大连理工大学矩阵分析matlab上机作业
- 格式:pdf
- 大小:944.40 KB
- 文档页数:40
第一题Lagrange插值函数function y=lagrange(x0,y0,x);n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endx0=[1:10];y0=[67.052,68.008,69.803,72.024,73.400,72.063,74.669,74.487,74.065,76 .777];lagrange(x0,y0,17)ans= -1.9516e+12x=[1:0.1:10];x=x';plot(x0,y0,'r');hold onplot(x,y,'k');legend('原函数','拟合函数')拟合图像如下拟合函数出现了龙格现象,运用多项式进行插值拟合时,效果并不好,高次多项式会因为误差的不断累积,导致龙格现象的发生。
第二题function fun =nihe(n)m=[67.052*10^6,68.008*10^6,69.803*10^6,72.024*10^6,73.400*10^6,72.063 *10^6,74.669*10^6,74.487*10^6,74.065*10^6,76.777*10^6];w=[1,2,3,4,5,6,7,8,9,10];d1=0;d2=0;d3=0;y1=polyfit(m,w,1);y2=polyfit(m,w,2);y3=polyfit(m,w,3);y2=poly2sym(s2);y3=poly2sym(s3);y4=poly2sym(s4);f1=subs(y1,17);f2=subs(y2,17);f3=subs(y3,17);for p=1:10;d1=d1+(subs(y1,w(p))-m(p))^2;d2=d2+(subs(y2,w(p))-m(p))^2;d3=d3+(subs(y3,w(p))-m(p))^2;endd1=sqrt(d1);d2=sqrt(d2);d3=sqrt(d3);fun=[f1 f2 f3;d2 d3 d4];return;结果拟合形式预计2010年产量均方误差直线83382272.733087388.906抛物线74410590.912601531.997三次曲线99041977.162396531.259三次函数的均方误差最小,拟合的最好。
大连理工大学概率上机作业第一次上机作业1.利用Matlab自带命令产生1000个均匀随机变量服从U(0,1)。
>> unifrnd(0,1,20,50)ans =Columns 1 through 100.8147 0.6557 0.4387 0.7513 0.3517 0.1622 0.1067 0.8530 0.7803 0.54700.9058 0.0357 0.3816 0.2551 0.8308 0.7943 0.9619 0.6221 0.3897 0.29630.1270 0.8491 0.7655 0.5060 0.5853 0.3112 0.0046 0.3510 0.2417 0.74470.9134 0.9340 0.7952 0.6991 0.5497 0.5285 0.7749 0.5132 0.4039 0.18900.6324 0.6787 0.1869 0.8909 0.9172 0.1656 0.8173 0.4018 0.0965 0.68680.0975 0.7577 0.4898 0.9593 0.2858 0.6020 0.8687 0.0760 0.1320 0.18350.2785 0.7431 0.4456 0.5472 0.7572 0.2630 0.0844 0.2399 0.9421 0.36850.5469 0.3922 0.6463 0.1386 0.7537 0.6541 0.3998 0.1233 0.9561 0.62560.9575 0.6555 0.7094 0.1493 0.3804 0.6892 0.2599 0.1839 0.5752 0.78020.9649 0.1712 0.7547 0.2575 0.5678 0.7482 0.8001 0.2400 0.0598 0.08110.1576 0.7060 0.2760 0.8407 0.0759 0.4505 0.4314 0.4173 0.2348 0.92940.9706 0.0318 0.6797 0.2543 0.0540 0.0838 0.9106 0.0497 0.3532 0.77570.9572 0.2769 0.6551 0.8143 0.5308 0.2290 0.1818 0.9027 0.8212 0.48680.4854 0.0462 0.1626 0.2435 0.7792 0.9133 0.2638 0.9448 0.0154 0.43590.8003 0.0971 0.1190 0.9293 0.9340 0.1524 0.1455 0.4909 0.0430 0.44680.1419 0.8235 0.4984 0.3500 0.1299 0.8258 0.1361 0.4893 0.1690 0.30630.4218 0.6948 0.9597 0.1966 0.5688 0.5383 0.8693 0.3377 0.6491 0.50850.9157 0.3171 0.3404 0.2511 0.4694 0.9961 0.5797 0.9001 0.7317 0.51080.7922 0.9502 0.5853 0.6160 0.0119 0.0782 0.5499 0.3692 0.6477 0.81760.9595 0.0344 0.2238 0.4733 0.3371 0.4427 0.1450 0.1112 0.4509 0.7948Columns 11 through 200.6443 0.3111 0.0855 0.0377 0.0305 0.0596 0.1734 0.9516 0.0326 0.25180.3786 0.9234 0.2625 0.8852 0.7441 0.6820 0.3909 0.9203 0.5612 0.29040.8116 0.4302 0.8010 0.9133 0.5000 0.0424 0.8314 0.0527 0.8819 0.61710.5328 0.1848 0.0292 0.7962 0.4799 0.0714 0.8034 0.7379 0.6692 0.26530.3507 0.9049 0.9289 0.0987 0.9047 0.5216 0.0605 0.2691 0.1904 0.82440.9390 0.9797 0.7303 0.2619 0.6099 0.0967 0.3993 0.42280.3689 0.98270.8759 0.4389 0.4886 0.3354 0.6177 0.8181 0.5269 0.5479 0.4607 0.73020.5502 0.1111 0.5785 0.6797 0.8594 0.8175 0.4168 0.9427 0.9816 0.3439 0.6225 0.2581 0.2373 0.1366 0.8055 0.7224 0.6569 0.4177 0.1564 0.5841 0.5870 0.4087 0.4588 0.7212 0.5767 