三角函数图像的伸缩变换
- 格式:doc
- 大小:68.50 KB
- 文档页数:1
3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。
三角函数的变换三角函数是数学中重要的概念,它描述了角度和三角形之间的关系。
在数学和物理领域,我们经常需要对三角函数进行变换,以便简化计算或者得到更加具体的结果。
以下将介绍三角函数的常见变换及其特点。
1. 平移变换平移变换是最常见的三角函数变换之一。
平移变换将函数图像沿着横轴或纵轴平移一定的单位。
对于正弦函数sin(x),平移变换可以表示为y = sin(x - c)或y = sin(x + c),其中c表示平移的单位。
这种变换改变了正弦函数的相位,使得图像在横向移动。
2. 伸缩变换伸缩变换是通过改变三角函数的振幅或周期来实现的。
对于正弦函数sin(x),伸缩变换可以表示为y = a*sin(bx),其中a和b分别表示振幅和周期的变化系数。
当a>1时,振幅增大;当0<a<1时,振幅减小。
当b>1时,周期缩短;当0<b<1时,周期延长。
伸缩变换可以使得函数图像在纵向或横向方向上发生变化。
3. 反转变换反转变换是将函数图像沿着横轴或纵轴进行镜像翻转。
对于正弦函数sin(x),反转变换可以表示为y = -sin(x)或y = sin(-x)。
这种变换改变了正弦函数的正负号,使得图像在纵向发生翻转。
4. 相位差变换相位差变换是通过改变角度值来实现的。
对于正弦函数sin(x),相位差变换可以表示为y = sin(x + d),其中d表示相位差。
相位差变换改变了正弦函数的起始位置,使得图像在横向发生移动。
5. 复合变换除了单独的平移、伸缩、反转和相位差变换,我们还可以将它们组合起来进行复合变换。
通过在函数的输入和输出上进行多次变换,可以得到更加复杂的函数图像。
例如,可以将平移和伸缩变换组合来实现在横向上平移并且改变振幅的效果。
三角函数的变换在数学和物理中有着广泛的应用。
它们可以用来描述周期性现象、波动传播以及信号处理等。
通过灵活运用变换的技巧,我们可以简化计算过程并得到更加准确的结果。
三角函数的平移伸缩变换规律三角函数是数学中非常重要的一部分,它在数学、物理、工程等领域都有着广泛的应用。
在三角函数中,平移和伸缩变换是非常常见的操作,通过对三角函数的平移和伸缩变换,我们可以得到不同的函数图像,从而更好地理解和分析函数的性质。
接下来,我们将详细介绍三角函数的平移伸缩变换规律。
首先,让我们来了解一下什么是三角函数的平移和伸缩变换。
在数学中,平移变换是指将函数图像沿着坐标轴的方向进行平移,而伸缩变换则是指对函数图像进行拉伸或压缩。
对于三角函数而言,平移和伸缩变换会改变函数图像的周期、振幅、相位等性质。
对于正弦函数和余弦函数而言,它们的平移和伸缩变换规律如下:1. 正弦函数的平移和伸缩变换规律:设y = A*sin(B(x-C)) + D,其中A、B、C、D为常数,则:A控制振幅的变化,当|A|>1时,振幅增大;当0<|A|<1时,振幅减小。
B控制周期的变化,周期T=2π/|B|。
C控制相位的变化,向右平移C个单位;向左平移-C个单位。
D控制上下平移,向上平移D个单位;向下平移-D个单位。
2. 余弦函数的平移和伸缩变换规律:设y = A*cos(B(x-C)) + D,其中A、B、C、D为常数,则:A、B、C、D的作用与正弦函数相似,只是对于余弦函数而言,A控制振幅的变化,B控制周期的变化,C控制相位的变化,D控制上下平移。
除了正弦函数和余弦函数外,切线函数和余切函数也有类似的平移和伸缩变换规律:3. 切线函数的平移和伸缩变换规律:设y = A*tan(B(x-C)) + D,其中A、B、C、D为常数,则:A控制纵向拉伸或压缩。
B控制周期的变化,周期T=π/|B|。
C控制横向平移。
D控制上下平移。
4. 余切函数的平移和伸缩变换规律:设y = A*cot(B(x-C)) + D,其中A、B、C、D为常数,则:A、B、C、D的作用与切线函数相似,只是对于余切函数而言,A控制纵向拉伸或压缩,B控制周期的变化,C控制横向平移,D控制上下平移。
三角函数的伸缩平移变换三角函数指的是根据角的大小和正弦、余弦和正切函数求出关于角的关系的数学函数,是数学计算中经常使用的一组精确的指令。
广义上来说,三角函数实际上是把数学中的反复指令简化成一个公式,以方便日常的计算。
通过伸缩平移变换,我们可以改变三角函数的形状,以实现特殊的计算需求。
一般来说,要改变三角函数的形状,首先要应用向量和矩阵的知识。
通过应用矩阵和向量可以实现平移、旋转等改变三角函数形状的变换,以实现特殊的计算需求。
伸缩变换是改变物理位置或大小的特殊数学变换,可以实现改变三角函数的形状。
