恒压供水系统设计
- 格式:doc
- 大小:295.50 KB
- 文档页数:32
变频恒压供水控制系统设计一、引言变频恒压供水控制系统是一种能够自动调节水泵电机的转速,保持管网内水压恒定的系统。
该系统通过变频器控制水泵电机的转速,根据实时水压信号对水泵进行调节,从而实现供水系统的恒压供水。
本文将从系统设计原理、硬件选型、控制策略等方面对变频恒压供水控制系统进行设计。
2. 控制原理变频恒压供水控制系统采用闭环控制原理,主要分为压力调节环和流量调节环两部分。
压力调节环根据实时水压信号,控制变频器调节水泵电机的转速,以维持管网内的水压恒定。
流量调节环主要通过监测流量传感器的输出信号,控制变频器调节水泵电机的转速,以满足用户的实际用水量需求。
三、硬件选型1. 水泵电机选择适当功率的三相异步电动机,能够满足供水系统的实际需求,保证系统的正常运行。
2. 变频器选用带有PID调节功能的变频器,能够根据实时水压信号对电机转速进行精确调节,确保系统供水的恒压运行。
3. 压力传感器选择高灵敏度的压力传感器,能够实时监测管网内的水压信号,为系统提供准确的控制信号。
5. 控制面板控制面板应具有良好的人机界面,能够显示系统的运行状态、参数,方便用户对系统进行监测和操作。
6. 其他配件根据实际需求,可能需要选购接线端子、线缆、散热器等辅助设备。
四、控制策略1. 系统启动当系统启动时,变频恒压供水控制系统应自动进行初始化,自检各传感器和执行机构,确保系统能够正常运行。
3. 流量调节系统同时监测流量传感器的输人信号,根据用户的实际用水量,控制变频器调节水泵电机的转速,以满足流量调节环的要求。
4. 故障处理系统应具备故障自诊断功能,当系统发生故障时,能够自动报警或进入相应的故障处理程序,保证对用户的供水不受影响。
五、系统调试1. 对水泵电机、变频器等设备进行正确的接线和安装。
2. 对传感器进行校准,确保其输出信号的准确性。
3. 对控制系统进行相关参数的设定和调试。
4. 对整个系统进行联合调试,验证系统的正常运行。
恒压供水自动控制系统设计方案控制策略:1.PID控制策略:根据水压的反馈信号与设定值之间的误差,计算出控制阀门的开度,以调节出水流量,使水压保持在设定值范围内。
2.水泵组合运行策略:根据需求的水流量大小,自动选择合适的水泵数量和运行状态(单泵或多泵并联),以满足供水系统对水压的要求。
3.系统监测与故障诊断策略:通过监测系统中的传感器,实时监测供水系统的压力、流量、温度等参数,并能够自动诊断故障,提供警报和故障排除建议。
硬件选择:1.压力传感器:选用高精度、稳定性好的压力传感器,能够实时准确地测量供水系统中的水压,并将信号传送给控制器。
2.控制阀门:选择高灵敏度、响应速度快的电动或气动控制阀门,能够根据控制信号快速调节水量,实现恒压供水。
3.变频器:选择适合的变频器可以根据供水需求调节水泵的运行频率,提高系统的能效,减少能耗。
4.控制器:选用可编程控制器(PLC)或微处理器控制器(MCU),具有强大的计算和控制能力,能够实时处理信号,控制整个供水系统的运行。
系统布局:1.水源与水池:根据供水需求选择水源和水池的容量,保证水能够持续供应。
2.水泵配置:根据供水系统的水压需求,选择合适的水泵类型和数量,自动控制其启停和运行状态,以稳定供水压力。
3.阀门安装:在输送管道上设置自动控制阀门,根据系统控制信号调节阀门的开度,以控制出水量,保持恒定的水压。
4.传感器安装:将压力传感器、流量计等安装在适当的位置,能够准确地测量和传递相关参数,为系统控制提供实时反馈信号。
5.控制器布置:控制器应该安装在恒温恒湿的环境中,与其他元件紧密配合,并与操作界面(如触摸屏)相连,便于操作和监控系统运行。