0.1499 0.6280 0.9831 0.8555 0.1078 0.2077 0.5949 0.9631 0.1068 0.1829 0.6596 0.2920 0.3015 0.6448 0.9063 0.3012 0.2622 0.5468 0.6538 0.2399 0.5186 0.4317 0.7011 0.3763 0.8797 0.4709 0.6028 0.5211 0.4942 0.8865 0.9730 0.0155 0.6663 0.1909 0.8178 0.2305 0.7112 0.2316 0.7791 0.0287 0.6490 0.9841 0.5391 0.4283 0.2607 0.8443 0.2217 0.4889 0.7150 0.4899 0.8003 0.1672 0.6981 0.4820 0.5944 0.1948 0.1174 0.6241 0.9037 0.1679 0.4538 0.1062 0.6665 0.1206 0.0225 0.2259 0.2967 0.6791 0.8909 0.9787 0.4324 0.3724 0.1781 0.5895 0.4253 0.1707 0.3188 0.3955 0.3342 0.7127 0.8253 0.1981 0.1280 0.2262 0.3127 0.2277 0.4242 0.3674 0.6987 0.5005 0.0835 0.4897 0.9991 0.3846 0.1615 0.4357 0.5079 0.9880 0.1978 0.4711 0.1332 0.3395 0.1711 0.5830 0.1788Columns 21 through 300.4229 0.7788 0.2548 0.1759 0.6476 0.5822 0.4046 0.3477 0.8217 0.5144 0.0942 0.4235 0.2240 0.7218 0.6790 0.5407 0.4484 0.1500 0.4299 0.8843 0.5985 0.0908 0.6678 0.4735 0.6358 0.8699 0.3658 0.5861 0.8878 0.5880 0.4709 0.2665 0.8444 0.1527 0.9452 0.2648 0.7635 0.2621 0.3912 0.1548 0.6959 0.1537 0.3445 0.3411 0.2089 0.3181 0.6279 0.0445 0.7691 0.1999 0.6999 0.2810 0.7805 0.6074 0.7093 0.1192 0.7720 0.7549 0.3968 0.4070 0.6385 0.4401 0.6753 0.1917 0.2362 0.9398 0.9329 0.2428 0.8085 0.7487 0.0336 0.5271 0.0067 0.7384 0.1194 0.6456 0.9727 0.4424 0.7551 0.8256 0.0688 0.4574 0.6022 0.2428 0.6073 0.4795 0.1920 0.6878 0.3774 0.7900 0.3196 0.8754 0.3868 0.9174 0.4501 0.6393 0.1389 0.35920.2160 0.3185 0.5309 0.5181 0.9160 0.2691 0.4587 0.5447 0.6963 0.7363 0.7904 0.5341 0.6544 0.9436 0.0012 0.7655 0.6619 0.6473 0.0938 0.3947 0.9493 0.0900 0.4076 0.6377 0.4624 0.1887 0.7703 0.5439 0.5254 0.6834 0.3276 0.1117 0.8200 0.9577 0.4243 0.2875 0.3502 0.7210 0.5303 0.7040 0.6713 0.1363 0.7184 0.2407 0.4609 0.0911 0.6620 0.5225 0.8611 0.4423 0.4386 0.6787 0.9686 0.6761 0.7702 0.5762 0.4162 0.9937 0.4849 0.0196 0.8335 0.4952 0.5313 0.2891 0.3225 0.6834 0.8419 0.2187 0.3935 0.3309 0.7689 0.1897 0.3251 0.6718 0.7847 0.5466 0.8329 0.1058 0.6714 0.4243 0.1673 0.4950 0.1056 0.6951 0.4714 0.4257 0.2564 0.1097 0.7413 0.2703 0.8620 0.1476 0.6110 0.0680 0.0358 0.6444 0.6135 0.0636 0.5201 0.1971 0.9899 0.0550Columns 31 through 400.8507 0.7386 0.5523 0.1239 0.7378 0.5590 0.1781 0.8949 0.6311 0.6925 0.5606 0.5860 0.6299 0.4904 0.0634 0.8541 0.3596 0.0715 0.0899 0.5567 0.9296 0.2467 0.0320 0.8530 0.8604 0.3479 0.0567 0.2425 0.0809 0.3965 0.6967 0.6664 0.6147 0.8739 0.9344 0.4460 0.5219 0.0538 0.7772 0.0616 0.5828 0.0835 0.3624 0.2703 0.9844 0.0542 0.3358 0.4417 0.9051 0.78020.8154 0.6260 0.0495 0.2085 0.8589 0.1771 0.1757 0.0133 0.5338 0.33760.8790 0.6609 0.4896 0.5650 0.7856 0.6628 0.2089 0.8972 0.1092 0.60790.9889 0.7298 0.1925 0.6403 0.5134 0.3308 0.9052 0.1967 0.8258 0.74130.0005 0.8908 0.1231 0.4170 0.1776 0.8985 0.6754 0.0934 0.3381 0.10480.8654 0.9823 0.2055 0.2060 0.3986 0.1182 0.4685 0.3074 0.2940 0.12790.6126 0.7690 0.1465 0.9479 0.1339 0.9884 0.9121 0.45610.7463 0.54950.9900 0.5814 0.1891 0.0821 0.0309 0.5400 0.1040 0.1017 0.0103 0.48520.5277 0.9283 0.0427 0.1057 0.9391 0.7069 0.7455 0.9954 0.0484 0.89050.4795 0.5801 0.6352 0.1420 0.3013 0.9995 0.7363 0.3321 0.6679 0.79900.8013 0.0170 0.2819 0.1665 0.2955 0.2878 0.5619 