软件工程01
- 格式:ppt
- 大小:505.00 KB
- 文档页数:35
软件工程是一门研究用工程化方法构建和维护有效、实用和高质量的软件的学科。
它涉及到程序设计语言,数据库,软件开发工具,系统平台,标准,设计模式等方面。
在现代社会中,软件应用于多个方面,各个行业几乎都有计算机软件的应用,比如工业,农业,银行,航空,政府部门等。
软件工程的目标是提高软件生产效率、提高软件质量、降低软件成本。
比较认可的一种定义认为:软件工程是研究和应用如何以系统性的、规范化的、可定量的过程化方法去开发和维护软件,以及如何把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来。
软件工程的研究范围广泛,主要包括以下几个方面:1.软件需求分析与定义:软件需求是针对待解决问题的特性的描述,所定义的需求必须可以被验证。
通过需求分析,可以检测和解决需求之间的冲突、发现系统的边界、并详细描选出系统需求。
2.软件设计、测试与维护:软件设计是根据软件需求,产生一个软件内部结构的描述,并将其作为软件构造的基础。
通过软件设计,描述出软件架构及相关组件之间的接口,然后进一步详细地描述组件,以便能构成这些组件。
软件测试是为了评价和改进产品质量、识别产品的缺陷和问题而进行的活动。
测试是为了验证软件是否符合其规格说明。
此外,软件维护是为了改正运行时或运行后的错误,或者为了提高软件性能和软件可维护性而对软件进行的修改。
3.软件工程管理:包括项目管理、质量管理、风险管理等。
4.软件工具与环境:包括软件开发工具、软件工程环境等。
5.软件工程过程:包括软件开发、软件测试、软件维护等过程中的方法和规范。
软件工程的应用场景非常广泛,包括但不限于以下领域:1.软件开发:这是软件工程最主要的应用场景,通过软件工程的方法,可以规范化软件开发流程,提高软件开发效率和质量。
2.软件测试:在软件工程中,测试是非常重要的一部分。
通过测试,可以发现软件中的缺陷和错误,从而提高软件的质量和可靠性。
3.项目管理:软件工程中的项目管理是为了合理规划软件开发过程,合理分配资源,提高项目效率和质量。
教学目的:1. 了解软件、软件危机等概念2. 掌握软件工程的定义、原理、目标和原则教学重点:软件工程的定义、原理、目标和原则教学难点:软件工程的目标和原则第一章软件与软件工程1.1 软件(Software)1.1.1 软件与软件的组成程序设计语言三种类型:1.机器语言、汇编语言:依赖于机器,面向机器2.高级语言:独立于机器,面向过程或面向对象3.面向问题语言:独立于机器,非过程式语言(4GL)文档(document)—一种数据媒体和其上所记录的数据。
文档记录软件开发活动和阶段成果,具有永久性,可供人或机器阅读。
文档可用于专业人员和用户之间的通信和交流;软件开发过程的管理;运行阶段的维护。
1. 软件的特点软件是逻辑产品,硬件是物理产品。
特点:(1)软件开发更依赖于开发人员的业务素质、智力、人员的组织、合作和管理。
软件开发、设计几乎都是从头开始,成本和进度很难估计。
(2)软件存在潜伏错误,硬件错误一般能排除。
(3)软件开发成功后,只需对原版进行复制。
(4)软件在使用过程中维护复杂:1)纠错性维护—改正运行期间发现的潜伏错误;2)完善性维护—提高或完善软件的性能;3)适应性维护—修改软件,以适应软硬件环境的变化;4)预防性维护—改进软件未来的可维护性和可靠性。
(5)软件不会磨损和老化。
2. 软件的发展第一阶段——20世纪60年代中期以前,软件开发处于个体化生产状态。
在这一阶段中,软件还没有系统化的开发方法。
目标主要集中在如何提高时空效率上。
第二阶段——从20世纪60年代中期到70年代末期。
软件开发已进入了作坊式生产方式,即出现了“软件车间”。
软件开发开始形成产品。
到20世纪60年代末,“软件危机”变得十分严重。
第三阶段——从20世纪70年代中期到20世纪80年代末期。
软件开发进入了产业化生产,即出现了众多大型的“软件公司”。
