义,探讨了椭圆的几何性质,推导了椭圆方程,并证明了焦半径关系和焦半径与半长轴的关系。
通过这些推导和证明,我们对椭圆的定义和性质有了更深入的了解。
椭圆是几何学中重要的曲线之一,对于理解和应用椭圆曲线在数学和工程领域起着重要作用。
本文总结了椭圆第二定义的证明推导过程,希望为读者提供清晰的逻辑结构和直观的理解。
通过本文的阐述,我们可以更加深入地探讨椭圆的相关问题,拓展数学知识的应用范围。
【关键词】椭圆,第二定义,证明推导,引角法,几何性质,方程,焦半径,半长轴,总结1. 引言1.1 椭圆第二定义的证明推导所谓椭圆的第二定义,指的是一个点到椭圆上两焦点距离之和等于常数2a的性质。
这个性质可以通过引角法进行证明。
我们可以考虑椭圆的一个特殊情况,即圆的情况。
对于圆来说,两焦点到圆上的任意一点的距离之和永远等于直径的长度,这是因为圆的定义就是两焦点之间距离相等的特殊椭圆。
接着,我们可以考虑将圆延伸成一个椭圆,同样可以证明椭圆上的任意一点到两焦点的距离之和等于常数2a。
这个证明可以通过一系列几何推理和三角学知识来完成。
通过这种方式,我们可以更深入地理解椭圆的性质,而不仅仅是通过数学公式来描述。
椭圆的几何性质还包括焦半径关系的证明和椭圆方程的推导等等,这些内容将在接下来的正文部分详细讨论。
通过对这些内容的理解和证明,我们可以更加全面地了解椭圆这一数学概念。
2. 正文2.1 引角法证明椭圆第二定义椭圆是平面几何中的一个重要概念,它在数学和物理学中有着广泛的应用。
椭圆有两种定义方式,一种是通过焦点和两焦距之和不变的性质进行定义,另一种则是通过引角法进行定义。
在本篇文章中,我们将重点讨论椭圆的引角法证明。
引角法证明椭圆的定义是一种几何证明方法,通过引角的角度关系来证明椭圆的性质。
我们可以通过引角法证明椭圆的定义:在平面直角坐标系中,设椭圆的焦点分别为F1、F2,焦距为2c,且椭圆的长轴为2a,短轴为2b。
(完整版)椭圆的第二定义(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)椭圆的第二定义(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)椭圆的第二定义(含解析)的全部内容。
(完整版)椭圆的第二定义(含解析)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)椭圆的第二定义(含解析)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)椭圆的第二定义(含解析)> 这篇文档的全部内容。
课题:椭圆的第二定义【学习目标】1、掌握椭圆的第二定义;2、能应用椭圆的第二定义解决相关问题;一、椭圆中的基本元素(1).基本量: a 、b 、c 、e几何意义: a-半长轴、b —半短轴、c-半焦距,e-离心率;相互关系: ac e b a c =-=,222 (2)。
基本点:顶点、焦点、中心(3).基本线: 对称轴二.椭圆的第二定义的推导问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹.解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭|,由此得c a=. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-.设222a cb -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆.由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a=<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c=.根据椭圆的对称性,相应于焦点(0)F c '-,的准线方程是2a x c=-,所以椭圆有两条准线. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义.【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。
椭圆与双曲线的异同 一、椭圆:
1)椭圆的定义: (大于||21F F )的点的轨迹。
第二定义: 是常数)10(<<e e 的点的轨迹。
注意:||221F F a >表示 ;||221F F a =表示 ;||221F F a <没有轨迹;
2)椭圆的标准方程、图象及几何性质:
中心在原点,焦点在x 轴上
中心在原点,焦点在y 轴上
标准方程
)0(122
22>>=+b a b
y a x 图 形
范 围 顶 点
对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2
焦 点
焦 距 离心率
准 线
二、双曲线:
1)双曲线的定义: (小于||21F F )的点的 轨迹。
第二定义: 是常数)1(>e e 的点的轨迹。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示 ;||221F F a >没有轨迹;a 2=0表示
(2)双曲线的标准方程、图象及几何性质:
中心在原点,焦点在x 轴上
中心在原点,焦点在y 轴上
标准方程
图 形
范 围
顶 点
),0(),,0(21a B a B -
对称轴 x 轴,y 轴;虚轴为b 2,实轴为a 2
焦 点
焦 距 )0(2||21>=c c F F 222
b a c
+=
离心率
)1(>=
e a
c
e (离心率越大,开口越大) 准 线 渐近线。
椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e (0<e <1)的动点的轨迹是椭圆,定点F 叫做椭圆的焦点,定直线l 叫做焦点F 相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性质范围 -a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) B 1(0,-b ),B 2(0,b ) B 1(-b,0), B 2(b,0) 焦点 F 1(-c,0) F 2(c,0) F 1(0,-c ) F 2(0,c ) 准线 l 1:x =-a 2c l 2:x =a 2cl 1:y =-a 2c l 2:y =a 2c轴 长轴A 1A 2的长为2a 短轴B 1B 2的长为2b焦距 F 1F 2=2c 离心率 e =ca,且e ∈(0,1) a ,b ,c 的关系 c 2=a 2-b 2 对称性 对称轴:坐标轴对称中心:原点1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P 到两定点A (-2,0),B (2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( )(4)已知点F 为平面内的一个定点,直线l 为平面内的一条定直线.