0.2973 0.6035 0.73430.2278 0.1209 0.5386 0.6210 0.3329 0.4145 0.1842 0.0620 0.5261 0.05130.4981 0.8627 0.6952 0.5737 0.4671 0.4648 0.5972 0.2982 0.7297 0.07290.9009 0.4843 0.4991 0.0521 0.6482 0.7640 0.2999 0.0464 0.7073 0.08850.5747 0.8449 0.5358 0.9312 0.0252 0.8182 0.1341 0.5054 0.7814 0.79840.8452 0.2094 0.4452 0.7287 0.8422 0.1002 0.2126 0.7614 0.2880 0.9430Columns 41 through 500.6837 0.7894 0.1123 0.6733 0.0986 0.9879 0.5975 0.7593 0.8092 0.75190.1321 0.3677 0.7844 0.4296 0.1420 0.1704 0.3353 0.7406 0.7486 0.22870.7227 0.2060 0.2916 0.4517 0.1683 0.2578 0.2992 0.7437 0.1202 0.06420.1104 0.0867 0.6035 0.6099 0.1962 0.3968 0.4526 0.1059 0.5250 0.76730.1175 0.7719 0.9644 0.0594 0.3175 0.0740 0.4226 0.6816 0.3258 0.67120.6407 0.2057 0.4325 0.3158 0.3164 0.6841 0.3596 0.4633 0.5464 0.71520.3288 0.3883 0.6948 0.7727 0.2176 0.4024 0.5583 0.2122 0.3989 0.64210.6538 0.5518 0.7581 0.6964 0.2510 0.9828 0.7425 0.0985 0.4151 0.41900.7491 0.2290 0.4326 0.1253 0.8929 0.4022 0.4243 0.8236 0.1807 0.39080.5832 0.6419 0.6555 0.1302 0.7032 0.6207 0.4294 0.1750 0.2554 0.81610.7400 0.4845 0.1098 0.0924 0.5557 0.1544 0.1249 0.1636 0.0205 0.31740.2348 0.1518 0.9338 0.0078 0.1844 0.3813 0.0244 0.6660 0.9237 0.81450.7350 0.7819 0.1875 0.4231 0.2120 0.1611 0.2902 0.8944 0.6537 0.78910.9706 0.1006 0.2662 0.6556 0.0773 0.7581 0.3175 0.5166 0.9326 0.85230.8669 0.2941 0.7978 0.7229 0.9138 0.8711 0.6537 0.7027 0.1635 0.50560.0862 0.2374 0.4876 0.5312 0.7067 0.3508 0.9569 0.1536 0.9211 0.63570.3664 0.5309 0.7690 0.1088 0.5578 0.6855 0.9357 0.9535 0.7947 0.95090.3692 0.0915 0.3960 0.6318 0.3134 0.2941 0.4579 0.5409 0.5774 0.44400.6850 0.4053 0.2729 0.1265 0.1662 0.5306 0.2405 0.6797 0.4400 0.06000.5979 0.1048 0.0372 0.1343 0.6225 0.8324 0.7639 0.0366 0.2576 0.8667 2.参考课本综合例题2.5.4和2.5.5中的方法,模拟产生1000个随机变量,使其服从参数为2的指数分布,进而计算这1000个随机数的均值和方差。
矩阵与数值分析上机作业学校:大连理工大学学院:班级:姓名:学号:授课老师:注:编程语言Matlab程序:Norm.m函数function s=Norm(x,m)%求向量x的范数%m取1,2,inf分别表示1,2,无穷范数n=length(x);s=0;switch mcase 1 %1-范数for i=1:ns=s+abs(x(i));endcase 2 %2-范数for i=1:ns=s+x(i)^2;ends=sqrt(s);case inf %无穷-范数s=max(abs(x));end计算向量x,y的范数Test1.mclear all;clc;n1=10;n2=100;n3=1000;x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]'; y1=[1:n1]';y2=[1:n2]';y3=[1:n3]';disp('n=10时');disp('x的1-范数:');disp(Norm(x1,1));disp('x的2-范数:');disp(Norm(x1,2));disp('x的无穷-范数:');disp(Norm(x1,inf)); disp('y的1-范数:');disp(Norm(y1,1));disp('y的2-范数:');disp(Norm(y1,2));disp('y的无穷-范数:');disp(Norm(y1,inf)); disp('n=100时');disp('x的1-范数:');disp(Norm(x2,1));disp('x的2-范数:');disp(Norm(x2,2));disp('x的无穷-范数:');disp(Norm(x2,inf));disp('y的1-范数:');disp(Norm(y2,1));disp('y的2-范数:');disp(Norm(y2,2));disp('y的无穷-范数:');disp(Norm(y2,inf));disp('n=1000时');disp('x的1-范数:');disp(Norm(x3,1));disp('x的2-范数:');disp(Norm(x3,2));disp('x的无穷-范数:');disp(Norm(x3,inf));disp('y的1-范数:');disp(Norm(y3,1));disp('y的2-范数:');disp(Norm(y3,2));disp('y的无穷-范数:');disp(Norm(y3,inf));运行结果:n=10时x的1-范数:2.9290;x的2-范数:1.2449; x的无穷-范数:1y的1-范数:55; y的2-范数:19.6214; y的无穷-范数:10n=100时x的1-范数:5.1874;x的2-范数: 1.2787; x的无穷-范数:1y的1-范数:5050; y的2-范数:581.6786; y的无穷-范数:100n=1000时x的1-范数:7.4855; x的2-范数:1.2822; x的无穷-范数:1y的1-范数: 500500; y的2-范数:1.8271e+004;y的无穷-范数:1000程序Test2.mclear all;clc;n=100;%区间h=2*10^(-15)/n;%步长x=-10^(-15):h:10^(-15);%第一种原函数f1=zeros(1,n+1);for k=1:n+1if x(k)~=0f1(k)=log(1+x(k))/x(k);elsef1(k)=1;endendsubplot(2,1,1);plot(x,f1,'-r');axis([-10^(-15),10^(-15),-1,2]); legend('原图');%第二种算法f2=zeros(1,n+1);for k=1:n+1d=1+x(k);if(d~=1)f2(k)=log(d)/(d-1);elsef2(k)=1;endendsubplot(2,1,2);plot(x,f2,'-r');axis([-10^(-15),10^(-15),-1,2]); legend('第二种算法');运行结果:显然第二种算法结果不准确,是因为计算机中的舍入误差造成的,当]10,10[1515--∈x 时,x d +=1,计算机进行舍入造成d 恒等于1,结果函数值恒为1。
