【物理】 高考物理速度选择器和回旋加速器专项训练100(附答案)
- 格式:doc
- 大小:1.32 MB
- 文档页数:23
高考物理速度选择器和回旋加速器题20套(带答案)及解析一、速度选择器和回旋加速器1.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。
A 板带正电荷,B 板带等量负电荷,电场强度为E ;磁场方向垂直纸面向里,磁感应强度为B 1。
平行金属板右侧有一挡板M ,中间有小孔O ′,OO ′是平行于两金属板的中心线。
挡板右侧有垂直纸面向外的匀强磁场,磁感应强度为B 2,CD 为磁场B 2边界上的一绝缘板,它与M 板的夹角θ=45°,现有大量质量均为m ,电荷量为q 的带正电的粒子(不计重力),自O 点沿OO ′方向水平向右进入电磁场区域,其中有些粒子沿直线OO ′方向运动,通过小孔O ′进入匀强磁场B 2,如果这些粒子恰好以竖直向下的速度打在CD 板上的E 点(E 点未画出),求:(1)能进入匀强磁场B 2的带电粒子的初速度v ; (2)CE 的长度L(3)粒子在磁场B 2中的运动时间.【答案】(1)1 E B (2) 122mE qB B (3) 2m qB π 【解析】 【详解】(1)沿直线OO ′运动的带电粒子,设进入匀强磁场B 2的带电粒子的速度为v , 根据B 1qv =qE解得:v =1EB (2)粒子在磁感应强度为B 2磁场中做匀速圆周运动,故:22v qvB m r=解得:r =2mv qB =12mE qB B 该粒子恰好以竖直向下的速度打在CD 板上的E 点,CE 的长度为:L =45r sin o2r 122mE(3) 粒子做匀速圆周运动的周期2mT qBπ= 2t m qBπ=2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场E 和磁场B 都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样。
一带正电的粒子质量为m 、电荷量为q 从P (x =0,y =h )点以一定的速度平行于x 轴正向入射。
这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.求:(1)若只有磁场,粒子做圆周运动的半径R 0大小; (2)若同时存在电场和磁场,粒子的速度0v 大小;(3)现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点。
【物理】 高考物理速度选择器和回旋加速器试题(有答案和解析)含解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m vB qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =3T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
高中物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6π-⨯ 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=2.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。
一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。
高考物理速度选择器和回旋加速器题20套(带答案)一、速度选择器和回旋加速器1.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0133Uqm dB B R=点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U;(2)粒子在圆形磁场区域中运动的时间t;(3)圆形磁场区域的半径R.【答案】(1)U=Bv0d;(2)mqBθ;(3)R=0tan2mvqBθ【解析】【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间.(3))由几何关系求半径R.【详解】(1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv0q=m2vr同时有T=2rvπ粒子在圆形磁场区域中运动的时间t=2θπT解得t=m Bq θ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan2mvqBθ3.如图所示为质谱仪的原理图,A为粒子加速器,电压为1U,B为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B,左右两板间距离为d,C为偏转分离器,内部匀强磁场的磁感应强度为2B,今有一质量为m,电量为q且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B,再进入分离器C中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析:(1)粒子带何种电荷;(2)粒子经加速器A加速后所获得的速度v;(3)速度选择器的电压2U;(4)粒子在C区域中做匀速圆周运动的半径R。
高考物理速度选择器和回旋加速器题20套(带答案)及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得21R 2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