以上是对恒压供水自动控制系统设计方案的一个基本描述。
具体的实施方案需要根据实际情况进行具体分析和设计,以确保系统运行的稳定性、可靠性和效果。
恒压供水系统自动控制设计一、控制策略设计:1.压力传感器:安装在水泵的出水管道上,用于实时监测出水压力,并将监测数据反馈给控制装置。
2.控制装置:根据压力传感器的反馈数据,判断当前的出水压力是否达到设定值,并决定是否调整水泵的运行状态。
3.设定值设定:用户可以通过控制装置进行设定,可以根据实际需要设定出水压力的目标值。
二、控制装置设计:1.控制算法:根据压力传感器的反馈数据,控制算法可以采用PID控制策略,通过对比设定值和实际值来计算出相应的控制信号,控制水泵的开启和关闭。
2.控制信号传输:控制装置通过控制信号传输装置将计算出的控制信号传输给水泵控制装置。
3.水泵控制装置:根据接收到的控制信号,控制水泵的启停和运行速度。
可以采用变频控制方式,通过调整水泵的转速来实现出水压力的调节。
三、系统优化设计:1.启停设置:当出水压力低于设定值时,自动启动水泵;当出水压力达到设定值后,自动停止水泵。
避免压力超过设定值或低于设定值过多的情况,保持出水压力稳定。
2.变频控制:根据压力传感器的反馈数据,控制装置可以实时调整水泵的转速。
当出水压力低于设定值时,增加水泵的转速;当出水压力高于设定值时,降低水泵的转速。
通过改变水泵的转速,可以实现稳定的出水压力。
3.故障保护:当水泵运行异常或发生故障时,控制装置应能够及时报警,并关闭水泵以避免进一步损害设备。
同时,还可以设计自动切换备用水泵的功能,保证供水的连续性和可靠性。
综上所述,恒压供水系统的自动控制设计包括压力传感器的安装和数据反馈、控制装置的设计、设定值的设定、控制算法的选择、控制信号传输装置的设计、水泵控制装置的设计等多个方面。
通过合理的设计和控制策略,可以实现恒压供水系统的稳定运行,提高供水的效率和质量,同时还能够减少能源的消耗和设备的损耗。
工厂恒压供水控制系统设计在设计工厂恒压供水控制系统时,需要考虑以下几个方面:1.系统结构设计:系统可以包括水泵、水箱、压力传感器、控制器等设备。
水泵负责将水从水源中抽取,然后将水送至水箱进行储存,并通过压力传感器实时监测水箱内的水压情况。
控制器根据传感器反馈的数据,控制水泵的工作状态,以保持水压的稳定。
同时,系统还应该设计有报警装置,一旦发生异常情况,系统能够及时发出警报。
2.水泵选择:在选择水泵时,需要根据工厂的实际需求来确定水泵的流量和扬程。
流量决定了水泵每分钟输送的水量,扬程则决定了水泵能够达到的最高供水高度。
此外,还需要考虑水泵的功率和效率,以及工作可靠性和维护方便性。
3.水箱容量和位置:水箱的容量应根据工厂的供水需求而确定,一般可以根据平均日供水量计算。
水箱的位置应尽量选择在离水源和用水点较近的位置,以减少管道的长度和压力损失。
4.压力传感器选型:压力传感器应具备较高的精度和稳定性,能够准确测量水箱内的水压。
传感器的输出信号一般为模拟信号,需要通过模数转换器转换为数字信号,进一步传输到控制器。
5.控制器设计:控制器应具备自动控制的功能,能够根据压力传感器的反馈数据,自动调节水泵的启停和转速。
控制器还应具备一定的运算能力,能够实现压力设定、报警、监测和数据记录等功能。
6.系统的安全性和可靠性:为了确保系统的安全性和可靠性,应在系统中设置合适的安全装置,如过流保护、过压保护和短路保护等。
此外,在日常维护工作中应定期对系统进行检查和维护,及时发现并排除故障。
7.系统的扩展性和可升级性:在设计系统时,应考虑到工厂未来扩建或改造的可能性。
系统应具备良好的扩展性和可升级性,以便进行后续的改造和升级。
总而言之,工厂恒压供水控制系统的设计需要考虑到工厂的实际需求和水源条件,合理选择水泵、水箱、压力传感器等设备,并设计合适的控制器。