设d 为平面内一动点P 到定直线l 的距离,若d =54|PF |,则点P 的轨迹为椭圆.( )[解析] (1)错误,|P A |+|PB |=|AB |=4,点P 的轨迹为线段AB ;(2)正确,根据椭圆的第一定义知PF 1+PF 2=2a ,F 1F 2=2c ,故△PF 1F 2的周长为2a +2c ;(3)错误,椭圆的离心率越大,椭圆越扁.(4)正确,根据椭圆的第二定义.[答案] (1)× (2)√ (3)× (4)√2.(教材习题改编)焦点在x 轴上的椭圆x 25+y 2m =1的离心率为105,则m =________.[解析] 由题设知a 2=5,b 2=m ,c 2=5-m ,e 2=c 2a 2=5-m 5=(105)2=25,∴5-m =2,∴m =3.[答案] 3 3.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P 到两焦点的距离之和为20,则椭圆的标准方程为_____.[解析] 椭圆的焦点在y 轴上,且c =6,2a =20,∴a =10,b 2=a 2-c 2=64,故椭圆方程为x 264+y 2100=1. [答案] x 264+y 2100=14.(2014·无锡质检)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当△F AB 的周长最大时,△F AB 的面积是________.[解析] 直线x =m 过右焦点(1,0)时,△F AB 的周长最大,由椭圆定义知,其周长为4a =8, 此时,|AB |=2×b 2a =2×32=3,∴S △F AB =12×2×3=3.[答案] 35.(2014·江西高考)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.[解析] 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.[答案] 22考向1 椭圆的定义与标准方程【典例1】 (1)(2014·全国大纲卷改编)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为________. (2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________. [解析] (1)由条件知△AF 1B 的周长=4a =43,∴a = 3.∵e =c a =33,c 2+b 2=a 2,∴c =1,b = 2.∴椭圆C 的方程为x 23+y 22=1.(2)∵椭圆的一条准线为x =-4,∴焦点在x 轴上且a 2c =4,又2c =4,∴c =2,∴a 2=8,b 2=4,∴该椭圆方程为x 28+y 24=1.[答案] (1)x 23+y 22=1 (2)x 28+y 24=1,【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决. (2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).【变式训练1】 (1)(2013·广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________.(2)(2014·苏州质检)已知椭圆的方程是x 2a 2+y 225=1(a >5),它的两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB (椭圆上任意两点的线段)过点F 1,则△ABF 2的周长为________.[解析] (1)右焦点F (1,0),则椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.(2)∵a >5,∴椭圆的焦点在x 轴上,∵|F 1F 2|=8,∴c =4,∴a 2=25+c 2=41,则a =41. 由椭圆定义,|AF 1|+|AF 2|=|BF 2|+|BF 1|=2a ,∴△ABF 2的周长为4a =441.[答案] (1)x 24+y 23=1 (2)441考向2 椭圆的几何性质【典例2】 (1)(2013·江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F 到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.(2)(2014·扬州质检)已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.[解析] (1)依题意,d 2=a 2c -c =b 2c .又BF =c 2+b 2=a ,所以d 1=bc a .由已知可得b 2c =6·bc a ,所以6c 2=ab ,即6c 4=a 2(a 2-c 2),整理可得a 2=3c 2,所以离心率e =c a =33.(2)在三角形PF 1F 2中,由正弦定理得sin ∠PF 2F 1=1,即∠PF 2F 1=π2,设|PF 2|=1,则|PF 1|=2,|F 2F 1|=3,∴离心率e =2c 2a =33. [答案] (1)33 (2)33,【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a ,c 的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法: (1)求出a ,c ,代入公式e =ca;(2)只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【变式训练2】 (1)(2013·课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.(2)(2014·徐州一中抽测)已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.则椭圆离心率的范围为________.[解析](1)如图,在Rt △PF 1F 2中,∠PF 1F 2=30°,∴|PF 1|=2|PF 2|,且|PF 2|=33|F 1F 2|, 又|PF 1|+|PF 2|=2a ,∴|PF 2|=23a ,于是|F 1F 2|=233a ,因此离心率e =c a =3a 3a =33.