《矩阵与数值分析》上机大作业1.给定n 阶方程组Ax b =,其中6186186186A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ ,7151514b ⎛⎫ ⎪ ⎪ ⎪= ⎪⎪⎪⎝⎭则方程组有解(1,1,,1)Tx = 。
对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。
%产生三对角矩阵 n=84; %或n=10;A=zeros(n); b=zeros(1,n); for i=1:n-1A(i,i)=6;A(i,i+1)=1;A(i+1,i)=8; endA(n,n)=6;for i=2:n-1 b(1)=6; b(i)=15; b(n)=14; end Ab=[A b'];%Gauss 消元法for j=1:n-1 %按列循环 for k=j+1:n %消元Ab(k,:)=Ab(k,:)-Ab(j,:)*(Ab(k,j)/Ab(j,j)); end endx(n)=Ab(n,n+1)/Ab(n,n); for i=n-1:-1:1 %回代法求x for j=n:-1:i+1Ab(i,n+1)=Ab(i,n+1)-Ab(i,j)*x(j); endx(i)=Ab(i,n+1)/Ab(i,i); end(1)当n=10时,Gauss 消去法 Gauss 列主元消去法 x=1.000000000000000 x=1.000000000000000 1.000000000000000 1.0000000000000001.000000000000000 1.000000000000000 1.000000000000001 1.000000000000000 0.999999999999998 1.000000000000000 1.000000000000004 1.000000000000000 0.999999999999993 1.000000000000000 1.000000000000012 1.000000000000000 0.999999999999979 1.000000000000000 1.000000000000028 1.000000000000000(2) 当n=84时,Gauss 消去法的解是错解Columns 34 through 392147483649.00000 -4294967295.00000 8589934592.99999 -17179869182.9999 34359738368.9998Gauss 列主元消去法x 与x=(1,1…1)T 偏差不大 Columns 34 through 391.000000172108412 0.999999661246936 1.000000655651093 0.999998776117961 1.000002098083496综上,高斯列主元消去法可以避免小数作除数带来的误差,获得满意的数值解。
矩阵与数值分析学生:学号:任课老师:金光日教学班号:(2)班院系:电子信息与电气工程学部《矩阵与数值分析》课程数值实验题目1.给定n 阶方程组A x b =,其中6186186186A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,7151514b ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪⎝⎭则方程组有解(1,1,,1)T x = 。
对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。
1答: 程序1. Gauss 消元法function x=DelGauss(A,b) % Gauss 消去法 [n,m]=size(A); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if A(k,k)==0 return endm=A(i,k)/A(k,k); for j=k+1:nA(i,j)=A(i,j)-m*A(k,j); endb(i)=b(i)-m*b(k); enddet=det*A(k,k); %计算行列式enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end2. 列主元Gauss消去法:function x=detGauss(A,b)% Gauss列主元消去法[n,m]=size(A);nb=length(b);det=1; %存储行列式值x=zeros(n,1);for k=1:n-1amax=0; %选主元for i=k:nif abs(A(i,k))>amaxamax=abs(A(i,k));r=i;endendif amax<1e-10return;endif r>k %交换两行for j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;det=-det;endfor i=k+1:n %进行消元m=A(i,k)/A(k,k);for j=k+1:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);enddet=det*A(k,k);enddet=det*A(n,n);for k=n:-1:1 %回代求解for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end矩阵A和b的构造clc;clear;n=10;%n=84;A=eye(n)*6+diag(ones(1,n-1)*8,-1)+diag(ones(1,n-1),1); b=[7,15*ones(1,n-2),14]';计算结果:(1)n=10时Gauss消元法>>x=DelGauss(A,b)x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000列主元Gauss消去法>>x=detGauss(A,b)x =1111111111(2) n=84时Gauss消元法>>x=DelGauss(A,b) x =1.0e+008 *0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.16650.6501-1.25822.3487-4.02635.3684列主元Gauss消去法>>x=detGauss(A,b) x =1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00001.0000 1.0000 1.00001.00001.0000 1.0000结果分析由上述实验结果可知,对于n=10采用Gauss 消去法和Gauss 列主元消去法得到的实验结果是相同的,而对于n=84,Gauss 消去法所得到的结果是错误的,Gauss 列主元消去法得到的结果是正确的。
