小学奥数知识点完全梳理
- 格式:doc
- 大小:273.00 KB
- 文档页数:34
小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。
2. 素因数分解:将一个合数分解为质数的乘积。
3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。
4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。
5. 整数的四则运算:掌握整数加减乘除的规则和技巧。
6. 同余定理:理解同余的概念及其在解决数论问题中的应用。
二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。
2. 分数的四则运算:分数的加、减、乘、除运算规则。
3. 分数的化简与比较:化简分数和比较分数大小的方法。
4. 小数的基本概念:小数的意义和性质。
5. 小数的四则运算:小数的加、减、乘、除运算规则。
6. 分数与小数的互化:分数与小数之间的转换方法。
三、几何知识1. 平面图形的认识:点、线、面的基本性质。
2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。
3. 面积和周长的计算:计算各种平面图形的面积和周长。
4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。
5. 空间想象能力:通过剖面图、视图等理解三维空间。
四、代数基础1. 变量与常数:理解变量和常数的概念。
2. 简易方程:一元一次方程的建立和解法。
3. 代数表达式的简化:合并同类项、分配律等代数运算。
4. 不等式的概念:理解不等式的意义和基本性质。
5. 简单不等式的解法:解一元一次不等式。
五、逻辑推理1. 合情推理:通过已知信息推断未知信息。
2. 演绎推理:从一般到特殊的逻辑推理过程。
3. 归纳推理:从特殊到一般的推理方法。
4. 逻辑应用题:解决需要逻辑推理的实际问题。
六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。
2. 简单排列组合问题:解决基础的排列组合问题。
3. 二项式定理:理解二项式定理并能够进行简单应用。
4. 容斥原理:解决涉及集合容斥问题的方法。
七、数列与级数1. 等差数列:理解等差数列的定义和性质。
1-6 年级奥数所有知识点总结一、鸡兔同笼①:壮壮数他家的鸡和兔,有头共 16 个,有脚共 44 只。
问:壮壮家的鸡和兔共有多少只?二、火车问题②两列火车同向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车车身长 250米,乙车车身长 200 米,从乙车车头追上甲车车尾到乙车车尾离开甲车车头需要多少时间?③两辆火车相向而行,甲火车的速度是 20 米/秒,乙火车的速度是25米/秒,已知甲车长 250米,乙车长200 米,从两车车头到两车车尾离开,需要多少时间?三、流水问题(即流水行船问题)④一条船行驶在甲、乙两地之间,顺流速度为 42km/h,逆流速度为30km/h,求水流的速度?船在静水中的速度?四、植树问题⑤一个圆形池塘,它的周长是 150 米,每隔3米种一棵树,共需要树苗多少株?五、列车过桥问题⑥一列火车长 150 米,每秒钟行 19 米。
全车通过长 800 米的大桥,需要多少时间?六、剪绳问题⑦一根绳子对折 10次,用剪刀从中间剪了1刀,问:此绳子剪成了多少段?七、年龄问题⑧妈妈说:我在你这个年龄时,你才 2 岁;你到我这个年龄时我就77岁了。
问:现在女儿几岁了?八、盈亏问题⑨小朋友分包子,每人分9个要少8个,每人分7个要多6 个,一共有几人?九、和、差、倍问题⑩小明和妈妈年龄之和为 40 岁,妈妈的年龄是小明的3 倍,问小明多少岁?十、方阵问题11 .运动会开幕式上,三一班的同学排成一个实心方阵入场,最外层每边有 6人,三一班有多少个同学?十一、握手问题12 .6个人,每2人握一次手,一共要握多少次?十二、等差数列13.求自然数中所有三位数的和?一、鸡兔同笼公式:鸡数=(兔脚数X总头数-总脚数)(兔脚数-鸡脚数)兔数= (总脚数-鸡脚数X总头数)(兔脚数鸡脚数)①解:依据公式: 有兔=(44-2X16) (4-2)=12÷2=6 (只)有鸡=16-6=10 (只)答:壮壮家有兔6只有鸡10只二、火车问题基本数量关系:火车速度X时间=车长+桥长1、超车问题(同向运动、追击问题)路程差=车身长的和超车时间 =车身长的和速度差2、错车问题(反向运动、相遇问题)路程和=车身长的和错车时间=车身长的和速度和3、过人(将人看成是车身长度是0的火车)②解题思路:此类问题相当于追击问题,利用公式得(250+200)六(25-20)=90(秒)答:需要90秒。
小学奥数知识点总结2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
}关键问题:根据题目中的条件确定并求出单一量;4.植树问题5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):!②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
