瞬变电磁法及大地电磁法
- 格式:pdf
- 大小:1.41 MB
- 文档页数:20
瞬变电磁法应用条件瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用电磁学原理来探测地下的电性和导电性结构。
因其便捷、高效、精准的特点,被广泛应用于矿产勘探、地下水资源调查、环境地质调查等领域。
下面我们将详细介绍瞬变电磁法的应用条件,包括地质背景、地下介质、设备要求等内容。
一、地质背景瞬变电磁法通常适用于地表条件相对较好的地区,如平原、丘陵、山地等地貌,适用于研究区域的地质历史和地下介质结构。
在进行勘探前,需要详细了解地质条件,包括地表覆盖情况、地下水情况、岩石性质等。
只有充分了解地质背景,才能更好地设计勘探方案,提高勘探效果。
二、地下介质瞬变电磁法适用于导电率较高的地下介质,如含水层、矿床、盐水层等。
由于瞬变电磁法原理是通过观测地下电磁参数的变化来识别地下结构,因此对于介质的导电性要求较高。
在适用条件下,瞬变电磁法可以很好地探测地下水资源、矿产矿床等目标。
三、设备要求瞬变电磁法需要专门的仪器设备来进行测量。
在实际应用中,需要考虑设备的稳定性、精度以及适用范围。
目前市面上有多种瞬变电磁仪器,可以根据实际需求选用合适的设备。
还需要配备一定数量的电极、接收线圈等配套设备,以确保勘探工作的顺利开展。
四、环境条件瞬变电磁法对环境条件的要求较高,主要包括天气、地表情况等方面。
在进行勘探时,需要考虑天气因素对野外工作的影响,避免在极端恶劣的天气条件下进行测量。
地表覆盖情况也对瞬变电磁法的有效性产生影响,需要选择开阔的地区进行勘探,避免复杂地形对数据解释的影响。
五、专业人员瞬变电磁法需要专业技术人员进行操作和数据解释。
在进行勘探前,需要组建具备相关专业知识和实践经验的团队,从而保证勘探工作的顺利实施。
在数据解释阶段,也需要专业人员进行综合分析,提出科学合理的建议和结论。
六、安全防护在进行瞬变电磁法勘探时,需要注意安全防护措施。
特别是在野外作业时,要对设备操作人员进行安全培训,确保他们了解相关危险因素和应急措施。
五、瞬变电磁法(TEM) 瞬变电磁法是利⽤不接地或接地线源向地下发送⼀次场,在⼀次场的间歇期间,测量由地质体产⽣的感应电磁场随时间的变化。
根据⼆次场的衰减曲线特征,就可以判断地下不同深度地质体的电性特征及规模⼤⼩等。
由于该⽅法是观测纯⼆次场,消除了由⼀次场所产⽣的装置偶合噪⾳,具有体积效应⼩、横向分辨率⾼、探测深度深、对低阻反映灵敏、与探测地质体有偶合、受旁侧地质体影响⼩等优点。
瞬变电磁法最初是由前苏联学者在20世纪30年代提出⽤于解决地质构造问题,20世纪50年代⽤于找矿,20世纪60年代以后从⽅法原理到⼀、⼆维反演都得到了⼴泛应⽤和发展。
在我国,该⽅法研究始于20世纪70年代,20世纪90年代后逐步向⼯程检测、环境、灾害等应⽤领域发展。
从20世纪80年代开始,原长春地质学院、原地矿部物化探研究所、中南⼤学等研究机构分别在⽅法理论、仪器及野外试验、⼀维及⼆维正反演⽅法等⽅⾯做了⼤量⼯作,并且⾃⾏研制了⼏种功率⼩、探测深度浅的瞬变电磁法仪器,在⽣产实际中见到了好的应⽤效果。
然⽽,⼤功率、探测深的瞬变电磁法仪器国内尚在研制中,⽬前主要依赖进⼝。
瞬变电磁法除了⼴泛应⽤于⾦属矿产、⽯油、煤⽥、地热以及冻⼟带和海洋地质等地质勘查⼯作之外,在⽔⽂和⼯程地质勘查中也取得了⾮常好的应⽤效果,如杨⽂钦(2002)、张保祥(2002)、郁万彩(2001)、蒋⽂(2004)等使⽤瞬变电磁法查明断层及顶板砂岩的导⽔性及富⽔性、勘查地下⽔资源及界定地下⽔位、评价断层空间位置及含⽔性和寻找地下含⽔构造;刘继东(1999)、李貅(2000)、袁江华(2002)、阎述(1999)等使⽤瞬变电磁法探测煤柱及圈定⽼窑采空区、勘察煤⽥矿井涌⽔通道、探测⼩浪底⽔库库区煤矿采空区和探测地下洞体的存在;刘⽻(1995)⽤瞬变电磁法评价塌陷成因及危害性、评价防渗帷幕稳定性、探测⾼层建筑地基和评价⼤桥桥址稳定性;郭⽟松(1998)使⽤瞬变电磁法探测堤防⼯程隐患、勘查⽔库坝址;薛国强(2003)使⽤瞬变电磁法探测公路隧道⼯程中的不良地质构造;李⽂尧(2000)⽤瞬变电磁法在抗洪抢险中寻找漏⽔断裂或溶洞;敬荣中(2003)使⽤瞬变电磁法结合四极测深探测地下管分布。