同时,还应注意系统的安全性和可靠性,以及系统的扩展性和可升级性。
变频恒压供水控制系统设计【摘要】本文介绍了变频恒压供水控制系统设计的相关内容。
在系统设计要求中,需要考虑稳定供水压力和节约能源的需求。
系统组成包括变频驱动器、传感器、控制器等部件。
系统控制原理是利用变频器对水泵速度进行调节来维持恒定的供水压力。
在系统设计方案中,需要考虑水泵的选型和安装位置等因素。
通过系统性能分析可以评估系统的稳定性和效率。
通过本文的研究,可以为变频恒压供水控制系统的设计和应用提供参考。
【关键词】变频恒压、供水控制系统、设计要求、系统组成、系统控制原理、系统设计方案、系统性能分析、结论。
1. 引言1.1 引言变频恒压供水控制系统设计是现代城市供水系统中的重要组成部分,它能够有效地调节水压,确保供水稳定性和节能高效性。
随着城市化进程的加快,供水需求不断增加,传统的供水系统已经不能满足需求,因此采用变频恒压供水控制系统已经成为一个必然趋势。
本文将首先介绍系统设计的基本要求,包括稳定的供水压力、节能高效、易维护等方面。
然后将详细介绍系统的组成,包括变频器、水泵、传感器等核心部件。
接着将介绍系统的控制原理,包括PID控制、频率调节等技术原理。
将提出系统的设计方案,包括硬件设计、软件设计以及系统整体架构。
对系统的性能进行分析,包括稳定性、节能性、可靠性等方面,以验证系统设计的合理性。
通过本文的介绍,读者可以了解变频恒压供水控制系统设计的基本原理与方法,为现代供水系统的优化设计提供参考。
2. 正文2.1 系统设计要求1. 稳定性要求:变频恒压供水控制系统需要保持稳定的工作状态,确保水压在设定范围内波动较小,以满足用户对水压稳定性的需求。
2. 响应速度要求:系统需要具有较快的响应速度,能够及时调整水泵的转速以保持设定的恒压供水状态,提高用户体验。
3. 节能性要求:设计要充分考虑系统的能耗情况,尽量减少无效能耗,优化控制算法以实现节能运行,降低运行成本。
4. 可靠性要求:系统设计应考虑到设备的可靠性,确保系统能够长时间稳定运行,减少维护和修复成本,提高系统的可用性和可靠性。
OCCUPATION 2012 12132研究R ESEARCH 变频恒压供水系统方案设计赵 毅摘 要:变频恒压供水系统由PLC、传感器、变频器及水泵机组组成闭环控制系统,经变频器内置PID进行运算,通过PLC控制变频与工频切换,实现闭环自动调节变频恒压供水,代替了传统的水塔供水控制方案。
关键词:恒压供水 变频调速 变频器 PLC一、系统总体方案的设计1.供水控制系统的结构供水控制系统的设计主要包括两方面:一方面是机械结构的设计;另一方面是PLC和变频器电气控制方面的设计。
(1)主要组成部分。
①压力传感器:作为系统的控制输入量,能否准确采集该信号决定控制系统的精度及可靠性。
②控制器:是整个控制系统的核心,通过对外界输入状态进行检测,输出控制量;对外界输入的数据进行运算处理后,输出相应的控制量。
例如单片机、可编程逻辑控制器、计算机等。
本系统采用西门子的SIMATIC S7-200系列。
CPU226具有24个输入点和16个输出点,共40个I/O点。
③变频器:作为核心控制器的后续控制单元,对终端设备进行控制,最终达到控制要求。
本系统主要采用全新一代标准变频器中的风机和泵类变转矩负载专用MM430型变频器。
功率范围7.5kW至250kW。
具有高度可靠性和灵活性。
④水泵:供水系统的执行机构,通过变频器控制电动机的转速,最后达到控制水泵流量大小的要求。
(2)电气控制系统。
电气控制系统主要包括操作面板、电气控制柜等单元。