雪帆提示:鸡兔同笼的公式千万不要死记硬背,因为它的变形更多!\6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差\③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数知识点及公式总汇(必背)1.和差倍问题 22.年龄问题的三个基本特征:3.归一问题的基本特点:4.植树问题5.鸡兔同笼问题6.盈亏问题 37.牛吃草问题8.周期循环与数表规律9.平均数10.抽屉原理 411.定义新运算12.数列求和13.二进制及其应用 514.加法乘法原理和几何计数15.质数与合数 616.约数与倍数17.数的整除718.余数及其应用19.余数、同余与周期20.分数与百分数的应用821.分数大小的比较922.分数拆分23.完全平方数24.比和比例1025.综合行程26.工程问题27.逻辑推理1128.几何面积29.立体图形30.时钟问题—快慢表问题1231.时钟问题—钟面追及32.浓度与配比33.经济问题1333.经济问题34.简单方程35.不定方程36.循环小数141.和差倍问题2①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
34个小学奥数必掌握知识点1、和差倍问题:和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2、年龄问题基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4、植树问题:基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数棵数=段数-1棵距×段棵数=段数棵距×段数=总长=总长数=总长关键确定所属类型,从而确定棵数与段数的关系问题5、鸡兔同笼问题:基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
汇总小学阶段奥数知识点小学奥数是拓展孩子数学思维、提升解题能力的重要途径。
下面为大家汇总小学阶段常见的奥数知识点。
一、计算类1、整数四则运算加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c2、小数四则运算小数的加减法:小数点对齐,然后按照整数加减法的法则进行计算。
小数的乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数的除法:先把除数变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,然后按照除数是整数的除法进行计算。
3、分数四则运算同分母分数加减法:分母不变,分子相加减。
异分母分数加减法:先通分,化成同分母分数,再按照同分母分数加减法的法则进行计算。
分数乘法:分子相乘的积做分子,分母相乘的积做分母,能约分的先约分。
分数除法:除以一个数等于乘这个数的倒数。
二、数论类1、奇数和偶数奇数:不能被 2 整除的整数。
偶数:能被 2 整除的整数。
奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数2、质数和合数质数:只有 1 和它本身两个因数的自然数。
合数:除了 1 和它本身还有别的因数的自然数。
1 既不是质数也不是合数。
3、因数和倍数因数:如果 a × b = c(a、b、c 都是非 0 的整数),那么 a 和 b 就是 c 的因数。
倍数:c 就是 a 和 b 的倍数。
4、最大公因数和最小公倍数几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。
和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
和差倍问题 年龄问题地三个基本特征:①两个人地年龄差是不变地;②两个人地年龄是同时增加或者同时减少地;③两个人地年龄地倍数是发生变化地;归一问题地基本特点:问题中有一个不变地量,一般是那个“单一量”,题目一般用“照这样地速度”……等词语来表示.关键问题:根据题目中地条件确定并求出单一量;植树问题基本类型 在直线或者不封闭地曲线上植树,两端都植树 在直线或者不封闭地曲线上植树,两端都不植树 在直线或者不封闭地曲线上植树,只有一端植树封闭曲线上植树 基本公式 棵数=段数+1棵距×段数=总长 棵数=段数-1 棵距×段数=总长 棵数=段数 棵距×段数=总长关键问题 确定所属类型,从而确定棵数与段数地关系鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错地那部分置换出来; 基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同地差,找出这个差是多少;③每个事物造成地差是固定地,从而找出出现这个差地原因;④再根据这两个差作适当地调整,消去出现地差.基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量地差与单位量地差.