上机题一.(1)s=0;for j=2:100;s=s+1/(j^2-1); endss =0.7400s=0;for j=100:-1:2;s=s+1/(j^2-1); endss =0.7400(2)s=0;for j=2:10000;s=s+1/(j^2-1); endss =0.7499for j=10000:-1:2;s=s+1/(j^2-1); endss =0.7499(3)s=0;for j=2:1000000;s=s+1/(j^2-1); endss =0.7500s=0;for j=1000000:-1:2; s=s+1/(j^2-1); endss =0.7500二1、Jacobi 迭代法算法:对于线性方程组Ax=b ,如果A 为非奇异方程,则可将A 分解为:A=D-L-U 其中D 为对角阵,其元素为A 的对角元素,L 与U 为A 的下三角阵和上三角阵。
于是Ax=b 化为:111()k k x D L U x D b --+=++,其中1()J B D L U -=+,1f D b -=。
程序:function x=jacobi(A,b,x0)A=[-2 1 0 0;1 -2 1 0;0 1 -2 1;0 0 1 -2];b=[-1 ;0; 0; 0];x0=[0;0 ;0 ;0];D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);B=D\(L+U);f=D\b;x=B*x0+f;n=1;while norm(x-x0,2)>=1.0e-6x0=x;x=B*x0+f;n=n+1;endfprintf('迭代次数为:')nfprintf('方程组的解为:')计算结果:迭代次数为:n =60方程组的解为:ans =0.80000.60000.40000.2000.Gauss-seidel 迭代法function x=Gaussseidel(A,b,x0)A=[-2 1 0 0;1 -2 1 0;0 1 -2 1;0 0 1 -2];b=[-1 ;0; 0; 0];x0=[0;0 ;0 ;0];D=diag(diag(A));U=-triu(A,1);L=-tril(A,-1);B=(D-L)\U;f=(D-L)\b;x=B*x0+f;n=1;while norm(x-x0,2)>=1.0e-6x0=x;x=B*x0+f;n=n+1;endfprintf('迭代次数')nfprintf('方程组的解为')迭代次数为:n =31方程组的解为:ans =0.80000.60000.40000.20002.用Gauss列主元消去法算法:Gauss列主元消去法是在Gauss消去法中增加选主元的过程,即在第k步(k=1,2,3,…)消元时,首先在第k列主对角元以下(含对角元)元素中挑选绝对值最大的数(即为列主元),并通过初等行变换,使得该数位于主对角线上,然后再继续消元。
大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:交作业日时间:2016 年12 月20日1.1程序:Clear all;n=input('请输入向量的长度n:')for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.2.1程序clear all;x(1)=-10^-15;dx=10^-18;L=2*10^3;for i=1:Ly1(i)=log(1+x(i))/x(i); d=1+x(i);if d == 1y2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;endx=x(1:length(x)-1);plot(x,y1,'r');hold onplot(x,y2);2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序clear all;A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05;for i=1:length(x);y1(i)=f(A,x(i));y2(i)=(x(i)-2)^9;endfigure(3);plot(x,y1);hold on;plot(x,y2,'r');F.m文件function y=f(A,x) y=A(1);for i=2:length(A); y=x*y+A(i); end;3.2 结果第4题4.1 程序clear all;n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0);for i=1:nA(i,n)=1;endn=length(A);U=A;e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1;U=e0*U;e1=eye(n);for j=i+1:ne1(j,i)=-U(j,i)/U(i,i);endU=e1*U;P{i}=e0;%把变换矩阵存到P中L{i}=e1;e=e1*e0*e;endfor k=1:n-2Ldot{k}=L{k};for i=k+1:n-1Ldot{k}=P{i}*Ldot{k}*P{i};endendLdot{n-1}=L{n-1};LL=eye(n);PP=eye(n);for i=1:n-1PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);b=e*b; %解方程x=zeros(n,1);x(n)=b(n)/U(n,n);for i=n-1:-1:1x(i)=(b(i)-U(i,:)*x)/U(i,i);endX=U^-1*e^-1*eye(n);%计算逆矩阵AN=X';result2{n-4,1}=AN;result1{n-4,1}=x;fprintf('%d:\n',n)fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.06250.0625 1.125 -0.75 -0.5 -0.06250.0625 0.125 1.25 -0.5 -0.06250.0625 0.125 0.25 1.5 -0.0625-0.0625 -0.125 -0.25 -0.5 0.0625n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 1.125 -0.75 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 1.25 -0.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 0.0625 0.125 0.25 1.5 -0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625 -0.0625 -0.125 -0.25 -0.5 0.0625同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。