瞬变电磁法的基本原理
瞬变电磁法是电磁勘察的经典技术,具有无损检测、快速检测、深度较深等优点。
它是基于地球的磁场瞬变信号的原理,通过安装在地面的磁场探测器,利用地球的磁场受到磁性物体的叠加,形成磁场瞬变信号,然后将瞬变信号通过线缆传送到计算机中进行处理,可以精确地探测出地下磁性体的大小、位置和磁性等信息。
瞬变电磁勘探可以进行快速、全面、准确的地下磁性体探测,它在水文、工程、地质等方面具有广泛的应用。
瞬变电磁法的基本原理是:地球自身有一个恒定的磁场,当磁性物体出现在地球表面时,地球的磁场就会受到影响,这些受影响的磁场能够形成一个瞬变信号,这个信号能够通过电线传播到安装在地表的传感器上,然后把这些信号传输到计算机上进行深入分析,以获得磁性物体的具体信息。
瞬变电磁法报告引言瞬变电磁法(Transient Electromagnetic Method,TEM)是一种非侵入性地下物探方法,广泛应用于矿产勘探、地质调查和水资源评价等领域。
该方法通过测量地下介质对电磁场的响应,可以获取地下的电阻率和电导率等信息,从而推测地下的地质结构和水文特征。
本报告将介绍瞬变电磁法的原理、仪器设备、数据处理方法以及其在勘探领域的应用情况。
原理瞬变电磁法是基于法拉第电磁感应定律和电磁场传播理论的。
其核心原理是在地下埋设主发射线圈和用于接收电磁信号的线圈,通过给主发射线圈施加瞬变电流,产生瞬变电磁场。
这个瞬变电磁场会感应地下的电流,进而产生感应电磁场,其中电磁场的传播过程会导致接收线圈中电磁信号的变化。
通过测量接收线圈中的电磁信号变化情况,可以推测地下介质的电阻率和电导率等物理参数。
仪器设备瞬变电磁法的仪器设备主要包括发射线圈和接收线圈两部分。
发射线圈通常由一对同心圆线圈组成,中间隔离一段距离,并通过一个高电压电流源施加瞬变电流。
接收线圈通常也是一对同心圆线圈,与发射线圈对应放置。
为了减少噪音干扰,接收线圈一般会使用差分模式进行测量。
此外,为了提高测量精度,仪器还包括数据采集设备、控制器和电缆等。
数据处理方法瞬变电磁法的数据处理主要分为两个步骤:预处理和解释处理。
预处理主要包括数据校正和数据滤波。
校正过程主要是对接收线圈信号进行校正,去除仪器和噪音引起的偏移。
滤波过程主要是对数据进行滤波处理,去除高频噪音和低频漂移等。
解释处理是根据已校正并滤波的数据,利用数学模型和反演算法对地下电阻率进行推测。
常用的解释处理方法包括二维反演、三维反演和测深等。
应用情况瞬变电磁法在矿产勘探、地质调查和水资源评价等领域有广泛的应用。
在矿产勘探中,可以利用瞬变电磁法探测地下的矿床和矿体分布情况,帮助寻找矿产资源。
在地质调查中,可以利用瞬变电磁法推测地下构造和地质体分布,辅助地质勘探和地质灾害预测。
电磁法在地球内部结构研究中的应用地球内部结构的研究一直以来都是地球科学的重要课题之一。
了解地球内部的结构对于我们理解地震活动、构造演化以及资源勘探等方面具有重要的意义。
在过去的几十年里,电磁法作为一种非常有效的地球物理勘探方法,被广泛应用于地球内部结构的研究。
本文将介绍电磁法在地球内部结构研究中的应用,包括原理、方法和案例。
一、电磁法原理电磁法是利用电磁场在地下的传播特性来推断地下结构的一种地球物理勘探方法。
其原理是基于麦克斯韦方程组,通过测量地面上的电磁场变化来推断地下介质的导电性或磁导率分布。
根据不同频率的电磁场特性,常用的电磁法包括直流电法、大地电磁法和瞬变电磁法等。