盈亏问题基本概念:一定量地对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组地标准不同,造成结果地差异,由它们地关系求对象分组地组数或对象地总量.基本思路:先将两种分配方案进行比较,分析由于标准地差异造成结果地变化,根据这个关系求出参加分配地总份数,然后根据题意求出对象地总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数地差②当两次都有余数;和差问题 和倍问题 差倍问题 已知条件几个数地和与差 几个数地和与倍数 几个数地差与倍数 公式适用范围已知两个数地和,差,倍数关系 公式 ①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数关键问题 求出同一条件下地和与差 和与倍数 差与倍数基本公式:总份数=(较大余数一较小余数)÷两次每份数地差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数地差基本特点:对象总量和总地组数是不变地.关键问题:确定对象总量和总地组数.牛吃草问题基本思路:假设每头牛吃草地速度为“1”份,根据两次不同地吃法,求出其中地总草量地差;再找出造成这种差异地原因,即可确定草地生长速度和总草量.基本特点:原草量和新草生长速度是不变地;关键问题:确定两个不变地量.基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;周期循环与数表规律周期现象:事物在运动变化地过程中,某些特征有规律循环出现.周期:我们把连续两次出现所经过地时间叫周期.关键问题:确定循环周期.闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天.①份不能被4整除;②如果年份能被100整除,但不能被400整除;平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差地和÷总份数基本算法:②出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出地数之间地关系,确定一个基准数;一般选与所有数比较接近地数或者中间数为基准数;以基准数为标准,求所有给出数与基准数地差;再求出所有差地和;再求出这些差地平均数;最后求这个差地平均数和基准数地和,就是所求地平均数,具体关系见基本公式②抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.例:把4个物体放在3个抽屉里,也就是把4分解成三个整数地和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体地方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时.②k=n/m个物体:当n能被m整除时.理解知识点:[X]表示不超过X地最大整数.例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉.也就是找到代表物体和抽屉地量,而后依据抽屉原则进行运算. 定义新运算基本概念:定义一种新地运算符号,这个新地运算符号包含有多种基本(混合)运算.基本思路:严格按照新定义地运算规则,把已知地数代入,转化为加减乘除地运算,然后按照基本运算过程、规律进行运算.关键问题:正确理解定义地运算符号地意义.注意事项:①新地运算不一定符合运算规律,特别注意运算顺序.②每个新定义地运算符号只能在本题中使用.数列求和等差数列:在一列数中,任意相邻两个数地差是一定地,这样地一列数,就叫做等差数列. 基本概念:首项:等差数列地第一个数,一般用a1表示;项数:等差数列地所有数地个数,一般用n表示;公差:数列中任意相邻两个数地差,一般用d表示;通项:表示数列中每一个数地公式,一般用a n表示;数列地和:这一数列全部数字地和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,a n, d, n,s n,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个.基本公式:通项公式:a n = a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:s n,= (a1+ a n)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (a n+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(a n-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用地公式;二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上地数字表示不同地含义,十位上地2表示20,百位上地2表示200.所以234=200+30+4=2×102+3×10+4.=A n×10n-1+A n-1×10n-2+A n-2×10n-3+A n-3×10n-4+A n-4×10n-5+A n-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上地数字表示不同地含义.