共享知识分享快乐大连理工大学矩阵与数值分析上机作业课程名称:矩阵与数值分析研究生姓名:12 交作业日时间:日20 月年2016卑微如蝼蚁、坚强似大象.共享知识分享快乐第1题1.1程序:Clear ;all n=input('请输入向量的长度n:') for i=1:n;v(i)=1/i;endY1=norm(v,1)Y2=norm(v,2)Y3=norm(v,inf)1.2结果n=10 Y1 =2.9290Y2 =1.2449Y3 =1n=100 Y1 =5.1874Y2 =1.2787Y3 =1n=1000 Y1 =7.4855Y2 =1.2822Y3 =1N=10000 Y1 =9.7876Y2 =1.2825Y3 =11.3 分析一范数逐渐递增,随着n的增加,范数的增加速度减小;二范数随着n的增加,逐渐趋于定值,无群范数都是1.卑微如蝼蚁、坚强似大象.共享知识分享快乐第2题2.1程序;clear all x(1)=-10^-15;dx=10^-18;L=2*10^3; i=1:L fory1(i)=log(1+x(i))/x(i); d=1+x(i); d == 1ify2(i)=1;elsey2(i)=log(d)/(d-1);endx(i+1)=x(i)+dx;end x=x(1:length(x)-1););'r'plot(x,y1,on holdplot(x,y2);卑微如蝼蚁、坚强似大象.共享知识分享快乐2.2 结果2.3 分析红色的曲线代表未考虑题中算法时的情况,如果考虑题中的算法则数值大小始终为1,这主要是由于大数加小数的原因。
第3题3.1 程序;clear all A=[1 -18 144 -672 2016 -4032 5376 -4608 2304 -512];x=1.95:0.005:2.05; i=1:length(x);for y1(i)=f(A,x(i)); y2(i)=(x(i)-2)^9;end figure(3);plot(x,y1);;on hold卑微如蝼蚁、坚强似大象.共享知识分享快乐);'r'plot(x,y2,F.m文件y=f(A,x)function y=A(1); i=2:length(A);for y=x*y+A(i);;end3.2 结果第4题卑微如蝼蚁、坚强似大象.共享知识分享快乐4.1 程序;clear all n=input('请输入向量的长度n:')A=2*eye(n)-tril(ones(n,n),0); i=1:n for A(i,n)=1;end n=length(A);U=A; e=eye(n);for i=1:n-1[max_data,max_index]=max(abs(U(i:n,i))); e0=eye(n);max_index=max_index+i-1; U=e0*U; e1=eye(n); j=i+1:n fore1(j,i)=-U(j,i)/U(i,i);endU=e1*U;中把变换矩阵存到P P{i}=e0;% L{i}=e1; e=e1*e0*e;endk=1:n-2for Ldot{k}=L{k}; i=k+1:n-1forLdot{k}=P{i}*Ldot{k}*P{i};endend Ldot{n-1}=L{n-1};LL=eye(n);PP=eye(n); i=1:n-1for PP=P{i}*PP;LL=Ldot{i}*LL;endb=ones(n,2);解方程 %b=e*b;x=zeros(n,1);x(n)=b(n)/U(n,n); i=n-1:-1:1for卑微如蝼蚁、坚强似大象.共享知识分享快乐x(i)=(b(i)-U(i,:)*x)/U(i,i);end计算逆矩阵%X=U^-1*e^-1*eye(n);AN=X'; result2{n-4,1}=AN;result1{n-4,1}=x;,n)'%d:\n'fprintf(fprintf('%d ',AN);4.2 结果n=51.0625 -0.875 -0.75 -0.5 -0.0625-0.0625 0.0625 -0.75 1.125 -0.5-0.0625 0.125 0.0625 1.25 -0.5-0.0625 0.1250.25 0.06251.50.0625-0.5-0.25-0.0625 -0.125n=101.0625 -0.875 -0.75 -0.5 -0.0625 1.0625 -0.875 -0.75 -0.5 -0.0625 -0.0625 1.125 0.0625 -0.75 -0.5 -0.5 0.0625 1.125 -0.75 -0.0625 -0.0625 0.0625 0.125 1.25 1.25 -0.0625 -0.5 0.0625 0.125 -0.5-0.0625 0.250.250.0625 0.1251.5 1.5 -0.0625 0.1250.06250.0625 -0.0625 -0.125 -0.25 0.0625 -0.5 -0.0625 -0.125 -0.25 -0.5 -0.0625 -0.75 1.0625 -0.5 -0.0625 -0.875 -0.5 -0.75 1.0625 -0.875 -0.0625 -0.5 0.0625 1.125 -0.5 0.0625 1.125 -0.75 -0.0625 -0.75 1.25 0.125 0.0625 -0.0625 -0.0625 -0.5 -0.5 0.0625 0.125 1.250.25-0.0625 -0.0625 1.50.1250.0625 0.0625 0.250.1251.5-0.0625 -0.125 -0.25 0.0625-0.5 0.0625 -0.0625 -0.125 -0.25-0.5同样的方法可以算出n=20,n=30时的结果,这里就不罗列了。
(1)从大到小的顺序的计算程序:function y=snd(n)format longy=0;if n<2disp('请输入大于1的数!')elses=0;i=2;while i<=ns=single(s+(1/(i^2-1))); i=i+1;endy=s;end(2)从小到大的顺序的计算程序:function y=snx(n)format longy=0;if n<2disp('请输入大于1的数!')elses=0;i=n;while 1s=single(s+(1/(i^2-1)));i=i-1;if i==1breakendendy=s;end(3)按两种顺序分别计算并指出有效位数(编制程序时用单精度)S的计算结果:①210S的计算结果:②410S的计算结果:③610计算时的有效位数为七位数。
① 秦九昭算法计算程序:function y=qjz(a,x) j=3; i=size(a,2); switch i case 1 y=a(1); case 2y=a(1)*x+a(2); otherwise p=a(1)*x+a(2); while j<=i p=p*x+a(j); j=j+1; end y=p; end② 计算在点23的值。
计算结果如下:当23=x 时()86652=x f 。