通过应用一个坐标变换矩阵对点的坐标进行缩放或伸缩变换可以实现将两个图形缩放成完全一样的形状。
这种方法可以实现伸缩变换,以实现特殊计算需求。
平移变换是改变物体位置的特殊数学变换,可以实现改变三角函数的形状。
通过应用向量和矩阵的知识,同时直接移动每个点的位置可以实现将两个图形平移到完全一样的位置。
这种方法可以实现向左、向右或者水平垂直平移,以实现特殊计算需求。
综上所述,三角函数的伸缩平移变换通过应用矩阵和向量可以随意改变三角函数的形状,以实现特殊的计算需求。
其中伸缩变换可以实现将两个图像缩放成完全一致的形状,而平移变换可以使两个图形完全重合。
一、左右平移四个字“左加右减”,这是大家熟知的,但要注意变化的位置是“x”而不是“φ”.把y=Asin(ωx+φ)+b的图象向左平移m(m>0)个单位,得到的是函数y=Asin[ω(x+m)+φ]+b的图象;把y=Asin(ωx+φ)+b的图象向右平移m (m>0)个单位,得到的是函数y=Asin[ω(x-m)+φ]+b的图象.所以函数y=sinx的图象向左平移φ个单位得到的是函数y=sin(x+φ)的图象,函数y=sin2x的图象向左平移φ个单位,得到的是函数y=sin[2(x+φ)],即y=sin(2x+φ)的图象.二、上下平移四个字“上加下减”,注意变化的位置是“b”.把y=Asin(ωx+φ)+b的图象向上平移n(n>0)个单位,得到的是函数y=Asin(ωx+φ)+(b+n)的图象;把y=Asin(ωx+φ)+b的图象向下平移n(n>0)个单位,得到的是函数y=Asin (ωx+φ)+(b-n)的图象.三、横坐标伸缩两个字“反比”,注意变化的位置是“ω”.把y=Asin(ωx+φ)+b图象的横坐标变为原来的p倍,得到的是函数y=Asin(ωx+φ)+b的图象.四、纵坐标伸缩两个字“正比”,注意变化的位置是“A”.把y=Asin(ωx+φ)+b图象的纵坐标变为原来的q倍,得到的是函数y=qAsin(ωx+φ)+b的图象.。
三角函数图象的平移和伸缩函数s i n()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象 得sin()y x ϕ=+的图象得sin()y x ωϕ=+的图象 得sin()y A x ωϕ=+的图象 得sin()y A x k ϕ=++的图象.先伸缩后平移 sin y x =的图象 得sin y A x =的图象 得sin()y A x ω=的图象得sin ()y A x x ωϕ=+的图象 得sin()y A x k ωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.xy sin =)3s in(π+=x y )32sin(π+=x y )32sin(3π+=x y)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习1.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.22cos y x = C.)42sin(1π++=x y D.22sin y x =2.(2009天津卷理)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度3.(07山东文)4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位 4.(06江苏卷)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位6、(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是(A )23 (B ) 43(C )32(D ) 37(2010福建)将函数()()ϑω+=x x f sin 的图像向左平移2个单位,若所得图像与原图重合,则ω的值不可能是( )(A )423 (B ) 643 (C ) 832(D ) 12作业 1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位2.函数f (x )=2sin x cos x 是( )(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )(A )23 (B ) 43 (C ) 32(D ) 34.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )(A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R) (C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R)5.