2019-2020年中考数学试题分类汇编 数据的收集整理与描述
- 格式:doc
- 大小:2.71 MB
- 文档页数:111
专题05 数据的收集整理与描述一、基础知识1.总体:我们把所要考察的对象的全体叫做总体;2.个体:把组成总体的每一个考察对象叫做个体;3.样本:从总体中取出的一部分个体叫做这个总体的一个样本;4.样本容量:一个样本包括的个体数量叫做样本容量.5.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据;(3)描述数据(条形图或扇形图等).6.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.7.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.调查方法:问卷,观察,走访,试验,查阅资料。
8.扇形统计图:生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的1/10,即10%. 同理,圆心角是72°的扇形占整个圆面积的1/5,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.9.条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. (1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.10.频数是指每个对象出现的次数.11.频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数数据总数。
2019年浙江省中考数学分类汇编专题数据收集、整理与分析部分(解析版)一、单选题1.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A. 20人B. 40人C. 60人D. 80人【答案】 D【考点】频数与频率【解析】【解答】解:根据鲳鱼的的数量和比例求出社区居民的总人数,(人),所以选择黄鱼的有. (人)。
故答案为:D。
【分析】先根据数量和比例关系求总体的数量,再根据总体的数量求其他部分的量。
2.方差是刻画数据波动程度的量,对于一组数据x·x1·…x n,可用如下算式计算方差s2= [(x1-5)2+(x2-5)2+.…+(x-5)2],其中“5”是这组数据的()nA. 最小值B. 平均数C. 中位数D. 众数【答案】B【考点】方差【解析】【解答】解:依题可得:5为这组数据的平均数.故答案为:B.【分析】方差公式:S2= [(x1- )2+(x2- )2+……+(x n- )2],其中表示平均数,从而可得答案.3.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差【答案】B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.4.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【考点】平均数及其计算,方差【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。
2019-2020年中考数学试题真题含考点分类汇编详解参考公式:二次函数)0(2≠++=a c bc ax y 图象的顶点坐标是(ab2-,a b ac 442-)一、选择题(本题有10小题,每小题3分,共30分) 1. -2的倒数是A. 21-B. 21C. -2D. 2 2. 下图是由四个相同的小立方块搭成的几何体,它的主视图是3. 下列计算正确的是A. ab b a 22=+B. 22)(a a =- C. 326a a a =÷ D. 623a a a =⋅4. 据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是A. 35码,35码B. 35码,36码C. 36码,35码D. 36码,36码5. 如图,AB ∥CD ,∠A=70°,∠C=40°,则∠E 等于A. 30°B. 40°C. 60°D. 70° 6. 二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B.⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x7. 下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线。
则对应作法错误..的是A. ①B. ②C. ③D. ④8. 如图,在直角坐标系中,点A 在函数)0(4>=x xy 的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数)0(4>=x xy 的图象交于点D 。
连结AC ,CB ,BD ,DA ,则四边形ACBD 的面积等于A. 2B. 32C. 4D. 34 9. 如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于A. 53B. 35C. 37D.4510. 运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD ,EF 是⊙O 的弦,且AB ∥CD ∥EF ,AB=10,CD=6,EF=8。
专题05 数据的收集整理与描述一、基础知识1.总体:我们把所要考察的对象的全体叫做总体;2.个体:把组成总体的每一个考察对象叫做个体;3.样本:从总体中取出的一部分个体叫做这个总体的一个样本;4.样本容量:一个样本包括的个体数量叫做样本容量.5.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据;(3)描述数据(条形图或扇形图等).6.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.7.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.调查方法:问卷,观察,走访,试验,查阅资料。
8.扇形统计图:生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的1/10,即10%. 同理,圆心角是72°的扇形占整个圆面积的1/5,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.9.条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. (1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.10.频数是指每个对象出现的次数.11.频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数数据总数。
中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)1、全面调查与抽样调查全面调查:考察全体对象的调查叫做全面调查。
抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查。
2、总体、个体及样本总体是要考察的全体对象。
其中每一个考察对象叫做个体。
当总体中个体数目较多时,一般从总体中抽取一部分个体,这部分个体叫做总体的样本。
样本中个体的数目叫做样本容量。
3、常见统计图表直方图、扇形图、条形图、折线图。
4、平均数 平均数:)(121n x x x nx +++=加权平均数:nnn k k k k x k x k x x ++++++=212211(1x 、2x …n x 的权分别是1k 、2k …n k )5、众数与中位数众数:一组数据中出现次数最多的数据称为这组数据的众数。
中位数:将一组数据按由小到大(或由大到小)的顺序排列。
如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数。
6、方差方差:])()()[(1222212x x x x x x ns n -++-+-=方差越大,数据的波动越大;方差越小,数据的波动越小。
1、经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。
2、体会抽样的必要性,通过实例了解简单随机抽样。
3、会制作扇形统计图,能用统计图直观、有效地描述数据。
4、理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。
5、体会刻画数据离散程度的意义,会计算简单数据的方差。
6、通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息。
7、体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。
8、能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。
2019年中考数学真题知识点分类汇总—数据的分析一、选择题1. (2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数2. (2019广西省贵港市,题号3,分值3分)若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是()A.9,9 B.10,9 C.9,9.5 D.11,10【答案】C.【解析】解:将数据重新排列为8,9,9,9,10,10,11,11,∴这组数据的众数为9,中位数为9109.52+=,故选:C.【知识点】中位数;众数3. (2019广西河池,T6,F3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53 B.53,56 C.56,53 D.56,56【答案】D.【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.【知识点】中位数;众数4. (2019贵州省毕节市,题号4,分值3分)在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()A.820,850 B.820,930 C.930,835 D.820,835【答案】D.【解析】解:将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为=835,故选:D.【知识点】中位数;众数.5.(2019贵州遵义,6,4分)为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如右表所示,该足球队队员的平均年龄是(A) 12岁(B) 13岁(C) 14岁(D) 15岁【答案】B【解析】222153141013712⨯+⨯+⨯+⨯=x=13,所以选B【知识点】加权平均数6.(2019湖北十堰,6,3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A.80,80 B.81,80 C.80,2 D.81,2【答案】A【解析】解:根据题意,得80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【知识点】众数;平均数7.(2019湖北孝感,4,3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【答案】C【解析】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【知识点】命题与定理;全面调查与抽样调查;众数;方差;随机事件8.(2019湖南湘西,16,4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25克,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【答案】A【解析】解:因为方差越小成绩越稳定,故选甲.故选:A.【知识点】方差9.(2019内蒙古包头市,3题,3分)一组数据2,3,5,x ,7,4,6,9的众数是4,则这组数据的中位数是( ) A.4B.C.5D.【答案】B. 【解析】解:∵这组数据的众数是4, ∴x =4.∴这组数据从小到大排列为2,3,4,4,5,6,7,8,中间两个数是4和5, 故中位数是(4+5)÷2=4.5 . 故选B.【知识点】众数,中位数.10. (2019宁夏,4,3分)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是().A .0.70.7和B .0.90.7和C .10.7和D .0.9 1.1和 【答案】B【解析】由于共有30名学生,所以学生一天课外阅读时间的中位数位于数据排序后的第15和第16个数,由于第15和第16个数均为0.9,所以这组数据的中位数为0.9,因为这30个数据中,阅读时间为0.7的人数最多,也就是0.7的个数最多,所以众数为0.7,故本题正确选项为B . 【知识点】数据分析(求中位数和众数).11. (2019北京市,8题,2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A .①③B .②④C .①②③D .①②③④【答案】C【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为52.5h ,则平均数一定在24.5——25.5之间,故①正确.②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20——30之间,故②正确.③由统计表类别栏计算可得,初中学生各时间段人数分别为25,36,44,11;共有116人,∴初中生参加公益劳动时间的中位数在对应人数为36的那一栏;即 中位数在20——30之间;故③正确.学生类别5④由统计表类别栏计算可得,高中学段栏各时间段人数分别为15,35,15,18,1;共有84人,∴中位数在对应人数为35人对应的时间栏,即中位数在10——20之间;故④错误.【知识点】条形统计图、统计表、统计量——平均数、中位数.12.阅读【资料】,完成第8、9题【资料】如图,这是根据公开资料整理绘制而成的2004—2018年中美两国国内生产总值(GDP)的直方图及发展趋势线(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x 表示年数)8.