(2)法一:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),|PF 1|=m ,|PF 2|=n ,则m +n =2a .在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn =4a 2-3mn ≥4a 2-3·⎝⎛⎭⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号).∴c 2a 2≥14,即e ≥12.又0<e <1,∴e 的取值范围是⎣⎡⎭⎫12,1.法二:如图所示,设O 是椭圆的中心,A 是椭圆短轴上的一个顶点,由于∠F 1PF 2=60°,则只需满足60°≤∠F 1AF 2即可,又△F 1AF 2是等腰三角形,且|AF 1|=|AF 2|,所以0°<∠F 1F 2A ≤60°,所以12≤cos ∠F 1F 2A <1,又e =cos ∠F 1F 2A ,所以e 的取值范围是⎣⎢⎡⎭⎪⎫12,1. [答案] (1)33 (2)⎣⎢⎡⎭⎪⎫12,1 课堂达标练习 一、填空题1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.[解析] 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4.∴b 2=8. ∴椭圆C 的方程为x 216+y 28=1.[答案] x 216+y 28=12.(2013·四川高考改编)从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.[解析] 设P (-c ,y 0)代入椭圆方程求得y 0,从而求得k OP ,由k OP =k AB 及e =ca可得离心率e .由题意设P (-c ,y 0),将P (-c ,y 0)代入x 2a 2+y 2b 2=1,得c 2a 2+y 20b 2=1,则y 20=b 2⎝⎛⎭⎫1-c 2a 2=b 2·a 2-c 2a 2=b 4a2.∴y 0=b 2a 或y 0=-b 2a(舍去),∴P ⎝⎛⎭⎫-c ,b 2a ,∴k OP =-b 2ac . ∵A (a,0),B (0,b ),∴k AB =b -00-a =-b a . 又∵AB ∥OP ,∴k AB =k OP ,∴-b a =-b 2ac ,∴b =c .∴e =c a =c b 2+c2=c 2c 2=22. [答案] 22 3.(2014·辽宁高考)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.[解析] 椭圆x 29+y 24=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12. [答案] 124.(2014·南京调研)如图,已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a,0)作直线l交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________.[解析] ∵△AOP 为等腰三角形,∴OA =OP ,故A (-a,0),P (0,a ),又PQ →=2QA →, ∴Q ⎝⎛⎭⎫-2a 3,a 3,由Q 在椭圆上得49+a 29b 2=1,解得b 2a 2=15. ∴e =1-b 2a 2=1-15=255. [答案] 2555.(2014·南京质检)已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.[解析] 由x 2+y 2-2x -15=0,知r =4=2a ⇒a =2. 又e =c a =12,c =1,则b 2=a 2-c 2=3.因此椭圆的标准方程为x 24+y 23=1. [答案] x 24+y 23=16.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则椭圆C 的离心率为__________.[解析] 在△ABF 中,由余弦定理得 ,|AF |2=|AB |2+|BF |2-2|AB |·|BF |cos ∠ABF ,∴|AF |2=100+64-128=36,∴|AF |=6,从而|AB |2=|AF |2+|BF |2,则AF ⊥BF . ∴c =|OF |=12|AB |=5,利用椭圆的对称性,设F ′为右焦点,则|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14,a =7. 因此椭圆的离心率e =c a =57. [答案] 577.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.[解析] 由定义,|PF 1|+|PF 2|=2a ,且PF 1→⊥PF 2→, ∴|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,∴2|PF 1||PF 2|=4a 2-4c 2=4b 2,∴|PF 1||PF 2|=2b 2. ∴S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=9,因此b =3. [答案] 38.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.[解析] 依题意,设椭圆C :x 2a 2+y 2b2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A ⎝⎛⎭⎫1,32必在椭圆上,∴1a 2+94b2=1.① 又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1. [答案] x 24+y 23=1二、解答题9.(2014·镇江质检)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程. [解] (1)设椭圆C 2的方程为y 2a 2+x 24=1(a >2), 其离心率为32, 故a 2-4a =32,解得a =4.故椭圆C 2的方程为y 216+x 24=1.(2)法一:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O 、A 、B 三点共线且点A 、B 不在y 轴上,因此可设直线AB 的方程为y =kx . 将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4, 所以x 2A =41+4k 2. 