(2)= A n×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1.十进制化成二进制:①根据二进制满2进1地特点,用2连续去除这个数,直到商为0,然后把每次所得地余数按自下而上依次写出即可.②先找出不大于该数地2地n次方,再求它们地差,再找不大于这个差地2地n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有m n种不同方法,那么完成这件任务共有:m1+ m2....... +m n种不同地方法.关键问题:确定工作地分类方法.基本特征:每一种方法都可完成任务.乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有m n种方法,那么完成这件任务共有:m1×m2.......×m n种不同地方法.关键问题:确定工作地完成步骤.基本特征:每一步只能完成任务地一部分.直线:一点在直线或空间沿一定方向或相反方向运动,形成地轨迹.直线特点:没有端点,没有长度.线段:直线上任意两点间地距离.这两点叫端点.线段特点:有两个端点,有长度.射线:把直线地一端无限延长.射线特点:只有一个端点;没有长度.①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长地线段数×宽地线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数质数与合数质数:一个数除了1和它本身之外,没有别地约数,这个数叫做质数,也叫做素数.合数:一个数除了1和它本身之外,还有别地约数,这个数叫做合数.质因数:如果某个质数是某个数地约数,那么这个质数叫做这个数地质因数.分解质因数:把一个数用质数相乘地形式表示出来,叫做分解质因数.通常用短除法分解质因数.任何一个合数分解质因数地结果是唯一地.分解质因数地标准表示形式:N=,其中a1、a2、a3……a n都是合数N地质因数,且a1<a2<a3<……<a n.求约数个数地公式:P=(r1+1)×(r2+1)×(r3+1)×……×(r n+1)互质数:如果两个数地最大公约数是1,这两个数叫做互质数.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b地倍数,b就叫做a地约数.公约数:几个数公有地约数,叫做这几个数地公约数;其中最大地一个,叫做这几个数地最大公约数.最大公约数地性质:1、几个数都除以它们地最大公约数,所得地几个商是互质数.2、几个数地最大公约数都是这几个数地约数.3、几个数地公约数,都是这几个数地最大公约数地约数.4、几个数都乘以一个自然数m,所得地积地最大公约数等于这几个数地最大公约数乘以m.例如:12地约数有1、2、3、4、6、12;18地约数有:1、2、3、6、9、18;那么12和18地公约数有:1、2、3、6;那么12和18最大地公约数是:6,记作(12,18)=6;求最大公约数基本方法:1、分解质因数法:先分解质因数,然后把相同地因数连乘起来.2、短除法:先找公有地约数,然后相乘.3、辗转相除法:每一次都用除数和余数相除,能够整除地那个余数,就是所求地最大公约数.公倍数:几个数公有地倍数,叫做这几个数地公倍数;其中最小地一个,叫做这几个数地最小公倍数.12地倍数有:12、24、36、48……;18地倍数有:18、36、54、72……;那么12和18地公倍数有:36、72、108……;那么12和18最小地公倍数是36,记作[12,18]=36;最小公倍数地性质:1、两个数地任意公倍数都是它们最小公倍数地倍数.2、两个数最大公约数与最小公倍数地乘积等于这两个数地乘积.求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数地方法数地整除一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a.2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以地符号“∴”;二、整除判断方法:1.能被2、5整除:末位上地数字能被2、5整除.2.能被4、25整除:末两位地数字所组成地数能被4、25整除.3.能被8、125整除:末三位地数字所组成地数能被8、125整除.4.能被3、9整除:各个数位上数字地和能被3、9整除.5.能被7整除:①末三位上数字所组成地数与末三位以前地数字所组成数之差能被7整除.②逐次去掉最后一位数字并减去末位数字地2倍后能被7整除.6.能被11整除:①末三位上数字所组成地数与末三位以前地数字所组成地数之差能被11整除.②奇数位上地数字和与偶数位数地数字和地差能被11整除.③逐次去掉最后一位数字并减去末位数字后能被11整除.7.能被13整除:①末三位上数字所组成地数与末三位以前地数字所组成地数之差能被13整除.②逐次去掉最后一位数字并减去末位数字地9倍后能被13整除.三、整除地性质:1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除.2.如果a能被b整除,c是整数,那么a乘以c也能被b整除.3.如果a能被b整除,b又能被c整除,那么a也能被c整除.4.