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,2016—2018年中国GDP的平均值大约是()A.12.30 B.14.19 C.19.57 D .19.71【答案】A【解析】从条形统计图中获取2016—2018年中国GDP 的值,则这三年的平均值为11.1912.2413.4612.303++≈,故选A .【知识点】平均数;条形统计图9.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,可以推算出的GDP 要超过美国,至少要到( ) A .2052 B .2038 C .2037 D .2034 【答案】B【解析】由统计图得:0.86x+0.468>0.53x+11.778,解得x >34,即到2038年GDP 超过美国,因此本题选B . 【知识点】折线统计图;一次函数与一元一次不等式13. (2019黑龙江大庆,7题,3分) 某企业1-6月份利润的变化情况如图所示,以下说法与图中反应的信息相符的是( )A.1-6月份利润的众数是130万元B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元D.1-6月份利润的极差是40万元第7题图 【答案】D【解析】A.1-6月份利润的众数是120万元,故A 错误;B.1-6月份利润的中位数是125万元,故B 错误;C.1-6月份利润的平均数约是128万元,故C 错误;D.1-6月份利润的极差是40万元,故D 正确.故选D 【知识点】众数,中位数,平均数,极差14. (2019黑龙江省龙东地区,14,3)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( ) A .平均数B .中位数C .方差D .极差【答案】B【解析】将最低成绩写得更低了,平均数变小,方差变大,极差也变大,但中位数不变,故选B. 【知识点】平均数;中位数;方差;极差15. (2019·江苏常州,8,2)随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y 1(ug/m 3)随着时间t (h )的变化如图所示,设y 2表示0到t 时PM2.5的值的极差(即0时到时PM2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )ABC .2 D【答案】B【解析】本题考查了极差的意义及函数图像的应用,将一天24小时分成三段:0≤t ≤10、10≤t ≤20、20≤t ≤24,在0≤t ≤10,y 2随t 的增大而增大;在10≤t ≤20,y 2随t 的增大而不变(恒为85-42=43),在20≤t ≤24,y 2随t 的增大而增大,因此本题选B .【知识点】极差的意义;函数图像的应用A .B .C .D .第8题图16.(2019辽宁本溪,8,3分)下列事件属于必然事件的是A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数【答案】C.【思路分析】本题主要考查了随机事件以及必然事件的定义,直接利用随机事件以及必然事件的定义分析得出答案.【解答过程】解:A选项,打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B选项,若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C选项,一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D选项,在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意,故选C.【知识点】方差;随机事件.17. (2019辽宁本溪,5,3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是:A. 25,25B.25,26C. 25,23D.24,25【答案】A.【解析】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25, 则中位数为:25, 故选A .【知识点】中位数;众数.18. (2019广西贺州,3,3分)一组数据2,3,4,x ,6的平均数是4,则x 是( ) A .2 B .3 C .4 D .5【答案】D【解析】解:数据2,3,4,x ,6的平均数是4,∴234645x ++++=,解得5x =,故选:D .【知识点】算术平均数19.(2019广西梧州,10,3分)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D【解析】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=, 方差为2222221[(82101)(96101)(102101)(108101)(108101)(110101)]94.3936-+-+-+-+-+-≈≠; 故选:D .【知识点】众数;算术平均数;中位数;方差20.(2019湖北荆州,8,3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【知识点】中位数;众数21.(2019湖南邵阳,5,3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【答案】A【解析】解:A 、该班级所售图书的总收入为314411*********⨯+⨯+⨯+⨯=,所以A 选项正确; B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误; C 、这组数据的众数为4,所以C 选项错误; D 、这组数据的平均数为2264.5250x ==,所以这组数据的方差 222221[14(3 4.52)11(4 4.52)10(5 4.52)15(6 4.52)] 1.450S =-+-+-+-≈,所以D 选项错误. 故选:A .【知识点】中位数;众数;方差22. (2019江苏常州,8,2分)随着时代的进步,人们对PM 2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM 2.5的值y 1(ug /m 3)随时间t (h )的变化如图所示,设y 2表示0时到t 时PM 2.5的值的极差(即0时到t 时PM 2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )【答案】B【解析】解:当t =0时,极差y 2=85﹣85=0,当0<t ≤10时,极差y 2随t 的增大而增大,最大值为43; 当10<t ≤20时,极差y 2随t 的增大保持43不变; 当20<t ≤24时,极差y 2随t 的增大而增大,最大值为98; 故选:B .【知识点】函数的图象;极差23. (2019四川省雅安市,5,3分)已知一组数据5,4,x ,3,9的平均数为5,则这组数据的中位数是( )A.3 B.4 C.5 D.6 【答案】B【解析】根据一组数据5,4,x,3,9的平均数为5得:543955x++++=,得x=4,把这组数据按从小到大的顺序排列为3,4,4,5,9,所以中位数是4,故选B.【知识点】平均数;中位数24.(2019江苏徐州,5,3分)【答案】B【解析】本题解答时要把数据按由小到大的顺序重新排列.解:把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B.【知识点】众数;中位数二、填空题1. (2019广西北部湾,15,3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)【答案】甲.【解析】解:甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9-8)2+(8-8)2+(9-8)2+(6-8)2+(10-8)2+(6-8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定. 故答案为甲.【知识点】平均数;方差.2. (2019贵州黔西南州,11,3分)一组数据:2,1,2,5,3,2的众数是 . 【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2. 【知识点】众数3. (2019黑龙江绥化,14题,3分)已知一组数据1,3,5,7,9,则这组数据的方差是________. 【答案】8【解析】平均数=(1+3+5+7+9)÷5=5,∴方差=15[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.【知识点】方差4. (2019·湖南张家界,11,3)为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:该班学生平均每人捐书 本. 【答案】6. 【解析】∵x =354751*********⨯+⨯+⨯+⨯+⨯=24040=6,∴故答案为6.【知识点】统计;加权平均数5.(2019湖南郴州,14,3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)【答案】<【解析】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.【知识点】折线统计图;方差6.(2019湖南郴州,12,3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.【答案】8【解析】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,故这组数据的中位数是8.故答案为:8.【知识点】中位数7. (2019内蒙古包头市,16题,3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表手得到如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动比乙班小.上述结论中正确的是.(填写所有正确结论的序号)【答案】①②③.【解析】解:对于①,表格中两个班级的平均分均为83分,故正确;对于②,甲班中位数是86分,说明优秀人数至少为23人;乙班中位数是84分,说明优秀人数最多为22人,故乙班优秀人数少于甲班优秀的人数,故正确;对于③,甲班方差<乙班方差,说明甲班成绩波动比乙班小.故答案为①②③.【知识点】平均数,中位数,方差.8.(2019宁夏,13,3分)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为小时.【答案】1.15【解析】该班学生这天用于体育锻炼的平均时间为0.58116 1.512241.15816124⨯+⨯+⨯+⨯=+++小时.【知识点】加权平均数的计算.9.(2019山东东营,13,3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____________小时.【答案】1【解析】由表格看出,共52个从小到大排列的数据,第26个和第27个数据都是1,故中位数是112+=1. 【知识点】中位数10. (2019北京市,15题,2分) 小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s _______20s . (填“>”,“=”或“<”)【答案】=【解析】数据92,90,94,86,99,85的平均数929094869985916x +++++==;新数据2,0,4,-4,9,-5的平均数为()()204495`16x +++-++-==;∴()()()()()()2222222016892919091949186919991859163S ⎡⎤=-+-+-+-+-+-=⎣⎦;()()()()()()2222222116821014141915163S ⎡⎤=-+-+-+--+-+--=⎣⎦;∴2201S S =.事实上由“将一组数据中的每个数加上或减去同一个数后,所得的新数据的方差与原数据的方差相同”易得2201S S =.【知识点】方差的计算和性质、平均数.11. (2019年广西柳州市,18,3分)已知一组数据共有5 个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是___________.【答案】7【思路分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【解题过程】∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,∵40﹣8﹣8﹣9=15,由方差是0.4得:前面的2个数的为7和8,∴最小的数是7.【知识点】方差、平均数、中位数、众数12. (2019贵州省安顺市,16,4分)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.【答案】18【思路分析】如果一组数据x1,x2,x3,…,x n的方差是s2,若平均数为x那么数据kx1,kx2,kx3,…,kx n的方差是k2s2(k≠0),依此规律即可得出答案.【解题过程】解:∵一组数据x1,x2,x3,…,x n的方差为2,∴另一组数据3x1,3x2,3x3,…,3x n的方差为32×2=18.故答案为18.【知识点】方差13.(2019·江苏镇江,3,2)一组数据4,3,x,1,5的众数是5,则x=.【答案】5.【解析】本题考查了众数的概念,根据一组数据中出现次数最多的那个数据叫做这组数据的众数,可知“数据4,3,x,1,5的众数是5”,则这组数据中必有两个5,故x=5,因此本题答案为5.【知识点】统计;众数14.(2019广西桂林,14,3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:这组数据的众数是.【答案】90【解析】解:众数是一组数据中出现次数最多的数.90出现了4次,出现的次数最多,则众数是90;故答案为:90【知识点】众数15.(2019江苏镇江,3,2分)一组数据4,3,x,1,5的众数是5,则x=.【答案】5【解析】解:数据4,3,x,1,5的众数是5,5∴=,故答案为:5.x【知识点】众数16.