在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,然后根据设定的程序进行数据处理,供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统水处理设备运转的监视及控制、故障及异常状况的报警等。
电气控制系统安装在电气控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。
2.恒压供水系统的工作原理变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。
基于PLC的恒压供水系统的设计1. 引言1.1 背景介绍恒压供水系统是一种能够保持管网压力恒定的供水系统,其特点是在用户用水量变化时能够自动调节工作状态,保持供水压力恒定。
随着城市建设的发展和人们对供水质量和供水压力要求的提高,恒压供水系统在城市供水系统中得到了广泛的应用。
在传统的供水系统中,因为管网压力波动大,用户在高峰时段可能会出现供水压力不足的情况,影响用户的用水体验。
而恒压供水系统通过在系统中增加变频器或调速器等设备,能够根据用户用水量的变化实时调节泵的运行状态,从而保持管网的压力稳定,提高供水系统的稳定性和可靠性。
恒压供水系统的设计和应用对于提高城市供水系统的运行效率和水质保障具有重要意义。
基于PLC的恒压供水系统能够更加智能化地控制供水系统的运行,提高系统的运行效率和稳定性。
研究基于PLC 的恒压供水系统的设计对于推动供水系统的智能化和可持续发展具有重要的意义。
1.2 研究意义恒压供水系统作为现代生活中不可或缺的设备,其稳定可靠的运行对于保障用户正常生活和生产经营具有重要意义。
传统的恒压供水系统存在着一些问题,如压力波动大、能耗高、维护成本高等。
对于基于PLC的恒压供水系统的研究具有重要的意义。
通过对基于PLC的恒压供水系统进行研究和设计,不仅可以提升系统的性能和可靠性,还可以为恒压供水系统的发展带来新的技术突破和创新,推动相关领域的发展。
本文旨在探讨基于PLC技术的恒压供水系统的设计原理和方法,为相关研究和应用提供参考和借鉴。
1.3 研究目的研究目的是为了探索基于PLC的恒压供水系统设计的有效性和可行性。
通过对恒压供水系统的原理和特点进行分析,以及PLC在恒压供水系统中的应用情况进行研究,我们可以更好地理解恒压供水系统的设计要求和实施步骤。
通过对基于PLC的恒压供水系统的硬件设计和软件设计进行详细的讨论,可以为工程师和研究人员提供实用的设计方案和技术支持。
通过本研究,我们希望能够总结出基于PLC的恒压供水系统设计的优势和特点,为未来的恒压供水系统设计和研究提供参考和借鉴。
基于单片机的恒压供水系统设计
恒压供水系统是一种常见的水泵控制系统,主要用于保持用户端的水
压稳定。
在本文中,将介绍基于单片机的恒压供水系统的设计。
恒压供水系统的基本原理是通过控制水泵的启停和转速,以保持用户
端的水压恒定不变。
系统的设计主要包括传感器的选择与连接、单片机的
编程、驱动电路的设计等。
首先,选择和连接传感器。
恒压供水系统中最关键的传感器是压力传
感器和流量传感器。
压力传感器用于测量用户端的压力大小,而流量传感
器则用于计算水泵的工作流量。
这两个传感器应该能够与单片机进行连接
并传输数据。
其次,进行单片机的编程。
单片机可以根据传感器测得的数据,通过
控制水泵的启停和转速,以实现恒定的水压。
编程的关键是根据实际需求
确定水泵的工作状态和转速,并实现相应的控制逻辑。
例如,当水压低于
设定值时,单片机可以启动水泵并逐渐增加转速;当水压达到设定值时,
单片机可以停止水泵或者降低转速。
最后,进行驱动电路的设计。
水泵通常需要较大的电流和电压来工作,因此需要设计适当的驱动电路。