将函数y=sin(x-π/3)的图像上所有的点的横坐标伸长带原来的2倍(纵坐标不变),再将所得的图象向左平移π/3个单位,得到的图象对应的解析式为( )(A)y=sin(x/2)(B)y=sin(x/2-π/2)(C) y=sin(x/2-π/6) (D)sin(2x-π/6) 6.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )(A )sin(2)10y x π=-(B )sin(2)5y x π=- (C )1sin()210y x π=-(D )1sin()220y x π=-7.5yAsin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )12(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变8、将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( ) y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)。
三角函数图象的平移和伸缩函数s i n ()y A x k ωϕ=++的图象与函数s i n y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x=的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x kωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πs i n24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2s i n 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2s i n 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭. 对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=-⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-.所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=-⎪⎝⎭的图象.练习:1、选择题:已知函数)5sin(3π+=x y 的图象为C 。
三角函数变换公式三角函数是初等数学中的重要概念,在许多数学和科学领域中都有广泛的应用。
在三角函数中,最常见的函数包括正弦函数、余弦函数和正切函数,它们都具有周期性和较为规律的变化。
然而,在实际应用中,有时我们需要对三角函数进行一些变换,以适应特定的需求。
这些变换包括平移、伸缩和反转等操作,可以使得函数图像更加灵活和有用。
一、平移变换平移变换是指在函数图像中将其整个图像沿横轴或纵轴方向平移一定距离。
平移变换可以改变函数图像的位置,使其整体向左或向右移动,或者向上或向下移动。
1.横向平移:设函数f(x)的图像为y=f(x),将其沿横轴方向平移h个单位,得到函数g(x)=f(x-h)。
根据平移的定义,可知g(x)的图像在x轴上的任意点P(x,y)的坐标变为P(x+h,y)。
因此,横向平移后的函数g(x)相当于在f(x)的图像上每个点向右平移h个单位。
2.纵向平移:设函数f(x)的图像为y=f(x),将其沿纵轴方向平移k个单位,得到函数g(x)=f(x)+k。
根据平移的定义,可知g(x)的图像在y轴上的任意点P(x,y)的坐标变为P(x,y+k)。
因此,纵向平移后的函数g(x)相当于在f(x)的图像上每个点向上平移k个单位。
二、伸缩变换伸缩变换是指将函数图像在横轴或纵轴方向进行拉伸或压缩。
伸缩变换可以改变函数图像的形状和走向,使其更加符合实际情况或数学要求。
1.横向伸缩:设函数f(x)的图像为y=f(x),将其沿横轴方向进行伸缩,得到函数g(x)=f(kx)。
根据伸缩的定义,可知g(x)的图像在x轴上的任意点P(x, y)的坐标变为P(x/k, y)。
因此,横向伸缩后的函数g(x)相当于在f(x)的图像上每个点的横坐标缩小k倍。
2.纵向伸缩:设函数f(x)的图像为y=f(x),将其沿纵轴方向进行伸缩,得到函数g(x)=kf(x)。
根据伸缩的定义,可知g(x)的图像在y轴上的任意点P(x, y)的坐标变为P(x, ky)。
三角函数的平移变换可以使用如下的规律来表示:
对于正弦函数y = sin x,
向右平移a 个单位:y = sin (x - a)
向左平移a 个单位:y = sin (x + a)