(2019内蒙古赤峰,16,3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)【答案】乙【解析】解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,成绩比较稳定,故答案为:乙.【知识点】折线统计图;算术平均数;中位数;众数;方差17.(2019四川泸州,13,3分)4的算术平方根是.【答案】2【解析】解:4的算术平方根是2.故答案为:2.【知识点】算术平方根三、解答题1. (2019广西北部湾,22,8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【思路分析】本题主要考查众数、平均数、中位数,用样本估计总体.(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.【知识点】用样本估计总体;算术平均数;中位数;众数.2.(2019湖北咸宁,20,8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【思路分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500270(人).【知识点】用样本估计总体;频数(率)分布直方图;:算术平均数;中位数;众数3. (2019黑龙江大庆,23题,7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.第23题图请根据图表信息回答下列问题:(1)填空:①m =______;②n =______;③在扇形统计图中,C 组所在扇形的圆心角的度数等于______度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据的中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 【思路分析】(1)20÷20%=100(人),100-10-40-20-10=20(人),40360144100⨯=;(2)总体重除以总人数可得;(3)用样本百分比计算总体中体重低于47.5千克的人数. 【解题过程】(1)①m =100;②n =20;③144度;(2)(10×40+20×45+40×50+20×55+10×60)÷100=50(千克).答:被调查学生的平均体重是50千克. (3)1000×10+20100=300(人),答:七年级体重低于47.5千克的学生大约有300人.【知识点】扇形统计图,总数频数百分比之间的关系,加权平均数,样本估计总体4. (2019吉林长春,19,7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时): 3 2.5 0.6 1.5 1 2 2 3.3 2.5 1.8 2.5 2.2 3.5 4 1.5 2.5 3.1 2.8 3.3 2.4 整理上面的数据,得到表格如下:样本数据的平均数、中位数、众数如下表所示:根据以上信息,解答下列问题:(1)上表中的中位数m 的值为 ,众数的值为(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间。
2019-2020 年中考数学试卷解析分类汇编:有理数一、选择题1. (2014•上海第2 题4 分)据统计,2013 年上海市全社会用于环境保护的资金约为60 800 000 000 元,这个数用科学记数法表示为()A.608×108B.60.8×109C.6.08×1010D.6.08×1011考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:60 800 000 000=6.08×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.2. (2014•四川巴中,第1 题3 分)﹣的相反数是()A.﹣B.C.﹣5 D.5考点:有理数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:﹣的相反数是,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.(2014•四川巴中,第 2 题 3 分)2014 年三月发生了一件举国悲痛的空难事件﹣﹣马航失联,该飞机上有中国公民 154 名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,在搜救方面花费了大量的人力物力,已花费人民币大约 934 千万元.把 934 千万元用科学记数法表示为()元.A.9.34×102 B.0.934×103 C.9.34×109 D.9.34×1010考点:科学记数法.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于 150 千万有 11 位,所以可以确定n=11﹣1=10.解答:934 千万=934 00 000 000=9.34×1010.故选:D.点评:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.4.(2014•ft东威海,第1 题3 分)若a3=8,则a 的绝对值是()A.2 B.﹣2 C.D.﹣考点:立方根;绝对值分析:运用开立方的方法求解.解答:解:∵a3=8,∴a=2.故选:A.点评:本题主要考查开立方的知识,关键是确定符号.5.(2014•ft东枣庄,第 1 题3 分)2 的算术平方根是()A.±B.C.±4D.4考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:2 的算术平方根是,故选;B.点评:本题考查了算术平方根,开方运算是解题关键.6.(2014•ft东枣庄,第 2 题3 分)2014 年世界杯即将在巴西举行,根据预算巴西将总共花费14000000000 美元,用于修建和翻新 12 个体育场,升级联邦、各州和各市的基础设施,以及为 32 支队伍和预计约 60 万名观众提供安保.将 14000000000 用科学记数法表示为()A.140×108B.14.0×109C.1.4×1010D.1.4×1011考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n是正数;当原数的绝对值<1 时,n 是负数.解答:解:14 000 000 000=1.4×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.(2014•ft东烟台,第1 题3 分)﹣3 的绝对值等于()A.﹣3 B.3 C.±3D.﹣考点:绝对值.分析:根据绝对值的性质解答即可.解答:|﹣3|=3.故选B.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.8.(2014•ft东烟台,第 3 题3 分)烟台市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2013 年全市生产总值(GDP)达 5613 亿元.该数据用科学记数法表示为()A.5.613×1011元 B.5.613×1012元C.56.13×1010元D.0.5613×1012元考点:科学记数法.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:将 5613 亿元用科学记数法表示为:5.613×1011元.故选;A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(2014•湖南怀化,第1 题,3 分)我国南海海域面积为3500000km2,用科学记数法表示正确的是()A.3.5×105cm2B.3.5×106cm2C.3.5×107cm2D.3.5×108cm2考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 3500000 用科学记数法表示为:3.5×106.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.10.(2014•湖南张家界,第1 题,3 分)﹣2014 的绝对值是()A.﹣2014 B.2014 C.D.﹣考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2014 的绝对值是 2014.故选 B.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.11. (2014•江西抚州,第 1 题,3 分)-7 的相反数是A. -7B. -1 7解析:选D. ∵|-7|=|7|.1C. D. 774.(2014•江西抚州,第 4 题,3 分)抚州名人雕塑园是国家 4A 级旅游景区,占地面积约560000m2,将 560000 用科学记数法表示应为A. 0.56×106B. 5.6×106C. 5.6×10 5D. 56×104解析:选C. ∵A、D 不符合书写要求,B 错误.12.(2014 ft东济南,第 4 题,3 分)我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约 3700 千克,3700 用科学计数法表示为A.3.7 ⨯102B.3.7 ⨯103C.37 ⨯102D.0.37 ⨯104【解析】3700 用科学计数法表示为3.7 ⨯103,可知 B 正确.13.(2014•ft东聊城,第1 题,3 分)在﹣,0,﹣2,,1 这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将 A=0、B=﹣、C=﹣2、D=,E=1 标于数轴之上,可得:∵C 点位于数轴最左侧,是最小的数故选 C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.14.(2014 年贵州黔东南1.(4 分)) =()A. 3 B.﹣3 C.D.﹣考点:绝对值.分析:按照绝对值的性质进行求解.解答:解:根据负数的绝对值是它的相反数,得:|﹣|=.故选 C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0.15.(2014•遵义(3 分))﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8 D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.16.(2014•遵义 3.(3 分))“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市 2013 年全社会固定资产投资达 1762 亿元,把 1762 亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 1762 亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.17(2014•十堰 1.(3 分))3 的倒数是()A.B.﹣C.3 D.﹣3考点:倒数.分析:根据倒数的定义可知.解答:解:3 的倒数是.故选 A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0 没有倒数.倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数.18.(2014•十堰11.(3 分))世界文化遗产长城总长约6700 000m,用科学记数法可表示为 6.7×106m .考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 6700 000m 用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.19.(2014•娄底1.(3 分))2014 的相反数是()A.﹣2014 B.﹣C.2014 D.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:2014 的相反数是﹣2014,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.20.(2014•娄底 11.(3 分))五月初五是我国的传统节日﹣端午节.今年端午节,小王在“百度”搜索引擎中输入“端午节”,搜索到与之相关的结果约为 75100000 个,75100000用科学记数法表示为7.51×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 75100000 用科学记数法表示为7.51×107.故答案为:7.51×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.21.( 2014年河南,1题3分)下列各数中,最小的数是()1 (A). 0 (B).3 答案:D (C).-13(D).-3解析:根据有理数的大小比较法则(正数都大于 0,负数都小于 0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-1 3∴最小的数是﹣3,故选A.1 <0<,322.( 2014 年河南 2 题 3 分)据统计,2013 年河南省旅游业总收入达到 3875.5 亿元.若将3875.5 亿用科学计数法表示为 3.8755×10n,则n 等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3875.5 亿=3.8755×1011,故选B.23.(2014•江苏苏州,第1 题3 分)(﹣3)×3的结果是()A.﹣9 B.0 C.9 D.﹣6考点:有理数的乘法.分析:根据两数相乘,异号得负,可得答案.解答:解:原式=﹣3×3=﹣9,故选:A.点评:本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.24.(2014•江苏徐州,第1 题3 分)2﹣1等于()A. 2 B.﹣2 C.D.﹣考点:负整数指数幂.分析:根据a ,可得答案.解答:解:2 ,故选:C.点评:本题考查了负整指数幂,负整数指数为正整数指数的倒数.25.(2014•江苏徐州,第8 题3 分)点A、B、C 在同一条数轴上,其中点A、B 表示的数分别为﹣3、1,若BC=2,则AC 等于()A. 3 B. 2 C. 3 或5 D. 2 或6考点:两点间的距离;数轴.