二、电磁法方法1. 直流电法直流电法是最早被应用于地球内部结构研究的电磁法之一。
其原理是通过在地下注入直流电流,测量地面上的电位差,推断地下介质的电阻率分布。
直流电法具有较好的穿透能力,可以研究较深的地下结构。
2. 大地电磁法大地电磁法是利用地球自然磁场和地下导电体之间相互作用的原理,通过测量地面上的磁场和电场变化来推断地下结构的一种方法。
大地电磁法的优点是适用于不同频率范围内的观测,并可以推断地下的电导率和磁导率等参数。
3. 瞬变电磁法瞬变电磁法是利用强磁场激发短暂的电流脉冲,通过测量地面上的感应电磁场变化来推断地下结构的方法。
瞬变电磁法可以提供较高的空间分辨率和时间分辨率,适用于浅层地下结构的研究。
三、电磁法在地球内部结构研究中的应用1. 地震带和断裂活动地震带和断裂活动的研究是地球内部结构研究的重要方向之一。
电磁法可以通过测量地下的电导率分布来推断断裂带的性质和深度,从而加深我们对地震带和断裂活动的理解。
2. 岩石圈和流体运移岩石圈和地下流体运移对地球内部结构有着重要的影响。
电磁法可以通过测量地下的电导率和磁导率分布来推断岩石圈的性质和地下流体运移的情况,从而揭示地球内部的物质运移过程。
3. 矿产资源勘探电磁法在矿产资源勘探中具有广泛的应用。
四)瞬变电磁测深法(水文地质工作手册)1、 方法原理简介瞬变电磁测深法(简称TEMS)是一种时间域电磁法。
基于电性差异,以阶跃波形电磁脉冲激发,利用不接地回线或接地线源向地下发射一次脉冲磁场,在一次脉冲磁场的间歇期间(断电后),利用线圈或接地电极测量由地下介质产生的感应二次场(二次涡流场)随时间的变化,达到寻找目标地质体的地球物理勘探方法。
其数学物理基础为电磁感应原理,即导电介质在阶跃变化的激励磁场的激发下产生涡流场的问题。
一次脉冲信号。
二次场信号表示为:52M q Vμ⋅⋅=(1) 式中:0μ为磁导率;M 为发送线圈磁矩;q 为接收线圈等效面积;ρ为地层电阻率;t 为时间。
从上式中可以看出,二次场信号与34ρ ,54t 成反比,当探测地下良导电地质体时。
在往地面敷设的发送回线中通以一定的脉冲电流。
使回线中间及周围一定区域内便会产生稳定的磁场(称一次场或激励场),如果一次电流突然中断,则一次磁场随之消失,使处于该激励场中的良导电地质体内部由于磁通量Φ的变化而产生感应电动势d dt ε=-Φ (据法拉第电磁感应定律),感应电动势在良导电地质体中产生二次涡流,二次涡流又由于焦耳热消耗而不断衰减,其二次磁场也随之衰减(见图1)。
由于感应二次场的衰变规律与地下地质体的导电性有关,导电性越好,二次场衰减越慢;导电性越差,二次场衰减越快。
因此,通过研究二次场的衰减规律便可达到探测地下地质异常体的目的。
图1 TEM 法工作原理示意图瞬变电磁场在大地中主要以扩散形式传播,在这一过程中,电磁能量直接在导电介质中由于传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是源下面的局部,较低频部分传播到深处,且分布范围逐渐扩大。
传播深度:d= (2)传播速度:zd V t ∂==∂ (3)式中:t — 传播时间;σ —介质电导率;0μ— 真空中的磁导率。
由(2)式得:72210t h p π-=⨯, (4) 在中心回线下,时间与表层电阻率之间的关系可写为:()()2125031400I L t ηπρμ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦= (5) 联立(4)(5)式,可得中心回线装置估算极限探测深度H 的公式为:15210.55L I Hρη⎛⎫ ⎪⎝⎭= (6)mR N η=式中:I — 发送电流;L — 发送回线边长;1ρ—上覆电阻率;η—最小可分辨电压,它的大小与目标层几何参数和物理参数及观测时间段有关。