这个电路应该能够与单片机进行连接,并
根据单片机的控制信号提供所需的电流和电压给水泵。
在整个系统设计中,还需要考虑到系统的可靠性和安全性。
例如,可
以设置安全开关来监测水泵的状态,当水泵出现故障时及时停止供水,避
免水泵过热或水压过高等问题。
同时,还可以设置报警装置来提醒用户系
统的异常情况。
恒压供水系统设计恒压供水系统设计一、引言随着城市化进程的加速,城市供水系统已成为促进经济、保障人民生活和促进城市和谐发展的重要基础设施。
然而,传统的供水系统存在很多问题,如供水压力不稳定、水质难以保证等。
因此,如何设计一种高效、稳定、安全的恒压供水系统已成为供水领域的研究热点之一。
本文将介绍恒压供水系统的设计及其原理,包括供水系统的结构、控制策略、电控柜、水泵及配套设备等方面。
希望通过本文的介绍,能够更好地指导恒压供水系统的设计和应用。
二、供水系统的结构恒压供水系统的结构主要包括水泵及其配套设备、控制系统、压力容器及差压开关。
1.水泵及其配套设备水泵是恒压供水系统的核心部分,其主要作用是将源水从储水池或水井中抽出并提升到供水管网中。
水泵可以分为离心泵、潜水泵和柱塞泵等多种类型,不同类型的泵适用于不同的工作条件。
水泵的配套设备主要包括阀门、配管、非负压开关、过滤器、逆止阀等。
这些设备可以有效保护水泵,延长其使用寿命,并可根据实际需要进行配置。
2.控制系统恒压供水系统的控制系统主要由电控柜、变频器、PLC等组成。
控制系统可以根据供水管网的压力变化自动控制水泵的启停,从而达到恒压供水的目的。
同时,控制系统还可以实现保护、监测和报警等功能。
3.压力容器及差压开关压力容器和差压开关是恒压供水系统中常用的配件。
压力容器可以通过存储压缩空气的方式,来缓解水泵在启动或停机时的水击现象,从而保护水泵和管道;差压开关可以对水泵的进出水口进行监测,实现自动控制启停。
三、控制策略恒压供水系统的控制策略可以根据实际需要分为分级控制和组合控制两种。
1.分级控制分级控制是指根据不同用水压力要求,将供水管网划分为不同的区域,并分别配置相应的水泵和控制系统。
当某一区域的用水量增加时,控制系统就自动启动该区域对应的水泵,并通过变频器控制其运行频率,从而达到维持该区域用水压力恒定的目的。
当该区域用水量下降时,控制系统会自动停止该区域的水泵,从而节约能源。
恒压供水系统设计概述恒压供水系统是一种利用控制技术保持水压恒定的供水系统。
在传统的供水系统中,水压可能会受到外界因素的影响而波动,导致水压不稳定的问题。
而恒压供水系统通过控制水泵的运行来调整水压,使其保持在一个稳定的水平,从而解决了水压不稳定的问题。
本文将介绍恒压供水系统的设计原理和操作步骤。
设计原理恒压供水系统的设计原理基于控制技术。
系统通过感应水压的变化,实时调整水泵的运行状态,从而保持水压恒定。
具体原理如下: 1. 感应:系统在关键水路上安装压力传感器,以感应水压的变化。
2. 反馈控制:感应器将实时采集到的数据传输给控制器。
控制器通过与设定的目标水压进行比较,确定水压是否处于合适的范围内。
3. 调整水泵运行:当实际水压低于设定水压时,控制器会启动水泵,增加供水量;当实际水压高于设定水压时,控制器会停止水泵,减少供水量。
4. 反馈机制:调整完毕后,控制器通过再次检测水压来确认调整是否达到预期效果。
如果水压仍然不达标,控制器会继续调整水泵的运行状态,直到水压稳定在设定范围内。
设计步骤恒压供水系统的设计包括以下步骤: 1. 系统需求分析:根据实际需求确定使用恒压供水系统的区域范围、水压要求等参数。
2. 设计水路结构:根据系统需求和实际情况设计水路结构,包括水泵布置、管道布置等。
3. 选择水泵和控制器:根据系统需求选定合适的水泵和控制器。