菁优网分析:要求学生分情况讨论 A,B,C 三点的位置关系,即点 C 在线段 AB 内,点 C 在线段 AB 外.解答:解:此题画图时会出现两种情况,即点 C 在线段 AB 内,点 C 在线段 AB 外,所以要分两种情况计算.点 A、B 表示的数分别为﹣3、1,AB=4.第一种情况:在 AB 外,AC=4+2=6;第二种情况:在 AB 内,AC=4﹣2=2.故选:D.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.26.(2014•江苏盐城,第1 题3 分)4 的相反数是()A.4B.﹣4 C.D.考点:相反数分析:根据相反数的性质,互为相反数的两个数和为 0,采用逐一检验法求解即可.解答:解:根据概念,(4 的相反数)+(4)=0,则4 的相反数是﹣4.故选 B.点评:主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0 的相反数是 0.27. (2014•江苏盐城,第 4 题 3 分) 2014 年 5 月,中俄两国签署了供气购销合同,从 2018年起,俄罗斯开始向我国供气,最终达到每年 380 亿立方米.380 亿这个数据用科学记数法表示为()A.3.8×109 B.3.8×1010 C.3.8×1011D.3.8×1012考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 380 亿用科学记数法表示为:3.8×1010.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.28. (2014•ft东临沂,第1 题3 分)﹣3 的相反数是()A.3 B.﹣3 C.D.﹣考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3 的相反数是 3,故选 A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.29.(2014•ft东临沂,第 2 题 3 分)根据世界贸易组织(WTO)秘书处初步统计数据,2013年中国货物进出口总额为4160000000000 美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为()A.4.16×1012美元B.4.16×1013美元C.0.416×1012美元D.416×1010美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 4160000000000 有13 位,所以可以确定 n=13﹣1=12.解答:解:4 160 000 000 000=4.16×1012.故选 A.点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.30. (2014•ft东淄博,第1 题4 分)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.31.(2014•四川遂宁,第1 题,4 分)在下列各数中,最小的数是()A.0 B.﹣1 C.D.﹣2考点:有理数大小比较.分析:根据正数大于 0,0 大于负数,可得答案.解答:解:﹣2<﹣1<0 ,故选:D.点评:本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.32.(2014•四川遂宁,第2 题,4 分)下列计算错误的是()A.4÷(﹣2)=﹣2 B.4﹣5=﹣1 C.(﹣2)﹣2=4 D.20140=1考点:负整数指数幂;有理数的减法;有理数的除法;零指数幂.分析:根据有理数的除法、减法法则、以及 0 次幂和负指数次幂即可作出判断.解答:解:A、B、D 都正确,不符合题意;B、(﹣2)﹣2= =,错误,符合题意.故选B.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非 0 数的0 次幂等于 1.33.(2014•四川南充,第1 题,3 分)=()A.3 B.﹣3 C.D.﹣分析:按照绝对值的性质进行求解.解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0.34.(2014•四川泸州,第1 题,3 分)5 的倒数为()A.B.5 C.D.﹣5解答:解:5 的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.35.(2014•四川凉ft州,第6 题,4 分)凉ft州的人口约有473 万人,将473 万人用科学记数法表示应为()A.473×104人B.4.73×106人C.4.7×106人D.47.3×105人考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于473 万有7 位,所以可以确定n=7﹣1=6.解答:解:473 万=4 730 000=4.73×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.36.(2014•四川内江,第2 题,3 分)一种微粒的半径是0.00004 米,这个数据用科学记数法表示为()A.4×106B.4×10﹣6C.4×10﹣5D.4×105考点:科学记数法—表示较小的数.分析:绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.解答:解:0.00004=4×10﹣5,故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的 0 的个数所决定.37.(2014•四川宜宾,第1 题,3 分)2 的倒数是()A.B.﹣C.±D.2考点:倒数.分析:根据乘积为1 的两个数互为倒数,可得一个数的倒数.解答:解:2 的倒数是,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.38.(2014•四川宜宾,第2 题,3 分)下列运算的结果中,是正数的是()A.(﹣2014)﹣1 B.﹣(2014)﹣1 C.(﹣1)×(﹣2014) D.(﹣2014)÷2014考点:负整数指数幂;正数和负数;有理数的乘法;有理数的除法.分析:分别根据负指数幂和有理数的乘除法进行计算求得结果,再判断正负即可.解答:解:A、原式= <0,故A 错误;B、原式=﹣<0,故B 错误;C、原式=1×2014=2014>0,故C 正确;D、原式=﹣2014÷2014=﹣1<0,故D 错误;故选C.点评:本题主要考查了有理数的乘除法,负指数幂的运算.负整数指数为正整数指数的倒数.39.(2014•福建福州,第1 题4 分)-5 的相反数是【】A.5B.5 C.15D.1540.(2014•甘肃白银、临夏,第1 题3 分)﹣3 的绝对值是()A.3 B.﹣3 C.﹣D.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:﹣3 的绝对值是 3.故选:A.点评:此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是 0.41.(2014•广州,第1 题3 分)()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A42.(2014•广东梅州,第1 题3 分)下列各数中,最大的是()A.0 B.2 C.﹣2 D.﹣考点:有理数大小比较.专题:常规题型.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=2、C=﹣2、D=﹣标于数轴之上,可得:∵D 点位于数轴最右侧,∴B 选项数字最大.故选B.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.二、填空题1.(2014•上海,第10 题4 分)某文具店二月份销售各种水笔320 支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352 支.考点:有理数的混合运算专题:应用题.分析:三月份销售各种水笔的支数比二月份增长了 10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的 10%,即三月份生产的是二月份的(1+10%),由此得出答案.解答:解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔 352支.故答案为:352.点评:此题考查有理数的混合运算,理解题意,列出算式解决问题.2.(2014•ft东威海,第 13 题3 分)据威海市旅游局统计,今年“五一”小长假期间,我市各旅游景点门票收入约 2300 万元,数据“2300万“用科学记数法表示为2.3×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将2300 万用科学记数法表示为:2.3×107.故答案为:2.3×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 1.(2014•湖南怀化,第9 题,3 分)计算:(﹣1)2014= 1 .考点:有理数的乘方分析:根据(﹣1)的偶数次幂等于 1 解答.解答:解:(﹣1)2014=1.故答案为:1.点评:本题考查了有理数的乘方,﹣1 的奇数次幂是﹣1,﹣1 的偶数次幂是 1.4.(2014•湖南张家界,第 9 题,3分)我国第一艘航母“辽宁舰”的最大的排水量约为 68000 吨,用科学记数法表示这个数是 6.8×104吨.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 68000 用科学记数法表示为:6.8×104.故答案为:6.8×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.5.(2014 ft东济南,第16 题,3 分)- 7 - 3 =.【解析】- 7 - 3 =-10 = 10 ,应填 10.6. (2014•浙江杭州,第 11 题,4 分)2012 年末统计,杭州市常住人口是 880.2 万人,用科学记数法表示为8.802×106人.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:880.2 万=880 2000=8.802×106,故答案为:8.802×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.7. (2014•江苏苏州,第11 题3 分)的倒数是.考点:倒数.分析:根据乘积为 1 的两个数倒数,可得一个数的倒数.解答:解:的倒数是,故答案为:.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8. (2014•江苏苏州,第 12 题3 分)已知地球的表面积约为 510000000km2,数 510000000 用科学记数法可表示为 5.1×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 510000000 有9 位,所以可以确定 n=9﹣1=8.解答:解:510 000 000=5.1×108.故答案为:5.1×108.点评:此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键.9.(2014•江苏徐州,第10 题3 分)我国“钓鱼岛”周围海域面积约170 000km2,该数用科学记数法可表示为 1.7×105.考点:科学记数法—表示较大的数.菁优网分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:170 000=1.7×105,故答案为:1.7×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.10.(2014•年ft东东营,第11 题3 分) 013 年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250 亿元,3250 亿元用科学记数法表示为 3.25×1011.考点:科学记数法—表示较大的数.菁优网分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将3250 亿用科学记数法表示为:3.25×1011.故答案为:3.25×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.11.(2014•四川遂宁,第 12 题,4 分)四川省第十二届运动会将于 2014 年8 月16 日在我市举行,我市约 3810000 人民热烈欢迎来自全省的运动健儿.请把数据 3810000 用科学记数法表示为 3.81×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.解答:解:将 3810000 用科学记数法表示为:3.81×106.故答案为:3.81×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2019-2020 年中考数学试卷解析分类汇编:一元一次方程及其应用一、选择题1. (2014 年湖北咸宁2.(3 分))若代数式x+4 的值是2,则x 等于()A. 2 B.﹣2 C. 6 D.﹣6考点:解一元一次方程;代数式求值.分析:根据已知条件列出关于x 的一元一次方程,通过解一元一次方程来求x 的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1 等.二、填空题1. (2014•娄底 13.(3 分))已知关于 x 的方程 2x+a﹣5=0 的解是 x=2,则a 的值为 1 .考点:一元一次方程的解分析:把x=2 代入方程即可得到一个关于 a 的方程,解方程即可求解解答:解:把 x=2 代入方程,得:4+a﹣5=0,解得:a=1.故答案是:1.点评:本题考查了方程的解的定义,理解定义是关键.三、解答题1.(2014•江西抚州,第 19 题,8 分)情景:试根据图中的信息,解答下列问题:⑴ 购买6 根跳绳需元,购买12 根跳绳需元.⑵ 小红比小明多买 2 根,付款时小红反而比小明少 5 元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解析:(1)25×6=150,25×0.8×12=240.(2)有这种可能.设小红买了x 根跳绳,则25×0.8·x=25(x-2)-5 ,解得x=11.∴小红买了 11 根跳绳.2.(2014•ft东淄博,第 21 题 8 分)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于 200 0.55第二档大于 200 小于 400 0.6第三档大于等于 400 0.85例如:一户居民七月份用电 420 度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电 500 度,缴电费 290.5 元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于 400 度.问该户居民五、六月份各月电多少度?考点:一二元一次方程的应用.菁优网分析:某户居民五、六月份共用电 500 度,就可以得出每月用电量不可能都在第一档,分情况讨论,当 5 月份用电量为 x 度≤200度,6 月份用电(500﹣x)度,当 5 月份用电量为 x度>200 度,六月份用电量为(500﹣x)度>x 度,分别建立方程求出其解即可.解答:解:当 5 月份用电量为 x 度≤200 度,6 月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6 月份用电 500﹣x=310 度.当 5 月份用电量为 x 度>200 度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5 月份用电量为 190 度,6 月份用电 310 度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.。