①Gauss法计算程序和结果:程序:A(1,:)=[31,-13,0,0,0,-10,0,0,0]; A(2,:)=[-13,35,-9,0,-11,0,0,0,0]; A(3,:)=[0,-9,31,-10,0,0,0,0,0];A(4,:)=[0,0,-10,79,-30,0,0,0,-9]; A(5,:)=[0,0,0,-30,57,-7,0,-5,0]; A(6,:)=[0,0,0,0,-7,47,-30,0,0];A(7,:)=[0,0,0,0,0,-30,41,0,0];A(8,:)=[0,0,0,0,-5,0,0,27,-2];A(9,:)=[0,0,0,-9,0,0,0,-2,29];B=[-15;27;-23;0;-20;12;-7;7;10]; [a,b]=gauss(A,B);j=size(a,2);while j>=1k=j+1;s=b(j);while k<=9s=s-x(k)*a(j,k);k=k+1;endx(j)=s/a(j,j);j=j-1;enddisp(x)function [x,y]=gauss(a,b)num_i=size(a,1);j=1;while j<=(num_i-1)i=j+1;while i<=num_ir=a(i,j)/a(j,j);a(i,:)=a(i,:)-r*a(j,:);b(i,:)=b(i,:)-r*b(j,:);i=i+1;endj=j+1;endx=a;y=b;运行的结果为:()T 289.0-345.0.0=。
软1414 叶秀云201492015 上机报告上机作业一Trial>> A=round(5*rand(5))B=round(5*rand(5))C=round(5*rand(5))b=round(5*rand(5,1))A+BA-BA*B+B*Ainv(A)*binv(A)rank(A)det(B)inv(B)rank(B)inv(A*B)rank(A*B)(B')*(A')inv(A*B)inv(B)*inv(A)inv(A)*C*inv(B)A =4 0 1 1 35 1 5 2 01 3 5 5 45 5 2 4 53 545 3B =4 4 4 2 24 0 3 2 22 1 2 4 33 0 54 41 0 0 1 4C =1 2 4 5 43 5 1 3 13 2 3 1 41 3 3 1 11 1 4 1 5b =21132ans =8 4 5 3 59 1 8 4 23 4 7 9 78 5 7 8 94 5 4 6 7 ans =0 -4 -3 -1 11 12 0 -2-1 2 3 1 12 5 -3 0 12 5 4 4 -1 ans =80 53 79 69 7175 54 74 77 7589 51 85 97 102110 77 111 113 12379 41 79 80 80ans =0.4754-0.3197-0.59840.9672-0.0902ans =0.3197 -0.0164 -0.2541 -0.2049 0.3607-0.8443 0.2869 0.1967 0.8361 -0.8115 -0.7213 0.4344 0.4836 0.6803 -1.05741.4262 -0.6885 -0.6721 -1.60662.1475-0.3279 0.1066 0.4016 0.5820 -0.8443 ans =5ans =418.0000ans =-0.0144 0.4354 0.0574 -0.2727 0.01910.2321 -0.2057 0.0718 -0.0909 0.02390.0718 -0.1770 -0.2871 0.3636 -0.0957-0.1100 0.0048 0.4402 -0.0909 -0.18660.0311 -0.1100 -0.1244 0.0909 0.2919 ans =5ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =5ans =24 40 45 61 5817 25 9 22 1623 43 48 59 6019 40 52 49 5527 35 59 62 60ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.0497 -0.5353 -0.0060 0.6289 0.12910.3583 1.0632 0.4029 -1.7332 -0.66080.4518 1.2872 0.8731 -2.1207 -0.6844-0.7394 -2.4091 -1.6491 4.0507 1.62510.2658 0.7208 0.5187 -1.1788 -0.5129 Trial>>上机作业二Trial>> A=rand(4)B=rand(4)C=rand(4)D=rand(4)Z=[A,B;C,D]det(Z)det(A*D-C*B)A=diag([rand rand rand rand])C=diag([rand rand rand rand])Z=[A,B;C,D]det(Z)det(A*D-C*B)A =0.9027 0.3377 0.7803 0.09650.9448 0.9001 0.3897 0.13200.4909 0.3692 0.2417 0.94210.4893 0.1112 0.4039 0.9561B =0.5752 0.8212 0.6491 0.54700.0598 0.0154 0.7317 0.29630.2348 0.0430 0.6477 0.74470.3532 0.1690 0.4509 0.1890C =0.6868 0.7802 0.4868 0.50850.1835 0.0811 0.4359 0.51080.3685 0.9294 0.4468 0.81760.6256 0.7757 0.3063 0.7948D =0.6443 0.3507 0.6225 0.47090.3786 0.9390 0.5870 0.23050.8116 0.8759 0.2077 0.84430.5328 0.5502 0.3012 0.1948Z =0.9027 0.3377 0.7803 0.0965 0.5752 0.8212 0.6491 0.54700.9448 0.9001 0.3897 0.1320 0.0598 0.0154 0.7317 0.29630.4909 0.3692 0.2417 0.9421 0.2348 0.0430 0.6477 0.74470.4893 0.1112 0.4039 0.9561 0.3532 0.1690 0.4509 0.18900.6868 0.7802 0.4868 0.5085 0.6443 0.3507 0.6225 0.47090.1835 0.0811 0.4359 0.5108 0.3786 0.9390 0.5870 0.23050.3685 0.9294 0.4468 0.8176 0.8116 0.8759 0.2077 0.84430.6256 0.7757 0.3063 0.7948 0.5328 0.5502 0.3012 0.1948 ans =-0.0232ans =0.0161A =0.2259 0 0 00 0.1707 0 00 0 0.2277 00 0 0 0.4357C =0.3111 0 0 00 0.9234 0 00 0 0.4302 00 0 0 0.1848Z =0.2259 0 0 0 0.5752 0.8212 0.6491 0.54700 