将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16,所以x 2B =164+k 2. 又由OB →=2OA →,得x 2B =4x 2A, 即164+k 2=161+4k 2, 解得k =±1.故直线AB 的方程为y =x 或y =-x . 法二:A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O 、A 、B 三点共线且点A 、B 不在y 轴上,因此可设直线AB 的方程为y =kx . 将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2. 由OB →=2OA →,得x 2B =161+4k 2,y 2B =16k 21+4k 2.将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k2=1,即4+k 2=1+4k 2,解得k =±1. 故直线AB 的方程为y =x 或y =-x .10.(2014·安徽高考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|; (2)若cos ∠AF 2B =35,求椭圆E 的离心率.[解] (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1.因为△ABF 2的周长为16,所以由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8. 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F1B|=k,则k>0且|AF1|=3k,|AB|=4k. 由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.在△ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cos∠AF2B,即(4k)2=(2a-3k)2+(2a-k)2-65(2a-3k)·(2a-k),化简可得(a+k)(a-3k)=0.而a+k>0,故a=3k.于是有|AF2|=3k=|AF1|,|BF2|=5k.因此|BF2|2=|F2A|2+|AB|2,可得F1A⊥F2A,故△AF1F2为等腰直角三角形.从而c=22a,所以椭圆E的离心率e=ca=22.椭圆的定义与性质1.椭圆的定义(1)第一定义:平面内与两个定点F 1,F 2的距离之和等于 (大于|F 1F 2|)的点的轨迹叫做椭圆,这两个 叫做椭圆的焦点,两个 的距离叫做焦距.(2)第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数 ( <e < )的动点的轨迹是椭圆,定点F 叫做椭圆的焦点,定直线l 叫做焦点F 相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性质范围 ≤x ≤ ≤y ≤ ≤x ≤ ≤y ≤顶点 A 1( ), A 2( ) A 1( ), A 2( ) B 1( ),B 2( ) B 1( ),B 2( ) 焦点 F 1( ) F 2( ) F 1( ) F 2( ) 准线 l 1:x =-a 2c l 2:x =a 2cl 1:y =-a 2c l 2:y =a 2c轴 长轴A 1A 2的长为 短轴B 1B 2的长为长轴A 1A 2的长为 短轴B 1B 2的长为焦距 F 1F 2= 离心率 e =ca,且e ∈ a ,b ,c 的关系 c 2= 对称性对称轴: 对称中心:1.(夯基释疑)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)动点P 到两定点A (-2,0),B (2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( )(4)已知点F 为平面内的一个定点,直线l 为平面内的一条定直线.设d 为平面内一动点P 到定直线l 的距离,若d =54|PF |,则点P 的轨迹为椭圆.( )2.(教材习题改编)焦点在x 轴上的椭圆x 25+y 2m =1的离心率为105,则m =________.3.椭圆的焦点坐标为(0,-6),(0,6),椭圆上一点P 到两焦点的距离之和为20,则椭圆的标准方程为_____. 4.(2014·无锡质检)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B ,当△F AB 的周长最大时,△F AB 的面积是________.5.(2014·江西高考)过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.考向1 椭圆的定义与标准方程【典例1】 (1)(2014·全国大纲卷改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为________. (2)(2014·苏州质检)椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________.【规律方法】(1)一般地,解决与到焦点的距离有关问题时,首先应考虑用定义来解决. (2)求椭圆的标准方程有两种方法①定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程.②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a ,b ;若焦点位置不明确,则需要分焦点在x 轴上和y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).【变式训练1】 (1)(2013·广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________.(2)(2014·苏州质检)已知椭圆的方程是x 2a 2+y 225=1(a >5),它的两个焦点分别为F 1,F 2,且|F 1F 2|=8,弦AB (椭圆上任意两点的线段)过点F 1,则△ABF 2的周长为________.考向2 椭圆的几何性质【典例2】 (1)(2013·江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B .设原点到直线BF 的距离为d 1,F到l 的距离为d 2,若d 2=6d 1,则椭圆C 的离心率为________.