专题01 数据的收集、整理、描述知识网络重难突破知识点一普查和抽样调查1、统计调查的一般步骤(1)收集数据:首先要采用问卷调查、电话、电脑辅助等方法收集数据.(2)整理数据:通过上述方法收集到的数据常常是杂乱无章的,不利于我们发现其中的规律,为了更清楚地了解数据所蕴含的规律,常采用表格来整理数据.(3)描述数据:为了更直观地看出统计表中的信息,可以采用条形图、扇形图等来描述数据.(4)得出结论.2、全面调查与抽样调查(1)为一特定目的而对所有考察对象所作的调查叫做全面调查.全国人口普查就属于全面调查.(2)为一特定目的而对部分考察对象所作的调查叫做抽样调查.注意:全面调查和抽样调查是收集数据的两种方式.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查,如检查一批发动机的使用寿命.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3、总体和样本总体:所考察对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中所抽取的一部分个体叫做总体的样本;样本容量:样本中个体的数目叫做样本容量.注意:①在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,这样的抽样方法叫做简单随机抽样.②用样本估计总体:基本思想就是由总体中抽取一个样本,通过研究样本的特性,去估计总体的相应特性.抽样调查方法就是利用了用样本估计总体的思想.典例1(2021春•江宁区月考)下列调查中,调查方式选择最合理的是()A.调查长江的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查【解答】解:A、调查长江的水质情况,适合抽样调查,故本选项符合题意;B、调查一批飞机零件的合格情况,适合抽样调查,故本选项不合题意;C、检验一批进口罐装饮料的防腐剂含量,适合抽样调查,故本选项不合题意;D、企业招聘人员,对应聘人员进行面试,适合普查,故本选项不合题意.故选:A.典例2(2021•苏州一模)每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础,为了解某校800名初三学生的睡眠时间,从13个班级中抽取50名学生进行调查,下列说法正确的是() A.800名学生是总体B.50是样本容量C.13个班级是抽取的一个样本D.每名学生是个体【解答】解:每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础,为了解某校800名初三学生的睡眠时间,从13个班级中抽取50名学生进行调查,A、800名学生的的睡眠状况是总体,故本选项不合题意;B、50是样本容量,故本选项符合题意;C、从13个班级中抽取50名学生的的睡眠状况是抽取的一个样本,故本选项不合题意;D、每名学生的的睡眠状况是个体,故本选项不合题意;故选:B.知识点二统计图、统计表1、常用的统计图:条形统计图、扇形统计图、折线统计图、频数分布直方图2、各统计图的特点条形图能够显示每组中的具体数据,易于比较数据之间的差别,但不能显示每组数据相对于总数的大小;扇形图用扇形的大小表示每部分在总体中所占百分比,易于显示每组数据相对于总数的大小,但不能判断出每组数的绝对大小.折线图直观反映变化趋势.注意:在扇形统计图中,扇形圆心角的度数=该部分的百分比×360°.3、条形统计图与频数分布直方图的联系与区别联系:频数分布直方图是特殊的条形统计图;区别:条形统计图各个“条形”之间有间隙;聘书分布直方图各个“条形”之间没有间隙.典例1(2020春•常州期中)如图,“女生”所在扇形统计图中对应的圆心角的大小为()A.108︒B.110︒C.120︒D.125︒【解答】解:“女生”所在扇形统计图中对应的圆心角的大小为:36030%108︒⨯=︒;故选:A.典例2(2020•南京)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【解答】解:A.2019年末,农村贫困人口比上年末减少166********-=(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过98995519348-=(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.典例3(2021•秦淮区一模)2020年是新中国历史上极不平凡的一年,我国经济运行逐季改善,在全球主要经济体中唯一实现经济正增长.根据国家统计局发布的数据,20162020-年国内生产总值及其增长速度如图所示.根据图中提供的信息,下列说法错误的是()A.2020年末,中国的国内生产总值迈上百万亿元新的大台阶B.2016年至2020年,国内生产总值呈递增趋势C.2017年至2020年,相比较上一年,国内生产总值增加最多的是2017年D.2017年至2020年,相比较上一年,国内生产总值增长速度最快的是2017年【解答】解:A.2020年末,中国的国内生产总值迈上百万亿元新的大台阶,此选项正确,不符合题意;B.2016年至2020年,国内生产总值呈递增趋势,此选项正确,不符合题意;C.2017年相比较上一年增加:83203674639585641-=,2018年相比较上一年增加,91928183203687245-=,2019年相比较上一年增加,98651591928167234-=,2020年相比较上一年增加,101598698651529471-=,∴年至2020年,相比较上一年,国内生产总值增加最多的是2018年,此选项错误,符合题意;2017D.2017年至2020年,相比较上一年,国内生产总值增长速度最快的是2017年,此选项正确,不符合题意;故选:C.典例4(2021春•苏州期中)为增强学生环保意识,科学实施垃圾分类管理,某中学举行了“垃圾分类知识竞赛”,首轮每位学生答题39题,随机抽取了部分学生的竞赛成绩绘制了不完整的统计图表:组别正确个数x人数x<10A08x<15B816x<25C1624x<mD2432x<nE3240根据以上信息完成下列问题:(1)统计表中的m=,n=;(2)请补全条形统计图;(3)已知该中学共有1500名学生,如果答题正确个数不少于32个的学生进入第二轮的比赛,请你估计本次知识竞赛全校顺利进入第二轮的学生人数有多少个?【解答】解:(1)调查总数为:1515%100÷=(人),m=⨯=(人),10030%30n=----=,1001015253020故答案为:30,20;(2)补全统计图如下:(3)201500300100⨯=(人), 答:全校顺利进入第二轮的学生大约有300人.知识点三 频数与频率在统计数据时,候选对象出现的次数有多有少,或者说出现的频繁程度不同,某个对象出现的次数称为频数,频数与总数的比值称为频率. 典例1(2020春•无锡期末)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为 .【解答】解:第4组的频数为:40612148---=, 频率为:80.240=, 故答案为:0.2. 典例2(2020春•高淳区期末)在一个不透明的袋子里,装有除颜色外其余匀相同的3个白色球和若干个黄色球,摇匀后,从这个袋子里随机摸出一个球,放回摇匀再摸出一个球,经过大量重复实验,摸到黄球的频率在0.4左右,则袋子内有黄色球 个. 【解答】解:设袋子内有黄色球x 个, 由题意得,0.43xx =+, 解得,2x =,经检验,2x =是原方程的解, 所以原方程的解为2x =, 故答案为:2.巩固训练一、单选题(共8小题)1.(2020秋•历城区期末)下列调查方式,你认为最合适的是( ) A .日光灯管厂要检测一批灯管的使用寿命,采用普查方式 B .旅客上飞机前的安检,采用抽样调查方式 C .了解上海市居民日平均用水量,采用普查方式D.对2019年央视春节联欢晚会收视率的,适合用抽样方式【解答】解:A、日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查,此选项错误;B、旅客上飞机前的安检,应采用全面调查方式,此选项错误;C、了解上海市居民日平均用水量,应采用抽样调查方式,此选项错误;D、对2019年央视春节联欢晚会收视率的,适合用抽样方式,此选项正确;故选:D.2.(2020春•高新区期中)下列调查中,适宜采用普查方式的是()A.了解一批灯泡的寿命B.考察人们保护环境的意识C.检查一枚用于发射卫星的运载火箭的各零部件D.了解全国八年级学生的睡眠时间【解答】解:A、了解一批灯泡的寿命,适合抽样调查,故A不符合题意;B、考察人们保护环境的意识,调查范围广适合抽样调查,故B不符合题意;C、检查一枚用于发射卫星的运载火箭的各零部件,适合普查,故C符合题意;D、了解全国八年级学生的睡眠时间,调查范围广适合抽样调查,故D不符合题意;故选:C.3.(2020秋•沭阳县期末)为了解我县2020年中考数学成绩分布情况,从中随机抽取了200名考生的成绩通行统计分析,在这个问题中,样本是指()A.200B.被抽取的200名考生的中考数学成绩C.被抽取的200名考生D.我县2020年中考数学成绩【解答】解:总体是:我县2020年中考数学成绩,样本是:200名考生的数学成绩,故选:B.4.(2020秋•武侯区期末)在“124 中国国家宪法日”来临之际,成都某社区为了解该社区居民的法律意识,随机调查测试了该社区1000人,其中有980人的法律意识测试结果为合格及以上.关于以上数据的收集与整理过程,下列说法正确的是()A.调查的方式是抽样调查B.1000人的法律意识测试结果是总体C.该社区只有20人的法律意识不合格D.样本是980人【解答】解:由题意可得,调查的方式是抽样调查,故选项A正确;1000人的法律意识测试结果是样本,故选项B错误;抽取的样本中只有20人的法律意识不合格,但并不是该社区只有20人的法律意识不合格,故选项C错误;样本是1000人的法律意识测试结果,故选项D错误;故选:A.5.(2020秋•苏州期中)党的十九大为新时代农业农村改革发展明确了重点、指明了方向.报告中提出了“实施乡村振兴战略”.某地区经过三年的乡村振兴建设,农村的经济收入是振兴前的2倍.为更好地了解该地区农村的经济收入变化情况,统计了该地区乡村振兴建设前后农村的经济收入构成比例,绘制了如图的扇形统计图:则下列说法错误的是()A.乡村振兴建设后,养殖收入是振兴前的2倍B.乡村振兴建设后,种植收入减少C.乡村振兴建设后,其他收入是振兴前的2倍以上D.乡村振兴建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:由题意可得,乡村振兴建设后,养殖收入是振兴前的2倍,故选项A正确;乡村振兴建设后,种植收入相当于振兴前的37%274%⨯=,相对于振兴前收入增加了,故选项B错误;乡村振兴建设后,其他收入是振兴前的2倍以上,故选项C正确;乡村振兴建设后,养殖收入与第三产业收入的总和占总收入的30%28%58%+=,故选项D正确;故选:B.6.(2020春•雄县期末)如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多【解答】解:根据图中数据计算:七年级人数是81321+=;九年级人数是+=;八年级人数是141630 102030+=.所以A和D错误;根据统计图的高低,显然C错误;B中,九年级的男生20人是女生10人的两倍,正确.故选:B.7.(2020•海门市一模)如图是某市今年5月1日至7日的“日平均气温变化统计图”.在这组数据中,日平均气温的众数和中位数分别是()A.13,14B.13,13C.14,14D.14,13【解答】解:日平均气温:12,15,14,10,13,14,11,从小到大排列:10,11,12,13,14,14,15,众数为14,中位数为13,故选:D.8.(2020秋•宽城区期末)某人将一枚质量分布均匀的硬币连续抛50次,落地后正面朝上30次,反面朝上20次,下列说法正确的是()A.出现正面的频率是30B.出现正面的频率是20C.出现正面的频率是0.6D.出现正面的频率是0.4【解答】解:某人将一枚质量分布均匀的硬币连续抛50次,落地后正面朝上30次,反面朝上20次,∴出现正面的频率是:300.6 50=.故选:C.二、填空题(共4小题)9.(2021•姑苏区一模)在2020年年末我国完成了农村贫困人口全部脱贫.为了统计农村贫困人口的数量,国家统计局采取的调查方式是(填“普查”或“抽样调查”).【解答】解:为了得到较为全面、可靠的信息,所以国家统计局采取的调查方式是普查,故答案为:普查.10.(2020秋•滨湖区期末)想了解中央电视台《开学第一课》的收视率,适合的调查方式为.(填“普查”或“抽样调查”)【解答】解:想了解中央电视台《开学第一课》的收视率,适合的调查方式为抽样调查.故答案为:抽样调查.11.