0.1707 0 0 0.0598 0.0154 0.7317 0.29630 0 0.2277 0 0.2348 0.0430 0.6477 0.74470 0 0 0.4357 0.3532 0.1690 0.4509 0.18900.3111 0 0 0 0.6443 0.3507 0.6225 0.47090 0.9234 0 0 0.3786 0.9390 0.5870 0.23050 0 0.4302 0 0.8116 0.8759 0.2077 0.84430 0 0 0.1848 0.5328 0.5502 0.3012 0.1948 ans =7.3868e-04ans =7.3868e-04Trial>>上机作业三N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380上机作业四Trial>> b1=[1,1.9,f,c];Trial>> b2=[1,1.8,f,c];Trial>> A1=[a,b,c,d;0.5,1,1.5,2;12,15,22,17;e,f,g,h];Trial>> A2=[a,b,c,d;0.3,0.6,0.9,1.2;12,15,22,17;e,f,g,h];Trial>> A3=[a,b,c,d;0.1,0.2,0.3,0.4;12,15,22,17;e,f,g,h];Trial>> A4=[a,b,c,d;0.05,0.1,0.15,0.2;12,15,22,17;e,f,g,h];Trial>> x1=A1/b1 x1 =0.02700.01630.23780.5057 Trial>> x2=A2/b1 x2 =0.02700.00980.23780.5057 Trial>> x3=A4/b1 x3 =0.02700.00160.23780.5057 Trial>> x4=A4/b1 x4 =0.02700.00160.23780.5057 Trial>> x5=A1/b2 x5 =0.02650.01630.23760.5046Trial>> x6=A2/b2x6 =0.02650.00980.23760.5046Trial>> x7=A3/b2x7 =0.02650.00330.23760.5046Trial>> x8=A4/b2x8 =0.02650.00160.23760.5046Trial>>上机作业五a1=rand(5,1)a2=rand(5,1)a3=rand(5,1)a4=rand(5,1)a5=rand(5,1)A=[a1,a2,a3,a4,a5]orth(A)a1 =0.90490.97970.43890.11110.2581 a2 =0.40870.59490.26220.60280.7112 a3 =0.22170.11740.29670.31880.4242 a4 =0.50790.08550.26250.80100.0292 a5 =0.92890.73030.48860.57850.2373A =0.9049 0.4087 0.2217 0.5079 0.92890.9797 0.5949 0.1174 0.0855 0.73030.4389 0.2622 0.2967 0.2625 0.48860.1111 0.6028 0.3188 0.8010 0.57850.2581 0.7112 0.4242 0.0292 0.2373 ans =-0.5932 -0.1881 -0.4330 0.1909 -0.6235 -0.5319 -0.5286 0.1934 -0.5094 0.3752 -0.3288 0.0079 -0.0670 0.7395 0.5835 -0.4137 0.8042 -0.1828 -0.3450 0.1723 -0.2931 0.1960 0.8586 0.1953 -0.3167Trial>>上机作业六Trial>> A=rand(5)eig(A)[d,v]=eig(A)x=rand(5,1)eig(x*x')A =0.4588 0.4889 0.9880 0.0987 0.72120.9631 0.6241 0.0377 0.2619 0.10680.5468 0.6791 0.8852 0.3354 0.65380.5211 0.3955 0.9133 0.6797 0.49420.2316 0.3674 0.7962 0.1366 0.7791 ans =2.6238 + 0.0000i0.0391 + 0.2666i0.0391 - 0.2666i0.2420 + 0.0000i0.4829 + 0.0000id =-0.4582 + 0.0000i -0.4322 + 0.1366i -0.4322 - 0.1366i 0.1428 + 0.0000i 0.2020 + 0.0000i-0.3197 + 0.0000i 0.7401 + 0.0000i 0.7401 + 0.0000i -0.6192 + 0.0000i 0.3539 + 0.0000i-0.5143 + 0.0000i -0.0341 - 0.3116i -0.0341 + 0.3116i -0.2603 + 0.0000i -0.0520 + 0.0000i-0.5266 + 0.0000i 0.0473 + 0.2327i 0.0473 - 0.2327i 0.1237 + 0.0000i -0.9110 + 0.0000i-0.3821 + 0.0000i -0.2604 + 0.1558i -0.2604 - 0.1558i 0.7164 + 0.0000i -0.0373 + 0.0000iv =2.6238 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0391 + 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0391 - 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.2420 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.4829 + 0.0000i上机作业七A=[1,3/2,0;3/2,-1,1;0,1,1]rref(A)eig(A)B=[1,0,2;0,-1,-2;2,-2,0]rref(B)eig(B)A =1.0000 1.5000 01.5000 -1.0000 1.00000 1.0000 1.0000ans =1 0 00 1 00 0 1ans =-2.06161.00002.0616B =1 0 20 -1 -22 -2 0ans =1 0 20 1 20 0 0ans =-3.0000-0.00003.0000Trial>>上机作业八Trial>> A=[0.7,0.2,0.1;0.2,0.7,0.1;0.1,0.1,0.8]P0=[15;9;6]A =0.7000 0.2000 0.10000.2000 0.7000 0.10000.1000 0.1000 0.8000 P0 =1596Trial>> A*P0ans =12.90009.90007.2000Trial>> A*A*P0ans =11.730010.23008.0400Trial>> A*A*A*A*A*P0ans =10.429910.24249.3277Trial>>。