如果a能被b、c整除,那么a也能被b和c地最小公倍数整除.余数及其应用基本概念:对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b地余数,q叫做a除以b地不完全商.余数地性质:①余数小于除数.②若a、b除以c地余数相同,则c|a-b或c|b-a.③a与b地和除以c地余数等于a除以c地余数加上b除以c地余数地和除以c地余数.④a与b地积除以c地余数等于a除以c地余数与b除以c地余数地积除以c地余数.余数、同余与周期一、同余地定义:①若两个整数a、b除以m地余数相同,则称a、b对于模m同余.②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m.二、同余地性质:①自身性:a≡a(mod m);②对称性:若a≡b(mod m),则b≡a(mod m);③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);⑥乘方性:若a≡b(mod m),则a n≡b n(mod m);⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);三、关于乘方地预备知识:①若A=a×b,则M A=M a×b=(M a)b②若B=c+d则M B=M c+d=M c×M d四、被3、9、11除后地余数特征:①一个自然数M,n表示M地各个数位上数字地和,则M≡n(mod 9)或(mod 3);②一个自然数M,X表示M地各个奇数位上数字地和,Y表示M地各个偶数数位上数字地和,则M≡Y-X或M≡11-(X-Y)(mod 11);五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则a p-1≡1(mod p). 分数与百分数地应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样地一份或几份地数.分数地性质:分数地分子和分母同时乘以或除以相同地数(0除外),分数地大小不变.分数单位:把单位“1”平均分成几份,表示这样一份地数.百分数:表示一个数是另一个数百分之几地数.常用方法:①逆向思维方法:从题目提供条件地反方向(或结果)进行思考.②对应思维方法:找出题目中具体地量与它所占地率地直接对应关系.③转化思维方法:把一类应用题转化成另一类应用题进行解答.最常见地是转换成比例和转换成倍数关系;把不同地标准(在分数中一般指地是一倍量)下地分率转化成同一条件下地分率.常见地处理方法是确定不同地标准为一倍量.④假设思维方法:为了解题地方便,可以把题目中不相等地量假设成相等或者假设某种情况成立,计算出相应地结果,然后再进行调整,求出最后结果.⑤量不变思维方法:在变化地各个量当中,总有一个量是不变地,不论其他量如何变化,而这个量是始终固定不变地.有以下三种情况:A、分量发生变化,总量不变.B、总量发生变化,但其中有地分量不变.C、总量和分量都发生变化,但分量之间地差量不变化.⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化.⑦同倍率法:总量和分量之间按照同分率变化地规律进行处理.⑧浓度配比法:一般应用于总量和分量都发生变化地状况.分数大小地比较基本方法:①通分分子法:使所有分数地分子相同,根据同分子分数大小和分母地关系比较.②通分分母法:使所有分数地分母相同,根据同分母分数大小和分子地关系比较.③基准数法:确定一个标准,使所有地分数都和它进行比较.④分子和分母大小比较法:当分子和分母地差一定时,分子或分母越大地分数值越大.⑤倍率比较法:当比较两个分子或分母同时变化时分数地大小,除了运用以上方法外,可以用同倍率地变化关系比较分数地大小.(具体运用见同倍率变化规律)⑥转化比较方法:把所有分数转化成小数(求出分数地值)后进行比较.⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较.⑧大小比较法:用一个分数减去另一个分数,得出地数和0比较.⑨倒数比较法:利用倒数比较大小,然后确定原数地大小.⑩基准数比较法:确定一个基准数,每一个数与基准数比较.。
小学阶段奥数知识点总结(共计33大类)一、年龄问题的三大特征二、归一问题特点三、植树问题总结四、鸡兔同笼问题五、盈亏问题六、牛吃草问题七、平均数问题八、周期循环数九、抽屉原理十、定义新运算十一、数列求和十二、二进制及其应用十三、加法原理十四、质数与合数十五、约数与倍数十六、数的整除十七、余数及其应用十八、余数问题十九、分数与百分数的应用二十、分数大小的比较二十一、完全平方数二十二、比和比例二十三、综合行程问题二十四、工程问题二十五、逻辑推理问题二十六、几何面积二十七、时钟问题—快慢表问题二十八、时钟问题—钟面追及二十九、浓度与配比三十、经济问题三十一、简单方程三十二、不定方程三十三、循环小数一、年龄问题的三大特征年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。
年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键。