高中物理速度选择器和回旋加速器练习题及答案及解析一、速度选择器和回旋加速器1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。
若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。
求ab 间距离。
(a ,b 两点图中未画出)【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有qE qvB =解得离子流的速度为Ev B==2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m R=解得mvR qB==0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有1sin 2L R θ== 解得30θ=o在磁场中的运动如图1所示偏离距离1cos y R R θ=-=0.054m离开磁场后离子做匀速直线运动,总的偏离距离为1tan y y D θ=+=0.28m若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间L t v≤加速度qE a m=偏转角为θ',如图2所示则21tan 2y v qEL vmv θ'=== 偏离距离为2212y at ==0.05m 离开电场后离子做匀速直线运动,总的偏离距离2tan y y D θ''=+=0.25m所以a 、b 间的距离ab =y +y '=0.53m2.如图所示,有一对平行金属板,两板相距为0.05m 。
高考物理速度选择器和回旋加速器专题训练答案及解析一、速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.某粒子源向周围空间辐射带电粒子,工作人员欲通过质谱仪测量粒子的比荷,如图所示,其中S 为粒子源,A 为速度选择器,当磁感应强度为B 1,两板间电压为U ,板间距离为d 时,仅有沿轴线方向射出的粒子通过挡板P 上的狭缝进入偏转磁场,磁场的方向垂直于纸面向外,磁感应强度大小为B 2,磁场右边界MN 平行于挡板,挡板与竖直方向夹角为α,最终打在胶片上离狭缝距离为L 的D 点,不计粒子重力。
求: (1)射出粒子的速率; (2)射出粒子的比荷;(3)MN 与挡板之间的最小距离。
【答案】(1)1U B d(2)22cos v B L α(3)(1sin )2cos L αα-【解析】 【详解】(1)粒子在速度选择器中做匀速直线运动, 由平衡条件得:qυB 1=qUd解得υ=1UB d; (2)粒子在磁场中做匀速圆周运动,运动轨迹如图所示:由几何知识得:r =2cos Lα=2cos Lα粒子在磁场中做圆周运动,由牛顿第二定律得qυB 2=m2rυ,解得:q m =22cos v B L α(3)MN 与挡板之间的最小距离:d =r ﹣r sin α=(1sin )2cos L αα-答:(1)射出粒子的速率为1U B d;(2)射出粒子的比荷为22cos v B L α;(3)MN 与挡板之间的最小距离为(1sin )2cos L αα-。
高中物理速度选择器和回旋加速器专项训练100(附答案)一、速度选择器和回旋加速器1.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值E B ;(2)求第一象限内磁场的磁感应强度大小B ;(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有00qvB qE =解得302.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径1.0m R d ==根据洛伦兹力提供向心力有2v qvB m R=解得磁感应强度大小3210T B -=⨯(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小sin y v v θ=粒子在电场中沿y 轴方向的加速度大小cos y qE amθ=设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有y yv t a ∆=t ∆时间内,粒子沿y 轴方向通过的位移大小2y v y t ∆=⋅∆联立解得0.3m y ∆=由于cos y d θ∆<故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离cos 0.2m d d y θ'=-∆=2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E mB L =(3)从dc 边距离d 3L 处射出磁场;3BLEπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0E v B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m == 得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:2x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点32x L=处离开磁场,在磁场中运动的时间3BL t E =π.3.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