水泵的选择需要考虑供水量、扬程等参数;控制器的选择需要考虑水压调节范围、调节精度等参数。
4. 安装:根据设计图纸进行水泵和管道的安装工作,确保安装准确稳固。
5. 连接和调试:将水泵、控制器、压力传感器等设备进行连接,进行系统调试和功能测试。
6. 操作和维护:完成系统安装和调试后,进行操作和维护培训,确保系统正常运行,并定期进行设备检查和维护。
优点和应用恒压供水系统具有以下优点: - 水压稳定:恒压供水系统可以实时调整水泵的运行状态,保持水压的恒定,提高供水质量。
目录第一章绪论 (1)1.1引言 (1)1.2楼宇供水系统的控制要求 (1)1.3楼宇供水系统的工作原理 (2)1.4楼宇供水系统的工作原理 (3)1.5系统主要特点 (5)第二章恒压供水控制硬件系统的设计 (7)2.1PLC的特点 (7)2.2PLC的硬件系统 (8)2.3恒压供水控制系统PLC的选择和功能 (8)2.4恒压供水控制系统设计要点 (9)2.5PLC控制系统设计与调试的一般步骤 (9)2.6变频调速恒压供水系统功能说明 (11)2.7变频调速恒压供水系统电路图 (12)第三章变频调速恒压供水系统软件设计 (18)3.1PLC应用系统的软件设计内容 (18)3.2PLC应用系统的软件设计步骤 (18)3.3编程的基本原则 (18)3.4系统软件流程图 (19)3.5供水系统主程序设计 (20)3.6供水系统的子程序设计 (23)3.7供水系统的中断程序设计 (23)3.8储存器功能表与整体程序分析 (24)结论与体会 (25)主要参考材料: (26)附录1:系统的主程序指令 (27)附录2:系统的子程序指令 (29)附录3:系统的中断程序指令 (30)第一章绪论1.1 引言由于生活用水过程中存在不同时间段用水量不均现象。
如果不对供水量进行调节,管网压力的波动也会很大,容易出现管网失压或爆管事故,同时也浪费了大量能源。
为了节约电能,又能保证正常用水,供水部门也采取了不少措施。
近几年最为常用的变频恒压供水系统能根据压力变化情况及时调整电机转速,将供水压力控制在一定范围之内,既满足了变化的用水需求,也起到了节能降耗的目的。
恒压供水技术以其节能、安全、供水高品质等优点,在供水行业得到了广泛应用。
恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化自动调节系统的运行参数,恒压供水对水泵、电机也起到了很好的保护作用和有效地节约了电能的消耗。
结合使用可编程控制器,可实现循环变频,电机软启动,具有短路保护、过流保护功能,工作稳定可靠,延长了设备的使用寿命。
但是,变频恒压供水系统存在如下不足:(1)由于供水系统出口压力与实际用水需求存在较大的滞后性,供水系统存在较大的周期性压力波动。
(2)变频范围只有在离心泵的特性曲线最佳工作范围内,也就是下调频率10%~30%才能显示出其最大的节能效益,如再往下调频率,就会出现水泵运转而不出水的工况,即超出了离心泵的极限工作范围。
(3)在深夜用水量很小的时候,水泵在变频器控制下较长时间内低频(速)运转对水泵机械工况不利,同时耗能增加,约为额定功率的25%。
针对上述问题,以PLC为核心,采用模糊控制技术和压力补偿策略实现的变频恒压供水控制系统较好地解决了上述问题。
1.2 楼宇供水系统的控制要求变频调速恒压供水系统具有节能、安全、高品质的供水质量等优点。
采用PLC作为控制器,硬件结构简单,成本低,系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求。
设计可编程控制器程序实现对恒压供水系统的控制有两个基本要本要求。
1.2.1 水泵的启停根据主管道给出的压力信号决定水泵的启停,当压力低于正常压力时启动一个水泵,10S后仍低,则启动下一台;当压力高于正常压力时,切断一台水泵,10S后高压信号仍存在,切断下一台。