(2020春•广陵区期中)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放回鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞150条鱼,发现其中带标记的鱼有3条,则鱼塘中估计有条鱼.【解答】解:根据题意得:3301500150÷=(条),答:鱼塘中估计有1500条鱼.故答案为:1500.12.(2020春•南京期末)如图,小明根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱动画节目的人数是人.【解答】解:由题意可得,喜爱动画节目的人数是:510%30%15÷⨯=(人),故答案为:15.三、解答题(共2小题)13.(2021•姑苏区一模)垃圾的分类处理与回收利用,可以减少污染,节省资源某城市环保部门抽样调查了某居民小区一段时间内生活垃圾的分类情况,将获得的数据整理绘制成如下两幅不完整的统计图.(注:A为厨余垃圾,B为可回收垃圾,C为其它垃圾,D为有害垃圾)根据统计图提供的信息,解答下列问题:(1)求这次抽样调查中可回收垃圾的吨数,并将条形统计图补充完整;(2)求扇形统计图中,“D有害垃圾”所对应的圆心角度数;(3)假设该城市每月产生的生活垃圾为6000吨,且全部分类处理,请估计每月产生的有害垃圾有多少吨?【解答】解:(1)本次抽样调查的垃圾有:24÷48%=50(吨),B类垃圾有:50﹣24﹣8﹣6=12(吨),补全的条形统计图如右图所示;(2)360°×=43.2°,即扇形统计图中,“D有害垃圾”所对应的圆心角度数是43.2°;(3)6000×=720(吨),即估计每月产生的有害垃圾有720吨.14.(2021•姑苏区一模)为积极响应教育部“停课不停学”的号召,某中学组织本校教师开展线上教学,为了解学生线上教学的学习效果,决定随机抽取九年级部分学生进行质量测评,以下是根据测试的数学成绩绘制的统计表和频数分布直方图:成绩分频数频率x<20.04第1段60x<60.12第2段6070x<9b第3段7080x<a0.36第4段8090x150.30第5段90100请根据所给信息,解答下列问题:(1)a=,b=;(2)此次抽样的样本容量是,并补全频数分布直方图;(3)某同学测试的数学成绩为76分,这次测试中,数学分数高于76分的至少有人;(4)已知该年级有800名学生参加测试,请估计该年级数学成绩为优秀(80分及以上)的人数.【解答】解:(1)本次调查的人数为:20.0450÷=,b=÷=,a=⨯=,9500.18500.3618故答案为:18,0.18;(2)此次抽样的样本容量是20.0450÷=,故答案为:50,由(1)知,18a=,补全的频数分布直方图如图所示:;(3)这次测试中,数学分数高于76分的至少有:181533+=(人),故答案为:33;(4)800(0.360.30)528⨯+=(人),即估计该年级数学成绩为优秀(80分及以上)的有528人.。
2020年江苏省中考数学分类汇编专题14 数据收集、整理与分析一、单选题(共9题;共18分)1. ( 2分) (2020·淮安)一组数据9、10、10、11、8的众数是()A. 10B. 9C. 11D. 82. ( 2分) (2020·宿迁)已知一组数据5,4,4,6,则这组数据的众数是()A. 4B. 5C. 6D. 83. ( 2分) (2020·南通)一组数据2,4,6,x,3,9的众数是3,则这组数据的中位数是()A. 3B. 3.5C. 4D. 4.54. ( 2分) (2020·无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A. 24,25B. 24,24C. 25,24D. 25,255. ( 2分) (2020·徐州)小红连续天的体温数据如下(单位相):,,,,.关于这组数据下列说法正确的是()A. 中位数是B. 众数是C. 平均数是D. 极差是6. ( 2分) (2020·连云港)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是().A. 中位数B. 众数C. 平均数D. 方差7. ( 2分) (2020·扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:调查问卷________年________月________日你平时最喜欢的一种体育运动项目是()(单选)A. B. C. D.其他运动项目准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A. ①②③B. ①③⑤C. ②③④D. ②④⑤8. ( 2分) (2020·苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.19. ( 2分) (2020·南京)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是()A. 2019年末,农村贫困人口比上年末减少551万人B. 2012年末至2019年末,农村贫困人口累计减少超过9000万人C. 2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D. 为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务二、填空题(共3题;共3分)10. ( 1分) (2020·淮安)已知一组数据1、3,、10的平均数为5,则________.11. ( 1分) (2020·镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为________.12. ( 1分) (2020·泰州)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是________.三、解答题(共12题;共122分)13. ( 8分) (2020·徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如下尚不完整的统计图表:市民每天的阅读时间统计表市民每天的类别阅读时间扇形统计图根据以上信息解答下列问题:(1)该调查的样本容量为________,________;(2)在扇形统计图中,“ ”对应扇形的圆心角等于________ ;(3)将每天阅读时间不低于的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.14. ( 10分) (2020·镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少. 15. ( 15分) (2020·泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成图表如下:2020年5月29日6月3日骑乘人员头盔佩戴率折线统计图2020年6月2日骑乘人员头盔佩戴情况统计表(1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中的值.16. ( 11分) (2020·宿迁)某校计划成立下列学生社团.为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必需选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了________名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?17. ( 7分) (2020·南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表若该校共有1000名学生,试根据以上信息解答下列问题:(1)第________小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约________人;(2)对这两个小组的调查统计方法各提一条改进建议.18. ( 12分) (2020·扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是________,扇形统计图中表示A等级的扇形圆心角为________ ;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.19. ( 11分) (2020·无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)(1)表格中________;(2)请把下面的条形统计图补充完整:(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?20. ( 6分) (2020·苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是________.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):100分数段统计(学生成绩记为)请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.21. ( 6分) (2020·南京)为了了解某地居民的用电量情况,随机抽取了该地200户居民六月份的用电量(单位:)进行调查,整理样本数据得到下面的频数分布表:34111121根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第________组内.(2)估计该地1万户居民六月份的用电量低于的大约有多少户.22. ( 13分) (2020·连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表0.451根据统计图表提供的信息,解答下列问题:(1)表中________,________,________;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?23. ( 12分) (2020·淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如下尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了________名学生,扇形统计图中C选项对应的圆心角为________度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?24. ( 11分) (2020·常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如下统计图.(1)本次抽样调查的样本容量是________;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.答案解析部分一、单选题1.【答案】A【考点】众数【解析】【解答】在这组数据中出现最多的数是10,∴众数为10,故答案为:A.【分析】众数是一组数据中出现次数最多的数,代表数据的一般水平。
第十章数据的收集、整理与描述1.全面调查与抽样调查(1)全面调查和抽样调查是按调查对象范围不同划分的调查方式.全面调查是对调查对象中的所有单位全部加以调查,抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式.(2)抽样调查与全面调查有着相辅相成的关系:在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查.(3)抽样调查的优点:一是由于只从总体中抽取一部分样本进行调查,工作量小,所以比全面调查节省人力、物力、财力,比较经济;二是可以及时取得调查资料,提高数据的时效性;三是数据质量有保证,可以减少人为因素干扰,只要取样、推断方法科学,均有利于提高数据的质量;四是调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对范围大的总体作调查.【例】电视剧《铁血将军》在我市拍摄,该剧展示了抗日民族英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2 400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是( )A.2400名学生B.100名学生C.所抽取的100名学生对“民族英雄范筑先”的知晓情况D.每一名学生对“民族英雄范筑先”的知晓情况【标准解答】选C.根据总体、样本的含义,可得在这次调查中,总体是:2 400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.1.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生视力情况C.调查重庆市初中学生锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况2.要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,一段时间后,再从鱼塘中打捞出100条鱼,发现只有两条鱼是做了记号的鱼,假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为( ) A.5 000条 B.2 500条C.1 750条D.1 250条3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生的视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全名新闻》栏目的收视率4.2016年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计,在这个问题中样本是( )A.1.6万名考生B.2 000名考生C.1.6万名考生的数学成绩D.2 000名考生的数学成绩5.下列调查适合抽样调查的是( )A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查6.下列调查,样本具有代表性的是( )A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解某小区居民的防火意识,对你们班同学进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查2.