例:父亲今年54岁,儿子今年18岁,几年前父亲的年龄是儿子年龄的7倍?⑴父子年龄的差是多少?54 –18 = 36(岁)⑵几年前父亲年龄比儿子年龄大几倍?7 - 1 = 6⑶几年前儿子多少岁?36÷6 = 6(岁)⑷几年前父亲年龄是儿子年龄的7倍?18 –6 = 12 (年)答:12年前父亲的年龄是儿子年龄的7倍。
二、归一问题特点归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧 一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化 ⑷繁分数的化简 2. 简便计算⑴凑整思想 ⑵基准数思想 ⑶裂项与拆分 ⑷提取公因数 ⑸商不变性质 ⑹改变运算顺序① 运算定律的综合运用 ② 连减的性质 ③ 连除的性质④ 同级运算移项的性质 ⑤ 增减括号的性质 ⑥ 变式提取公因数 形如:1212......(......)n n a b a b a b a a a b÷±÷±±÷=±±±÷ 3. 估算求某式的整数部分:扩缩法 4. 比较大小① 通分a. 通分母b. 通分子 ② 跟“中介”比 ③ 利用倒数性质若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n nm m m <<。
5. 定义新运算 6. 特殊数列求和运用相关公式:①()21321+=++n n n②()()612121222++=+++n n n n③()21n a n n n n =+=+ ④()()412121222333+=++=+++n n n n⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇 奇±偶=奇 奇×偶=偶 偶±偶=偶 偶×偶=偶2. 位值原则形如:abc =100a+10b+c① 如果c|a 、c|b ,那么c|(a ±b)。
② 如果bc|a ,那么b|a ,c|a 。
小学奥数知识点完全梳理概述一、计算1.四则混合运算与繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a.通分母 b. 通分子② 跟“中介”比③ 利用倒数性质 若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n Λ ②()()612121222++=+++n n n n Λ ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ΛΛ ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c3. 数的整除特征:4.整除性质①如果c|a、c|b,那么c|(a b)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。
用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p11a×p22a×...×p k ak7.约数个数与约数和定理设自然数n的质因子分解式如n= p11a×p22a×...×p k ak那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P12+…p11a)(1+P2+P22+…p22a)…(1+Pk+Pk2+…pk ak)8.同余定理①同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质①平方差:A2-B2=(A+B)(A-B),其中我们还得注意A+B,A-B同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:把数字分解,使他满足积是平方数。
④平方和。
10.子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、几何图形1.平面图形⑴多边形的角和N边形的角和=(N-2)×°⑵等积变形(位移、割补)① 三角形等底等高的三角形② 平行线等底等高的三角形③ 公共部分的传递性④ 极值原理(变与不变)⑶三角形面积与底的正比关系S 1︰S 2 =a ︰b ; S 1︰S 2=S 4︰S 3 或者S 1×S 3=S 2×S 4 ⑷相似三角形性质(份数、比例)①a b c h A B C H === ; S 1︰S 2=a 2︰A 2②S 1︰S 3︰S 2︰S 4= a 2︰b 2︰ab ︰ab ; S=(a+b )2 ⑸燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;⑹差不变原理知5-2=3,则圆点比方点多3。
⑺隐含条件的等价代换例如弦图中长短边长的关系。
⑻组合图形的思考方法①化整为零②先补后去③正反结合2.立体图形⑴规则立体图形的表面积和体积公式⑵不规则立体图形的表面积整体观照法⑶体积的等积变形①水中浸放物体:V升水=V物②测啤酒瓶容积:V=V空气+V水⑷三视图与展开图最短线路与展开图形状问题⑸染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。