每台泵在启动时要有软启动功能。
1.2.2 水泵启停切换原则恒压供水系统主要是由几个水泵完成对主管道供水压力的维持,考虑到电机的保护,要求几台水泵的运行时间和频率尽可能一致。
也就是说,需要接通时,首先启动停止时间最长的那台,而需要切断时则先停止运转时间最长的那台。
对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。
按照实际需要,还可以确定恒压供水系统主要控制要求如下:系统控制生活和消防水管网供水。
生活用水泵组也可做消防供水的备用,消防泵组也可参与生活泵组的交替使用。
系统能根据设定压力自动调节水泵转速和水泵运行台数,使设备运行在高效节能的最佳状态。
系统应采用闭环控制能自动调节设定压力和管网实际水压的差值,使管网供水压力始终保持恒定。
系统具有短路、过流、过压、过热、过载等多种保护。
水泵运行如有故障,则自动停止工作并报警输出,然后进行故障判断并自动启动备用泵等。
采用各种措施尽可能使系统在安全运行的情况下达到节能的目的。
1.3 楼宇供水系统的工作原理1.3.1楼宇供水系统的构成本文的供水系统可适用于生活水、工业用水以及消防等多种场合的供水。
以两台水泵组成的供水系统为例,变频调速恒压供水系统由执行机构、信号检测、控制系统、变频器、人机界面、上位连接以及报警装置等部分组成。
其工作过程:首先检测给水池液位保护开关是否动作,否则直接由变频器启动第一台水泵;同时由远传压力表测出出水口管路水压,将模拟量送到控制器,与给定水压值(设定上下限)比较后,控制变频器输出频率,调节水泵转速。
当变频器频率到达最大或最小时,由控制增加水泵或减少水泵来实现恒压供水,这样就构成了以设定压力为基准的压力闭环系统。
通常,在同一路供水系统中,设置多台常用泵,供水量大时多台泵全开,供水量少时少开一台或两台。
在采用变频器进行恒压供水时,就存在着所有的水泵配用一台变频器还是每台水泵配用一台变频器的问题。
这两种方案哪一种更好呢?本文提出了用一台变频器控制多台电机的方案,既节约了投资,又达到了恒压供水的目的。
供水系统由主供水回路、泵房组成,其中泵房装有2台泵。
另外,还有多个电动闸阀或控制设备。
系统需要供水量比较少时就开一台水泵向管网充压,供水量大时开2台泵机同时向管网充压。
要想维持供水网的压力不变,根据反馈定理在管网系统的管道上安装了压力变送器作为反馈元件。
采用以PLC控制的方式来实现对两台泵切换及工频变频的切换控制。
用变频器实现电动机的调速运行。
恒压供水系统主要由上位机、PLC、一台变频器、压力变送器、电机(M1和M2)、水泵组和气压罐组成,其中上位机、PLC和变频器组成系统的核心,自动控制给水泵的投入台数和电机的转数,实现闭环自动调节恒压供水。
两台变频器均具有内置PID,可消除控制参量的静态误差、突变、滞后等现象,缩短系统稳定的时间。
楼宇供水系统的构成原理图如图1.1所示。
图1.1 楼宇供水系统的构成原理图1.4楼宇供水系统的工作原理考虑整个供水系统由2台水泵组成,分成生活泵组和消防泵组,生活泵组主要用于生活管网供水,消防泵组用于消防状态下的消防用水补给(同时生活泵组的恒速泵也作为消防泵组的恒速泵的备用),生活泵组和消防泵组定时倒换,并互相备用。
因此消防和生活供水便成为既独立又互相联系的两个系统(每套系统由一台变速泵和一台恒速泵组成,同时生活泵组的恒速泵可作为消防泵的备用),被控量为消防和生活供水管网的压力信号。
一般情况下由上位PC机给定生活管网压力,然后与压力传感器所测管网实际压力进行比较,将差值送入变频器内置PID进行运算,用结果控制变频器的频率输出,当管网压力低于给定值时,PID正向积分控制变频器输出,频率增加,水泵加速,管网压力将不断增大直到趋于设定值。