统计图的转化解决与统计有关的信息题转换的方法:解题的关键是根据统计图的信息求出所抽取的样本的总数.(1)结合各类统计图的特点,认真分析各个统计图之间的已知与未知.(2)综合考虑相同的元素在不同的统计图中的表示形式,找到它们之间的对应关系.(3)根据条形图、折线图所提供的部分元素的具体数据,结合扇形统计图所反映的百分比,求出样本总数,或根据频率与频数的关系求出样本总数.(4)根据样本总数求出相关数据及信息.【例】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 14 6请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比.(3)该校共有学生1 800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽,那么学校在“大间操”时至少应提供多少个毽?【标准解答】(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1-30%-16%-24%-10%=20%,又知九年级最喜欢排球的人数为10人,所以九年级抽取的学生人数有10÷20%=50(人),所以本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50-7-8-6-14=15人,那么八年级最喜欢跳绳的人数有15-5=10人,最喜欢跳绳的学生有15+10+50×16%=33人,所以“最喜欢跳绳”的学生占抽样总人数的百分比为22%.七年级学生最喜欢的运动项目人数统计表项目排球篮球跳绳踢毽其他人数(人) 7 8 15 14 6(3)由图可知,八年级最喜欢踢毽的人数有13人,所以学校在“大间操”时至少应提供的毽数为×1 800÷4=126(个).学校为了解全校1 600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选,将调查得到的结果绘制如图所示的频数分布直方图和扇形统计图(均不完整).(1)问:在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图.(3)估计全校所有学生中有多少人乘坐公交车上学.3.数据的整理与描述(1)扇形统计图直接反映部分占总体的百分比大小.用扇形统计图描述数据,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.【例】某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如图所示的扇形统计图.若该校有1 000名学生,则赞成该方案的学生约有人.【标准解答】由扇形统计图可知赞成的百分比为:1-20%-10%=70%,∴1 000名学生中赞成该方案的学生约有1 000×70%=700人.答案:7001.如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是( )A.棋类B.书画C.球类D.演艺1题图2题图2.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类球的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是( )A.100人B.200人C.260人D.400人3.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为人.3题图4题图5题图4.为了解学生课外阅读的喜好,某校从八年级1 200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.5.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是.(2)用条形图描述数据【例】下列材料来自2006年5月衢州有关媒体的真实报道:有关部门进行民众安全感满意度调查,方法是:在全市内采用等距抽样,抽取32个小区,共960户,每户抽一名年满16周岁并能清楚表达意见的人,同时,对比前一年的调查结果,得到统计图如下:写出2005年民众安全感满意度的众数选项是;该统计图存在一个明显的错误是.【标准解答】∵安全选项小组小长方形的高最高,∴众数为安全选项;统计图存在一个明显的错误是 2004年满意度统计选项总和不到100%.答案:安全2004年满意度统计选项总和不到100%.某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2 000人,由此估计选修A课程的学生有人.(3)用折线统计图描述数据【例】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A.最大值与最小值的差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【标准解答】选C.A.最大值与最小值的差为:83-28=55,故本选项错误;B.众数为:58,故本选项错误;C.中位数为:(58+58)÷2=58,故本选项正确;D.每月阅读数量超过40本的有2月,3月,4月,5月,7月,8月,共六个月,故本选项错误;故选C.1.下面的折线图描述了某地某日的气温变化情况,根据图中信息,下列说法错误的是( )A.4:00气温最低B.6:00气温为24 ℃C.14:00气温最高D.气温是30 ℃的为16:002.北京市2009~2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.(4)综合运用条形统计图和扇形统计图获取信息【例】漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整.(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标.(3)若该校学生有1 200人,请你估计此次测试中,全校达标的学生有多少人?【标准解答】(1)成绩一般的学生占的百分比=1-20%-50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=96.(3)1 200×(50%+30%)=960(人).答:估计全校达标的学生有960人.1.夷昌中学开展“阳光体育活动”,九年级一班全体同学在2016年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是( )A.50B.25C.15D.102.为了了解2016年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2012年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名.(2)根据抽样的结果,估计2016年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名.(3)比较2012年与2016年抽样学生50米跑成绩合格率情况,写出一条正确的结论.(5)综合运用折线统计图和条形统计图获取信息解题【例】以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有量是多少万辆(结果保留三个有效数字)?(2)补全条形统计图.(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6 L的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.排量(L) 小于1.6 1.6 1.8 大于1.8数量(辆) 29 75 31 15如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6 L的这类私人轿车(假设每辆车平均一年行驶1万千米)的碳排放总量约为多少万吨?【标准解答】(1)146×(1+19%)=173.74≈174(万辆),所以2008年北京市私人轿车拥有量约是174万辆.(2)如图(3)276××2.7=372.6(万吨).所以估计2010年北京市仅排量为1.6 L的这类私人轿车的碳排放总量约为372.6万吨.1.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其他项目的资金共38万元,图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是( )A.0B.1C.2D.32.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图.(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?4.直方图直方图与条形图的区别:(1)条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的高表示频数.(2)条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围.(3)条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙.【例】4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:(1)九年(1)班有名学生.(2)补全直方图.(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图.(4)求该年级每天阅读时间不少于1小时的学生有多少人?【标准解答】(1)由题意可得:4÷8%=50(人).(2)由(1)得:0.5~1小时的为:50-4-18-8=20(人),如图所示:(3)∵除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,∴1~1.5小时在扇形统计图中所占比例为:165÷(600-50)×100%=30%,故0.5~1小时在扇形统计图中所占比例为:1-30%-10%-12%=48%,如图所示:(4)该年级每天阅读时间不少于1小时的学生有:(600-50)×(30%+10%)+18+8=246(人).为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图,如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 6第3组35≤x<40 14第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值.(2)请把频数分布直方图补充完整.(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?答案解析1.全面调查与抽样调查【跟踪训练】1.【解析】选B.调查一批电视机的使用寿命情况、调查重庆市初中学生锻炼所用的时间情况、调查重庆市初中学生利用网络媒体自主学习的情况适合抽样调查;调查某中学九年级一班学生视力情况适合用普查.2.【解析】选B. 标记的鱼有50条,放入后捞起来有标记的鱼占捞出来鱼的比例为 ,则共有的鱼为:50÷=2 500(条).3.【解析】选B.A选项我省中学生样本容量过大,不适合全面调查;B选项样本容量适合全面调查,且不具有破坏性;C选项具有破坏性,不适宜全面调查;D选项台州范围较大,样本容量过大不适合全面调查.4.【解析】选D.根据样本的概念可知样本为2 000名考生的数学成绩.5.【解析】选D.A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查.6.【解析】选D.A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故B错误;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性,故C错误;D、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故D正确.2.统计图的转化【跟踪训练】【解析】(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16(人),直方图略.(3)被抽到的学生中,乘公交车的人数为80-(24+16+10+4)=26(人),∴全校所有学生中乘坐公交车上学的人数约为×1 600=520(人).3.数据的整理与描述【跟踪训练】1.【解析】选C.在各兴趣小组中,球类的学生占总人数的35%最大,所以球类兴趣小组的人数最多.2.【解析】选D.根据题意得:320÷32%=1 000(人),喜欢羽毛球的人数为1 000×15%=150(人),喜欢篮球的人数为1 000×25%=250(人),∴喜欢足球、网球的总人数为1 000-320-250-150=280(人),这批被抽样调查的学生最喜欢足球的人数不可能是400人.3.【解析】总人数为:6÷(40%-30%)=60(人).答案:604.【解析】喜爱科普常识的学生所占的百分比为:1-40%-20%-10%=30%,1 200×30%=360.答案:3605.【解析】∵“其他”部分所对应的圆心角是36°,∴“其他”部分所对应的百分比为:×100%=10%, ∴“步行”部分所占百分比为:100%-10%-15%-35%=40%.答案:40%【跟踪训练】【解析】选修A课程的学生所占的比例:=,选修A课程的学生有:2 000×=800(人),答案:800【跟踪训练】1.【解析】选D.A、由纵坐标看出4:00气温最低是22 ℃,故A正确;B、由纵坐标看出6:00气温为24 ℃,故B正确;C、由纵坐标看出14:00气温最高31 ℃;D、由横坐标看出气温是30 ℃的时刻是12:00,16:00,故D错误.2.【解析】预估2015年北京市轨道交通日均客运量约980万人次,根据2009~2011年呈直线上升,故2013~2015年也呈直线上升.答案:980 根据2009~2011年呈直线上升,故2013~2015年也呈直线上升【跟踪训练】1.【解析】选C.25÷50%=50(人),50-25-10=15(人).参加乒乓球的人数为15人.2.【解析】(1)100 000×10%=10 000(名),10 000×45%=4 500(名).(2)100 000×40%×90%=36 000(名).(3)例如:与2012年相比,2016年该市大学生50米跑成绩合格率下降了5%(答案不唯一).答案:(1)10 000 4 500(2)36 000(3)答案不唯一【跟踪训练】1.【解析】选C.①因为购置器材所占的面积最大,所以是资金最多的,故①正确.②2009年资金的增长是相对于2008年来说的,2010年的资金是相对于2009年来说的,故②是错误的.③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同也是增长了32%,所以2011年购置器材的投入是38×38%×(1+32%),故③正确.故选C.2.【解析】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件.(2)如图所示:(3)300×=5 700(件).估计该市300个学雷锋小组在2015年3月份共做好事5 700件.4.直方图【跟踪训练】【解析】(1)a=50-4-6-14-10=16.(2)如图所示:(3)本次测试的优秀率是:×100%=52%.。