在这一阶段,软件开发开始采用了“工程”的方法,软件产品急剧增加,质量也有了很大的提高。
软件工程——01软件生命周期模型软件工程——01 软件生命周期模型引言软件工程是一门涉及软件开发、维护和管理的学科与技术。
在软件开发过程中,一个关键的概念就是软件生命周期模型。
软件生命周期模型是一种描述软件开发过程的抽象框架,它帮助开发人员理解和组织软件开发的不同阶段,以及在每个阶段中需要执行的任务和活动。
本文将介绍几种常见的软件生命周期模型,包括瀑布模型、原型模型、迭代模型和增量模型。
每种模型都有其特点和适用场景,在实际项目中开发团队可以根据具体需求选择合适的模型。
1. 瀑布模型瀑布模型是最早被提出和广泛使用的软件生命周期模型之一。
它将软件开发过程划分为一系列严格的阶段,每个阶段按顺序进行,只有当前一阶段完成后才能进入下一阶段。
瀑布模型的阶段包括需求分析、设计、编码、和维护。
瀑布模型的优势在于结构清晰、易于管理和追踪进度。
,它也存在一些缺陷,如需求变更困难、开发周期长、风险无法及时评估等。
2. 原型模型原型模型是一种快速开发的软件生命周期模型。
它强调通过快速建立原型来理解用户需求、验证解决方案。
原型模型的过程包括需求收集、原型设计、原型构建、用户反馈和改进。
原型模型的优势在于在开发过程中可以及时掌握用户需求并进行调整,有效减少需求变更带来的影响。
,原型模型也存在一些限制,如原型可能无法完全满足实际系统的要求、原型开发时间较长等。
3. 迭代模型迭代模型是一种灵活的软件生命周期模型,它允许开发人员根据实际情况进行反复迭代。
迭代模型的过程包括需求分析、设计、编码、和评审,每个阶段可能会经历多轮迭代。
迭代模型的优势在于可以通过快速迭代来逐步完善系统,并及时响应用户反馈和需求变更。
,迭代模型也要求开发团队具备较高的灵活性和素质,迭代次数过多也可能导致项目时间和成本的增加。
4. 增量模型增量模型是一种渐进式的软件生命周期模型,它将开发过程划分为多个相互独立的增量。
每个增量包含需求分析、设计、编码、和维护等阶段,开发人员逐步完成系统的不同功能。
1.软件生存期模型是从软件项目需求定义开始到软件被废弃使用为止,跨越整个生存期的系统开发、运行和维护所实施的全部过程、活动和任务的结构框架。
到目前为止,存在的软件生存期模型有:演化模型,螺旋模型,智能模型,喷泉模型,瀑布模型等。
2.软件需求分析方法包括原型化方法和结构分析方法。
软件原型化方法是在研究分析阶段的方法和技术中产生的,但是也可用语面向软件开发的其他阶段。
由于软件项目的特点和运行原形的目的的不同,原型主要有三种不同的作用类型:探索型,实验型,进化型。
探索型的目的是要弄清目标系统的需求,确定所希望的特性,研究多种方案的可行性。
它主要针对开发目标模糊,用户和开发者对项目都缺乏经验的情况。
实验型的目的用于大规模开发和实现之前,考核方案是否合适,规格说明书是否可靠。
进化型的目的不在于改进规格说明,而是将系统建造的易于变化,在改进原型的过程中,逐步将原型变成最终系统。
它将原型方法的思想扩展到软件开发的全过程,适合于满足需求的变动。
由于运用原型的目的和方式不同,在使用原型时可采用以下两种不同的策略:(1)废弃策略:先构造一个功能简单而且质量要求不高的模型系统,针对这个模型系统反复进行分析修改,形成比较好的设计思想,据此设计出完整、准确、一致、可靠的最终系统,系统构造完成后,原来的模型被废弃不用。
它对应于探索型和实验型。
(2)追加策略:先构造一个功能简单而且质量要求不高的模型系统作为最终系统的核心,然后不断扩充修改,逐步追加新的要求,最后成为最终的系统。
它对应于进化型。
3.在软件工程的设计阶段中,有三种常用的设计方法:结构化设计方法SD、Jackson方法和Parnas方法。
SD方法侧重于用数据流图表示系统的分解,且用数据字典和说明分别表示数据和接工的含义;Jackson方法侧重于由数据结构导出模块结构;Parnas方法的主要思想将可能引起变化的因素隐藏在某有关模块内部,是这些因素变化时的影响范围受到限制。