反之,当管网压力高于给定值时,PID反向积分,变频器输出频率降低,水泵减速,管网压力将不断减小。
当管网压力等于设定值时,变频器频率保持恒定,管网水压也基本恒定。
当用水量过大时,调速全速运行也不能满足管网压力恒定,压力的下限信号和变频器的工频信号同时被系统检测到时,PLC将自动投入一台恒速泵,增加一供水固定值,仍由调速泵调至恒压。
变频器的输出频率在0~50Hz之间变化,频率越高,水泵的出口压力越大。
调节变频器的输出频率,就可以改变水泵的输出能力。
我们采用的是差动式压力传感器,安装在水泵的出水管道上,用于水压的闭环控制。
同时启动必须为变频启动,以保证较小的启动电流和较大的启动转矩。
压力信号通过PID调节器驱动变频器,然后通过报警表的限值输出控制PLC切换泵的运行状态。
加上启动信号后,首先1#号泵变频启动,延时10S后(延时目的使压力稳定下来),如压力信号为正常值则保持变频运行;如压力信号为下限则1#号切换工频,同时延时1S后(延时目的使开关熄弧,防止短路)把2号投入变频运行;如果运行一段时间水压较低(正常值的低值),则把2号也切换为工频运行,以保证供水压力;如达到较高压力(正常值的高值)则把其中一台切换为变频运行,另一台工频运行;如达到上限值则切除工频,保持变频运行。
若仍为上限值则1、2号泵停机。
若恢复到正常值则按流程图的正常值条件运行。
根据上面的对于供水系统的分析,首先由上位机给定压力值,然后系统按控制过程通过变频器和PLC的控制迅速使消防管网压力到达设定值附近。
基于PLC 和变频器的恒压供水控制系统工作原理图如图1.2所示。
图1.2 恒压供水控制系统工作原理图1.5 系统主要特点为了避免启动时的冲击电流,电机采用变频启动方式,从变频器的输出得到逐渐上升的频率和电压。
启动前变频器要复位。
根据供水管网流量、压力变化自动控制变频器输出频率,从而调节电动机和水泵的转速,实现恒压供水。
如设备的输出电压和频率上升到工频仍不能满足供水要求时,PLC发出指令1号泵自动切换到工频电源运行,待1号泵完全退出变频运行,对变频器复位后,2号水泵投入变频运行。
根据恒压的需要,采取无主次切换,即“先开先停”的原则接入和退出。
在PLC的程序中,通过设置工频水泵的台数,由给定频率是否达到上限频率或下限频率来判断增加水泵或减少水泵。
为了避免一台水泵长期工作,任一水泵最好不要连续变频运行超过3小时。
这个系统还能对水位下限,变频器、PLC 故障等报警。
当PLC发生故障时,系统从自动转入手动方式。
系统正常运行时,用户用水管网上的压力传感器对用户的用水水压进行数据采样,传输至PLC,与用户设定的压力值进行比较,将结果转换为频率调节信号和水泵启动台数信号分别送至变频器和可编程控制器。
变频器调节水泵电机的电源频率,进而调整水泵的转速,PLC控制水泵的运转。
通过对水泵的启动和停止台数及其中变频泵转速的调节,将用户管网中的水压恒定于用户预先设计的压力值,达到变频恒压供水的目的。
该恒压供水系统的各部分主要特点与功能:(1)操作台:实现系统操作控制及参数的设定与显示。
(2)可编程序控制器:操作控制信号的输入,以及PLC的控制输出,实现对两台变频器的切换及调速控制。
(3)变频器:有手动、自动调速功能。
第二章恒压供水控制硬件系统的设计2.1 PLC的特点恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。
PLC有以下特点:(1)可靠性高,抗干扰能力强现代PLC采用了集成度很高的微电子器件,大量的开关动作由无触点的半导体电路来完成,其可靠程度是使用机械触点的接触器—继电器系统所无法比拟的。