瞬变电磁法电磁学是研究电磁场产生、传播和作用的科学,电磁法的主要应用是地球物理勘探,即以电磁场的变化作为地球内部物质构造的判别与研究。
其中最重要的一种电磁方法就是瞬变电磁法。
瞬变电磁法是电磁勘探方法中最为重要的一种。
它是在短时间(几秒钟内)内电磁场的反复的改变,然后改变的电磁场引发地下不同的磁质体,从而表现出不同的响应特性,从而探测到地下结构及其物质构成。
瞬变电磁方法主要分为发射法和接收法,其中首先通过发射电磁场,形成瞬变磁场,再利用接收系统接收被感应磁场及其噪声信号,并再经过相关处理,进而获得物理参数信息。
瞬变电磁法有着极为丰富的信息,它可以获得地下物质的深度构造、属性等,还能探测隐藏的金属物质、水体分布等信息,因此,瞬变电磁法在地球物理勘探和评价方面有着十分重要的作用。
瞬变电磁勘探得到的主要成果是物质构造深度图、磁性参数图等,其中物质构造深度图可以用于描述地下物质构造的深度分布,它是用灰度值表示深度,磁性参数图可以用于反映地下物质的属性,它使用颜色表示不同的参数值,显示属性分布情况,这两种图像可以为解译地质构造、勘探和评价提供重要的基础。
瞬变电磁法的应用范围广泛,主要应用在金属和非金属矿产勘探,地质灾害预测,地下水探测,工程地质调查,水文地质等领域。
它可以准确地反映地下物质的属性,有效地探测地下结构,因此,它在各领域都得到了广泛的应用。
瞬变电磁法在勘探和评价中有着重要的作用,但它也有一些不足之处。
首先,瞬变电磁法只能提供局部的勘探,无法提供全局的勘探信息;其次,磁性参数的测量精度相对较低,它是一种非开放的技术,且具有较强的环境干扰;最后,探测结果受到各种磁场的影响,大气磁场的变化会影响测量结果的准确性,因而会影响勘探的准确性。
瞬变电磁法是一项重要的地球物理手段,它已经应用广泛,但相关技术也有待改进。
未来,应加强以瞬变电磁法为主体,结合其他手段,如超声波法、岩石物理法等,实现对地球物理领域的更加精确的勘探和评价,进一步推动地质物理领域的发展。
瞬变电磁法原理瞬变电磁法是一种地球物理勘探方法,它利用地球瞬变电磁场的变化来探测地下的电性结构。
瞬变电磁法原理是基于法拉第电磁感应定律和麦克斯韦方程组的理论基础上发展起来的。
在地球物理勘探中,瞬变电磁法具有较高的探测深度和分辨率,被广泛应用于矿产勘探、地下水资源调查、环境地质调查等领域。
瞬变电磁法原理的核心是通过地面上的发射线圈激发电磁信号,然后利用接收线圈测量地下介质对电磁信号的响应。
在瞬变电磁法中,发射线圈产生的电磁信号会在地下的不同介质中发生反射、折射和散射,这些过程会导致接收线圈接收到不同的电磁信号。
通过分析接收到的电磁信号,可以推断地下介质的电性特征,从而实现地下结构的探测。
瞬变电磁法原理的实现过程可以简单描述为,首先,发射线圈施加电流激发电磁信号,然后接收线圈测量地下介质对电磁信号的响应。
接收到的信号经过放大、滤波等处理后,得到地下介质的电性特征信息。
通过分析这些信息,可以绘制出地下电性结构的剖面图,从而为地质勘探工作提供重要的参考依据。
瞬变电磁法原理的关键在于对地下电磁响应的准确解释和分析。
地下介质的电性特征会对电磁信号产生不同的响应,这种响应与地下介质的电导率、介电常数等物理性质有关。
因此,通过对接收到的电磁信号进行反演处理,可以推断地下介质的电性结构,包括电导率、介电常数等参数。
这些参数对地质勘探具有重要的意义,可以帮助勘探人员判断地下是否存在矿产、地下水资源的分布情况等。
总的来说,瞬变电磁法原理是基于地球物理学和电磁学的理论基础,通过对地下电磁响应的测量和分析,可以实现对地下电性结构的探测。
瞬变电磁法在地质勘探、水资源调查、环境地质调查等领域具有重要的应用价值,可以为勘探工作提供重要的技术支持和科学依据。
随着科学技术的不断发展,瞬变电磁法原理和技术将继续得到改进和完善,为地下结构的探测提供更加精准和可靠的技术手段。