2019-2020年中考数学试题分类汇编数据的收集整理与描述一.选择题(共23小题)1.(2015•重庆)下列调查中,最适宜采用全面调查方式(普查)的是()2.(2015•漳州)下列调查中,适宜采用普查方式的是()3.(2015•台州)在下列调查中,适宜采用全面调查的是()4.(2015•黔南州)下列说法正确的是()5.(2015•广元)下列说法正确的是()6.(2015•通辽)下列调查适合抽样调查的是()7.(2015•重庆)下列调查中,最适合用普查方式的是()8.(2015•聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象.某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查.在这次调查中,样本是()9.(2015•攀枝花)2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()10.(2015•嘉兴)质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机抽取100件进行检测,检测出次品5件,由此估计这一批次产品中的次品件数是(),×=50011.(2015•绵阳)要估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞出100条鱼,发现只有两条鱼是刚才做了记号的鱼.假设鱼在鱼塘内均匀分布,那么估计这个鱼塘的鱼数约为()÷=250012.(2015•苏州)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为()的频率为13.(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是()14.(2015•温州)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()15.(2015•扬州)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()16.(2015•邵阳)如图是某校参加各兴趣小组的学生人数分布扇形统计图,则参加人数最多的兴趣小组是()17.(2015•呼和浩特)以下是某手机店1~4月份的统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为()18.(2015•滨州)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3)表示“无所谓”的家长人数为40人(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()×=162的家长的概率是,故命19.(2015•恩施州)某中学开展“眼光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()20.(2015•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()21.(2015•杭州)如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112ug/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()浓度的中位数是=79.5ug/m 22.(2015•龙岩)下列统计图能够显示数据变化趋势的是()23.(2015•福州)下列选项中,显示部分在总体中所占百分比的统计图是()二.填空题(共14小题)1.(2015•莆田)要了解一批炮弹的杀伤力情况,适宜采取抽样调查(选填“全面调查”或“抽样调查”).2.(2015•资阳)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有240人.×=2403.(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升.4.(2015•河池)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A 课程的学生有800人.课程的学生所占的比例:=,×=8005.(2015•漳州)我市今年中考数学学科开考时间是6月22日15时,数串“201506221500”中“0”出现的频数是4.6.(2015•贵港)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是5.7.(2015•凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有10人.=10%8.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.解:该班此次成绩达到合格的同学占全班人数的百分比是9.(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是机动车尾气.(填主要来源的名称)10.(2015•苏州)某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.11.(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360人.12.(2015•玉林)某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是40%.部分所对应的百分比为:=10%13.(2015•福建)某班数学老师想了解学生对数学的喜欢程度,对全班50名学生进行调查,根据调查结果绘制了扇形统计图(如图所示),其中A表示“很喜欢”,B表示“一般”,C表示“不喜欢”,则该班“很喜欢”数学的学生有18人.14.(2015•湖州)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.三.解答题(共46小题)1.(2015•杭州)杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.2.(2015•柳州)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人生.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?3.(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有人,达到优秀的人数占本次测试总人数的百分比为%.(2)本次测试的学生数为人,其中,体质健康成绩为及格的有人,不及格的人数占本次测试总人数的百分比为%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.4.(2015•南充)某学校要了解学生上学交通情况,选取九年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知九年级乘公交车上学的人数为50人.(1)九年级学业生中,骑自行车和乘公交车上学哪个更多?多多少人?(2)如果全校有学生2000人,学校准备的400个自行车停车位是否足够?5.(2015•安顺)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.(2015•自贡)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a=,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?7.(2015•义乌市)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?8.(2015•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.9.(2015•南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?10.(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.11.(2015•邵阳)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.12.(2015•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种多少棵树.13.(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.14.(2015•衢州)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?15.(2015•珠海)某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?16.(2015•毕节市)某中学号召学生利用假期开展社会实践活动,开学初学校随机地通过问卷形式进行了调查,其中将学生参加社会实践活动的天数,绘制了下列两幅不完整的统计图:请根据图中提供的信息,完成下列问题(填入结果和补全图形):(1)问卷调查的学生总数为人;(2)扇形统计图中a的值为;(3)补全条形统计图;(4)该校共有1500人,请你估计“活动时间不少于5天”的大约有人;(5)如果从全校1500名学生中任意抽取一位学生准备作交流发言,则被抽到的学生,恰好也参加了问卷调查的概率是.17.(2015•天津)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.18.(2015•淮安)课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.解答下列问题:(1)a=,b=;(2)补全条形统计图;(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.19.(2015•北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.20.(2015•宁夏)为了解中考体育科目训练情况,某地从九年级学生中随机抽取了部分学生进行了一次考前体育科目测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)请将两幅不完整的统计图补充完整;(2)如果该地参加中考的学生将有4500名,根据测试情况请你估计不及格的人数有多少?(3)从被抽测的学生中任选一名学生,则这名学生成绩是D级的概率是多少?21.(2015•益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,如图表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.22.(2015•遵义)遵义市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.23.(2015•衡阳)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有人.24.(2015•广西)某校有学生2000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,丙将结果绘制成如下的统计图.请根据以上信息,完成下列问题:(1)本次调查的样本容量是;(2)某位同学被抽中的概率是;(3)据此估计全校最喜爱篮球运动的学生人数约有名;(4)将条形统计图补充完整.25.(2015•徐州)某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:(1)a=%,b=%,“总是”对应阴影的圆心角为°;(2)请你补全条形统计图;(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?26.(2015•临沂)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.27.(2015•山西)随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次接受调查的总人数是人.(2)请将条形统计图补充完整.(3)在扇形统计图中,观点E的百分比是,表示观点B的扇形的圆心角度数为度.(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.28.(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=,b=,c,d,m.(请直接填写计算结果)29.(2015•枣庄)在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查.下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)小明共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是;(4)若全校共有2130名学生,请你估算“其他”部分的叙述人数.30.(2015•广西)自从2012年12月4日中央公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果绘制了如下统计表和统计图,根据所提供的信息回答下列问题:(1)这次被抽查的学生有多少人?(2)求表中m,n的值,并补全条形统计图;。