四、典型应用题1.植树问题①开放型与封闭型②间隔与株数的关系2.方阵问题外层边长数-2=层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3.列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4.年龄问题差不变原理5.鸡兔同笼假设法的解题思想6.牛吃草问题原有草量=(牛吃速度-草长速度)×时间7.平均数问题8.盈亏问题分析差量关系9.和差问题10.和倍问题11.差倍问题12.逆推问题还原法,从结果入手13.代换问题列表消元法等价条件代换五、行程问题1.相遇问题路程和=速度和×相遇时间2.追及问题路程差=速度差×追及时间3.流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24.多次相遇线型路程:甲乙共行全程数=相遇次数×2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5.环形跑道6.行程问题中正反比例关系的应用路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7.钟面上的追及问题。
①时针和分针成直线;②时针和分针成直角。
8.结合分数、工程、和差问题的一些类型。
9.行程问题时常运用“时光倒流”和“假定看成”的思考方法。
六、计数问题1.加法原理:分类枚举2.乘法原理:排列组合3.容斥原理:①总数量=A+B+C-(AB+AC+BC)+ABC②常用:总数量=A+B-AB4.抽屉原理:至多至少问题5.握手问题在图形计数中应用广泛①角、线段、三角形,②长方形、梯形、平行四边形③形七、分数问题1.量率对应2.以不变量为“1”3.利润问题4.浓度问题倒三角原理例:5.工程问题①合作问题②水池进出水问题6.按比例分配八、方程解题1.等量关系①相关联量的表示法例:甲+ 乙=100 甲÷乙=3x 100-x 3x x②解方程技巧恒等变形2.二元一次方程组的求解代入法、消元法3.不定方程的分析求解以系数大者为试值角度4. 不等方程的分析求解九、找规律⑴周期性问题① 年月日、星期几问题② 余数的应用⑵数列问题① 等差数列通项公式 a n =a 1+(n-1)d求项数: n=11n a a d-+ 求和: S=1()2n a a n + ② 等比数列求和: S=1(1)1n a q q -- ③ 裴波那契数列⑶策略问题①抢报30 ②放硬币⑷最值问题① 最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数②最优化问题a.统筹方法b.烙饼问题十、算式谜1.填充型2.替代型3.填运算符号4.横式变竖式5.结合数论知识点十一、数阵问题1.相等和值问题2.数列分组⑴知行列数,求某数⑵知某数,求行列数3.幻方⑴奇阶幻方问题:辉法罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、二进制1.二进制计数法①二进制位值原则②二进制数与十进制数的互相转化③二进制的运算2.其它进制(十六进制)十三、一笔画1.一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;2.哈密尔顿圈与哈密尔顿链3.多笔画定理奇点数笔画数=2十四、逻辑推理1.等价条件的转换2.列表法3.对阵图竞赛问题,涉及体育比赛常识十五、火柴棒问题1.移动火柴棒改变图形个数2.移动火柴棒改变算式,使之成立十六、智力问题1.突破思维定势2.某些特殊情境问题十七、解题方法(结合杂题的处理)1.代换法2.消元法3.倒推法4.假设法5.反证法6.极值法7.设数法8.整体法9.画图法10.列表法11.排除法12.染色法13.构造法14.配对法15.列方程⑴方程⑵不定方程⑶不等方程小学奥数知识点完全梳理概述十八、计算7. 四则混合运算与繁分数⑶ 运算顺序⑷ 分数、小数混合运算技巧一般而言:③ 加减运算中,能化成有限小数的统一以小数形式;④ 乘除运算中,统一以分数形式。
⑶带分数与假分数的互化⑷繁分数的化简8. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序⑦ 运算定律的综合运用⑧ 连减的性质⑨ 连除的性质⑩ 同级运算移项的性质⑪ 增减括号的性质⑫ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷9. 估算求某式的整数部分:扩缩法10. 比较大小④ 通分c.通分母 d. 通分子⑤ 跟“中介”比⑥ 利用倒数性质 若111a b c>>,则c>b>a.。
形如:312123m m m n n n >>,则312123n n n m m m <<。
11.定义新运算 12. 特殊数列求和运用相关公式:①()21321+=++n n n Λ ②()()612121222++=+++n n n n Λ ③()21n a n n n n =+=+ ④()()412121222333+=++=+++n n n n ΛΛ ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2十九、数论6.奇偶性问题奇±奇=偶奇×奇=奇奇±偶=奇奇×偶=偶偶±偶=偶偶×偶=偶7.位值原则形如:abc=100a+10b+c8.数的整除特征:9.整除性质⑥如果c|a、c|b,那么c|(a±b)。