(物理) 高考物理速度选择器和回旋加速器专项训练100(附答案)及解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
最新 高考物理速度选择器和回旋加速器试题(有答案和解析)一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得21R 2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示,竖直挡板MN 右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E =100N/C ,磁场方向垂直纸面向里,磁感应强度B =0.2T ,场中A 点与挡板的距离L =0.5m 。
某带电量q =+2.0×10-6C 的粒子从A 点以速度v 垂直射向挡板,恰能做匀速直线运动,打在挡板上的P 1点;如果仅撤去电场,保持磁场不变,该粒子仍从A 点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN 相切于P 2点,不计粒子所受重力。
【物理】 高考物理速度选择器和回旋加速器专项训练100(附答案)一、速度选择器和回旋加速器1.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:0mv R qB qB==由几何知识可得022cos 45mv AC R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.2.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。
其中S 、a 、圆心O 点在同一竖直线上。
不计粒子的重力和粒子之间的作用力。
求: (1)能到达a 点的粒子速度v 的大小;(2)若e 、f 两粒子带不同种电荷,它们的比荷之比为1︰3,都能到达a 点,则对应A 、B 两金属板间的加速电压U 1︰U 2的绝对值大小为多大;(3)在满足(2)中的条件下,若e 粒子的比荷为k ,e 、f 两粒子在磁场圆中射出的两位置恰好在圆形磁场的同一条直径上,则两粒子在磁场圆中运动的时间差△t 为多少?【答案】(1)1E v B =;(2)12:3:1U U =;(3)1229t t t kB π∆=-=【解析】 【详解】解:(1)能达到a 点的粒子速度设为v ,说明在C 、D 板间做匀速直线运动,有:1qvB qE = 解得:1Ev B =(2)由题意得e 、f 两粒子经A 、B 板间的电压加速后,速度都应该为v ,根据动能定理得:21qU mv 2=它们的比荷之比:e fe fq q :1:3m m = 得出:12U :U 3:1=(3)设磁场圆的半径为R ,e 、f 粒子进入磁场圆做圆周运动对e 粒子:21211v q vB m r =对f 粒子:22222v q vB m r =解得:12r 3r 1= e 、f 两粒子在磁场圆中射出的两位置恰好在同一条直径上,说明两粒子的偏转角之和为180o , e 、f 两粒子的轨迹图如图所示,由几何关系有:1R tan θr =2R tan θr =θα90o +=联立解得:θ30=o ,α60=oe 、f 两粒子进入磁场圆做匀速圆周运动的周期满足:112πr T v = 222πr T v=e fe fq q :1:3m m = 在磁场中运动的时间:112θt T 360=o 222αt T 360=o 12t t >两粒子在磁场中运动的时间差为:122πΔt t t 9kB =-=3.如图所示,OO′为正对放置的水平金属板M 、N 的中线,热灯丝逸出的电子(初速度、重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射人两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动,已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e 。
求:(1)电子通过小孔O 时的速度大小v ;(2)板间匀强磁场的磁感应强度的大小B 和方向。
【答案】(1)2eUm(2)12mU L e 方向垂直纸面向里【解析】 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU mv = 解得:2eUv m=(2)两板间电场的电场强度大小为:2UE L=由于电子在两板间做匀速运动,故:evB eE = 解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外.4.如图所示,一对平行金属极板a 、b 水平正对放置,极板长度为L ,板间距为d ,极板间电压为U ,且板间存在垂直纸面磁感应强度为B 的匀强磁场(图中未画出)。
一带电粒子以一定的水平速度从两极板的左端正中央沿垂直于电场、磁场的方向射入极板间,恰好做匀速直线运动,打到距离金属极板右端L 处的荧光屏MN 上的O 点。
若撤去磁场,粒子仍能从极板间射出,且打到荧光屏MN 上的P 点。
已知P 点与O 点间的距离为h ,不计粒子的重力及空气阻力。
(1)请判断匀强磁场的方向;(2)求带电粒子刚进入极板左侧时的速度大小v ; (3)求粒子的比荷(qm)。
【答案】(1)磁场方向垂直纸面向里(2)v =U Bd (3)2223q Uh m B L d= 【解析】 【分析】(1)由左手定则可知磁场方向。
(2)粒子在极板间做直线运动,可知洛伦兹力与电场力相等;(3)若撤去磁场,粒子在电场中做类平抛运动,结合水平和竖直方向的运动特点解答; 【详解】(1)由左手定则可知,磁场方向垂直纸面向里。