(2)(2014·扬州质检)已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.【规律方法】1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a ,c 的关系.2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:(1)求出a ,c ,代入公式e =c a; (2)只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【变式训练2】 (1)(2013·课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.(2)(2014·徐州一中抽测)已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.则椭圆离心率的范围为________.课堂达标练习一、填空题1.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.2.(2013·四川高考改编)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是________.3.(2014·辽宁高考)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.4.(2014·南京调研)如图,已知过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A (-a,0)作直线l 交y 轴于点P ,交椭圆于点Q ,若△AOP 是等腰三角形,且PQ →=2QA →,则椭圆的离心率为________.5.(2014·南京质检)已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是________.6.(2013·辽宁高考改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则椭圆C 的离心率为__________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.8.(2013·大纲全国卷改编)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.二、解答题9.(2014·镇江质检)已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.10.(2014·安徽高考)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|; (2)若cos ∠AF 2B =35,求椭圆E 的离心率.。
椭圆一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF1|+|PF2|=2a ,2a >|F1F2|=2c};这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程:222c a b =-①焦点在x 轴上:12222=+b y a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+b x a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n += 或者 mx2+ny2=1二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+b y a x (a >b >0) 横坐标-a≤x≤a ,纵坐标-b≤x≤b(2)椭圆12222=+b x a y (a >b >0) 横坐标-b≤x≤b,纵坐标-a≤x≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A1(-a ,0),A2(a ,0),B1(0,-b ),B2(0,b )(2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即a c称为椭圆的离心率,记作e (10<<e ),22221()b e a a ==-ce 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
. . . ....椭圆第二定义教学设计养正中学刘华湘背景分析:本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、焦半径公式和准线方程,掌握椭圆定义的应用。
教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳抽象能力以及等价转化思想为重点的教学思想.教材的地位和作用:圆锥曲线是解析几何的重要内容,而椭圆又是学生遇到的第一种圆锥曲线;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。
而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用.学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.教学目标知识目标:椭圆第二定义、准线方程;能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义;3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用;教学方法:创设问题、启发引导、探究活动、归纳总结. 教学过程 复习回顾1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为322,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4227±=y ). 2.短轴长为8,离心率为53的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ∆的周长为 20 . 引入课题【习题4(教材P96)】椭圆的方程为1162522=+y x ,M 1,M 2为椭圆上的点① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 .② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗?解:202)34(||y MF +-=且116254202=+y 代入消去20y 得51325169||==MF【推广】你能否将椭圆12222=+by a x 上任一点),(y x M 到焦点)0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?解:⎪⎩⎪⎨⎧=++-=1)(||222222b y ax y c x MF 代入消去2y 得2222222)(2||a x a c x a b b c cx x MF -=-++-=||||||22ca x e c a x a c a x a c -=-=-= 问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点M 到右焦点)0,(c F 的距离与它到定直线c a x 2=的距离的比等于离心率ac 问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)动点M 到定点)0,(c F 的距离与它到定直线ca x 2=的距离的比等于常数)(c a a c >的点的轨迹是椭圆.【引出课题】椭圆的第二定义当点M 与一个定点的距离和它到一条定直线的距离的比是常数)10(<<=e ac e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率.对于椭圆12222=+by a x ,相应于焦点)0,(c F 的准线方程是c a x 2=.根据对称性,相应于焦点)0,(c F -'的准线方程是c a x 2-=.对于椭圆12222=+bx a y 的准线方程是c a y 2±=.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.由椭圆的第二定义e dMF =∴||可得:右焦半径公式为ex a c a x e ed MF -=-==||||2右;左焦半径公式为ex a ca x e ed MF +=--==|)(|||2左典型例题例1、求椭圆1162522=+y x 的右焦点和右准线;左焦点和左准线;解:由题意可知右焦点)0,(c F 右准线c a x 2=;左焦点)0,(c F -和左准线ca x 2-=变式:求椭圆81922=+y x 方程的准线方程;解:椭圆可化为标准方程为:198122=+x y ,故其准线方程为42272±=±=c a y小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆1162522=+y x 上的点M 到左准线的距离是5.2,求M 到左焦点的距离为 .变式:求M 到右焦点的距离为 .解:记椭圆的左右焦点分别为21,F F 到左右准线的距离分别为21,d d 由椭圆的第二定义可知:e d MF =||53||11===a c e d MF 5.15.253||11=⨯==∴ed MF 5.1||1=∴MF 又由椭的第一定义可知:5.8||102||||221=∴==+MF a MF MF另解:点M 到左准线的距离是 2.5,所以点M 到右准线的距离为685253505.222=-=-c a 5.868553||||2222=⨯==∴=ed MF e d MF小结:椭圆第二定义的应用和第一定义的应用例1、 点P 与定点A (2,0)的距离和它到定直线8=x 的距离的比是1:2,求点P 的轨迹;解法一:设),(y x P 为所求轨迹上的任一点,则21|8|)2(22=-+-x y x 由化简得1121622=+y x ,故所的轨迹是椭圆。
一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a by a x ; 焦点在y 轴: ()012222>>=+b a bx a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .10 3.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( ) A .3 B .23 C .38 D .32 4.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .552 6.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .23 7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B += . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
椭圆常见题型与典型方法归纳考点一 椭圆的定义椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e=ac(0<e<1)的动点M 的轨迹叫做椭圆.这个定点是椭圆的焦点,这条定直线叫做椭圆的准线,这个常数e 是椭圆的离心率.注意:当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F =的点的轨迹是线段12FF ; 当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F <的点的轨迹不存在. 例 动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为 ( ) A 、椭圆 B 、线段12,F F C 、直线12,F F D 、不能确定考点二 椭圆的标准方程一 标准方程1焦点在x 轴上 标准方程是:22221x y a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(,0),(,0)c c -2焦点在y 轴上 标准方程是:22221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(0,),(0,)c c -3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22179x y +=的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>)例 已知椭圆过两点1),(2)A B -,求椭圆标准方程5 与12222=+b y a x (a >b >0)共焦点的椭圆为12222=+++kb y k a x二 重难点问题探析: 1.要有用定义的意识例 已知12,F F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点若2212F A F B += 则AB =________。