对于余弦函数y = cos x,
向右平移a 个单位:y = cos (x - a)
向左平移a 个单位:y = cos (x + a)
对于正切函数y = tan x,
向右平移a 个单位:y = tan (x - a)
向左平移a 个单位:y = tan (x + a)
对于三角函数的伸缩变换,可以使用如下的规律来表示:
对于正弦函数y = sin x,
伸长k 倍:y = k * sin x
缩短k 倍:y = sin (x / k)
对于余弦函数y = cos x,
伸长k 倍:y = k * cos x
缩短k 倍:y = cos (x / k)
对于正切函数y = tan x,
伸长k 倍:y = k * tan x
缩短k 倍:y = tan (x / k)
请注意,三角函数的伸缩变换并不会改变函数的周期,所以伸长或缩短k 倍都不会改变函数的形态。
三角函数的平移与伸缩三角函数在数学中占据着重要的地位,其在几何、物理、工程等各个领域都有广泛的应用。
而三角函数的平移与伸缩是对原本的函数图像进行操作,使其在坐标系中发生移动和变形。
本文将探讨三角函数的平移与伸缩,以及其对函数图像的影响。
1. 平移变换平移是指将函数图像沿着坐标系的横轴或纵轴方向进行移动。
对于正弦函数y = sin(x)和余弦函数y = cos(x),平移操作可以通过改变自变量x发生。
如果横轴上的平移量为a,那么正弦函数的平移变换可以表示为y = sin(x - a),余弦函数的平移变换可以表示为y = cos(x - a)。
这样,原本位于x轴上的函数图像将平移至新的位置。
2. 伸缩变换伸缩是指通过改变函数图像在坐标系中的大小和形状来实现。
伸缩操作可以通过改变函数的自变量或因变量进行。
对于正弦函数和余弦函数,分别称为sine函数和cosine函数,它们的伸缩变换形式可以表示为y = A*sin(Bx)和y = A*cos(Bx)。
其中,A和B分别代表着振幅和周期。
振幅A决定了函数图像在纵向上的幅度,而周期B则决定了函数图像在横向上的重复性。
当A增大时,函数图像的“峰”和“谷”之间的距离增大,振幅变大;反之,当A 减小时,振幅变小。
当B增大时,函数图像在横轴方向上的周期变长,每个周期内包含更多的“峰”和“谷”;反之,当B减小时,周期变短,每个周期内的“峰”和“谷”减少。
综合平移和伸缩,我们可以得到更加复杂的三角函数的变换。
例如对于正弦函数y = sin(x)进行平移和伸缩的组合操作,可以表示为y =A*sin(B(x - C)) + D。
其中C为平移量,A为伸缩因子,D为上下方向的平移量。
同样地,对于余弦函数也可以进行类似的操作。
三角函数的平移与伸缩在实际应用中起到了重要的作用。
它们能够改变函数图像在坐标系中的位置和形状,进而影响到相关问题的解决。
例如在物理学中,正弦函数和余弦函数可以用来描述周期性现象,如电磁波的传播及机械振动等。
三角函数伸缩变换法则
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
三角函数平移伸缩变换口诀:左加右减,上加下减。
一个点作左右平移时,纵坐标不发生任何改变,而是横坐标在发生变化。
当点向右平移时,横坐标变大,当点向左平移时,横坐标变小,这就是平移的左加右减。
一个点作上下平移时,横坐标不发生任何改变,而是纵坐标在发生变化。
当点向上平移时,纵坐标变大,当点向下平移时,纵坐标变小,这就是平移的上加下减。
三角函数图像的伸缩变换
一、sin sin y x y A x =→=
二、sin sin y x y x ω=→=
三、sin sin()y x y x φ=→=+
典型题:(1ω≠的平移)
1、要得到sin 23y x π⎛⎫=- ⎪⎝⎭
,需要将sin 2y x =怎么平移( )
A .向左平移 3π个单位
B .向右平移3π
个单位
C . 向左平移6π个单位
D .向右平移6π
个单位
2、函数1cos()23y x π=+的图像经过怎样的变换得到函数1
cos 2y x =的图像 (
) A .向左平移 3π个单位 B .向右平移3π
个单位
C . 向左平移23π
个单位 D .向右平移23π
个单位
3、要得到sin 6y x π
⎛⎫=+ ⎪⎝⎭
,需要将sin y x =怎么平移( ) A .向左平移 3π个单位 B .向右平移3π
个单位
C . 向左平移6π个单位
D .向右平移6π
个单位
4、要得到tan 23y x π⎛⎫
=-- ⎪⎝⎭
,需要将tan 2y x =-
怎么平移( )
A .向左平移 3π
个单位 B .向右平移3π
个单位
C . 向左平移6π个单位
D .向右平移6π
个单位
5、要得到sin 26y x π⎛⎫
=+ ⎪⎝⎭
,需要将cos 2y x = 。
总结:。