(2)带电粒子受力平衡,有qvB q =U d粒子进入极板时的速度v =U Bd(3)带电粒子在两极板间运动时间t 1=L v ,加速度qU a md= 带电粒子穿过电场时的侧移量22112122qUL y at mdv== 带电粒子离开两极板间后做匀速直线运动的时间t 2=Lv带电粒子从极板右端射出时沿竖直方向的速度v y =1qULat mdv=带电粒子离开两极板间后在竖直方向的位移2222y qUL y v t mdv == 两次侧移量之和为h ,即:h =y 1+y 2=2232qUL mdv解得:2223q Uh m B L d= 【点睛】此题是带电粒子在复合场中的运动问题;关键是搞清粒子在场中的运动特征和受力情况;粒子在电场中的偏转问题,主要是结合类平抛运动的规律解答.5.如图所示,在直角坐标系xOy 平面内,以O 点为圆心,作一个半径为R 的园形区域,A 、B 两点为x 轴与圆形区域边界的交点,C 、D 两点连线与x 轴垂直,并过线段OB 中点;将一质量为m 、电荷量为q(不计重力)的带正电的粒子,从A 点沿x 轴正方向以速度v 0射入圆形区域.(1)当圆形区域内只存在平行于y 轴方向的电场时,带电粒子恰从C 点射出圆形区域,求此电场的电场强度大小和方向;(2)当圆形区域内只存在垂直于区域平面的磁场时,带电粒子怡从D 点射出圆形区域,求此磁场的磁感应强度大小和方向;(3)若圆形区域内同时存在(1)中的电场和(2)中的磁场时,为使带电粒子恰能沿直线从B 点射出圆形区域,其入射速度应变为多少?【答案】(1)243mv E =方向沿y 轴正方向 (2)033mv B qR= 方向垂直坐标平面向外 (3)043v v =【解析】 【分析】(1)只存在电场时,粒子在电场中做类平抛运动,根据水平和竖直方向的运动列方程求解电场强度;(2)区域只存在磁场时,做匀速圆周运动,由几何关系求解半径,再根据洛伦兹力等于向心力求解磁感应强度;(3)若电场和磁场并存,粒子做直线运动,电场力等于洛伦兹力,列式求解速度. 【详解】(1)由A 到C 做类平抛运动:032R v t =; 2312at qE ma =解得3439mv E qR=方向沿y 轴正方向; (2)从A 到D 匀速圆周运动,则0tan30Rr=,3r R =200v qv B m r= 0mv r qB =解得033mv B qR=方向垂直坐标平面向外. (3)从A 到B 匀速直线运动,qE=qvB 解得E v B= 即043v v =【点睛】此题是带电粒子在电场中的偏转,在磁场中的匀速圆周运动以及在正交场中的直线运动问题;粒子在电场中做类平抛运动,从水平和竖直两个方向列式;在磁场中做匀速圆周运动,先找半径和圆心,在求磁感应强度;在正交场中的直线运动时列平衡方程求解.6.1932 年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个 D 形盒,分别为 D 1、D 2.D 形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与 D 形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D 形盒的半径为 R ,磁场的磁感应强度为 B .设质子从粒子源 A 处进入加速电场的初速度不计.质子质量为 m 、电荷量为+q .加速器接入一定频率的高频交变电源,加速电压为 U .加速过程中不考虑相对论效应和重力作用.求:(1)质子第一次经过狭缝被加速后进入 D 2 盒时的速度大小 v 1 和进入 D 2 盒后运动的轨道半径 r 1;(2)质子被加速后获得的最大动能 E k 和交变电压的频率 f ;(3)若两 D 形盒狭缝之间距离为 d ,且 d<<R .计算质子在电场中运动的总时间 t 1 与在磁场中运动总时间 t 2,并由此说明质子穿过电场时间可以忽略不计的原因.【答案】(1) 12qU v m =,112mU r B q =222K qB R E m= ,2qB f m π= (3)1BRd t U = ,222BR t U π= ; 122t d t R π=【解析】(1)设质子第1此经过狭缝被加速后的速度为v 1: 2112qU mv =解得1v = 2111v qv B m r =解得:1r =(2)当粒子在磁场中运动半径非常接近D 型盒的半径A 时,粒子的动能最大,设速度为v m ,则2mm v qv B m R=212km m E mv =解得222K qB R E m=回旋加速器正常工作时高频交变电压的频率等于粒子回旋的频率,则设粒子在磁场中运动的周期为T,则:22r mT v qBππ== 则2qBf mπ=(3)设质子从静止开始加速到粒子离开加速了n 圈,粒子在出口处的速度为v ,根据动能定理可得:22222q B R nqU m =可得224qB R n mU=粒子在夹缝中加速时,有:qUma d=,第n 次通过夹缝所用的时间满足:1n n n a t v v +∆=- 将粒子每次通过夹缝所用时间累加,则有1m v BRd t a U== 而粒子在磁场中运动的时间为(每圈周期相同)2222242qB R m BR t nT mU qB U ππ==⋅= 可解得122t dt Rπ=,因为d<<R ,则 t 1<<t 27.如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D 1和D 2,磁感应强度为B ,金属盒的半径为R ,两盒之间有一狭缝,其间距为d ,且R ≫d ,两盒间电压为U 。