9. 吉林省长春市普通高中2017年高三年级质量检测(二)试题及答案
- 格式:doc
- 大小:5.33 MB
- 文档页数:8
第Ⅰ卷第Ⅰ卷第一部分第一部分 听力(1-20小题)在笔试结束后进行。
小题)在笔试结束后进行。
注意事项:英语听力共两节,共20小题;每小题1.5分,满分30分。
分。
第一节(共5小题;每小题1.5分,满分7.5分)分)听下面5段对话。
每段对话后有一个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt? A.£19.15. B.£9.15. C.£9.18. 答案是B 。
1.Where does the conversation probably take place? A.In a library. B.In a laboratory. C.In a restaurant. 2.What does the man mean ? A.He knows Thomas’ birth date.B.The woman is good with dates. C.He has trouble remembering dates. 3.What is the weather like now? A.Fine B.Hot C.Rainy. 4.What will the speakers do tomorrow afternoon? A.Go to a park. B.Go shopping. C.Eat out with Joe. 5.What is the man complaining about? A.His work. B.The weather. C.The noise from neighbors. 第二节(共15小题;每小题1.5分,满分22.5分)分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中多给的A 、B 、C 三个选项中选出最佳选项,选项中选出最佳选项,并标在试卷的相应位置。
长春市普通高中2017届高三质量监测(二)英语参考答案及评分参考说明:本试题满分150分。
其中听力30分,笔试120分。
第I卷第一部分听力(共两节,共20小题;每小题1.5分,满分30分)听力原文:Text 1W: May I take your order now?M: Thank you, but I'm waiting for someone to join me.Text 2W: Do you know when Thomas was born?M: Don’t ask me. I’m not good with dates.Text 3W: What bad weather!M: Don’t worry. The rain won’t last long. The radio says it’ll be fine later on.Text 4W: This is a beautiful park. Shall we come again tomorrow?M: Don’t we have to go shopping?W: We can do that in the afternoon, and come here in the morning.M: OK. And let’s bring Joe with us.Text 5M: Excuse me, madam. I am trying to do some work now. I’m afraid your children are making too much noise.W: I’m sorry. But you know it's diffi cult to keep boys quiet.Text 6W: Hello, John!M: Hello, Betty! Long time no see! Where have you been all this time?W: I was in France for a business study. I stayed there for about three months and came back only yesterday.M: Oh, I see. Did you visit any interesting places there?W: Not many. Every day I had to stay inside all day long. I didn’t have much free time to do any sightseeing, so I was only shown around the city of Paris.M: That’s a pity.W: I’ll have many chances to go to France in the futu re, so I can travel around the country some other time.M: I hope I’ll get the chance to go too.Text 7M: Did you watch the basketball game between the US and Spain?W: No, I missed it. Was it exciting?M: Yes, it was a close game. Finally, the American team beat the Spanish.W: They must have had a hard time. By the way, which is your favorite basketball team?M: The Chinese team, of course. What about you?W: In fact, I m not so interested in basketball. My favorite sport is ping-pong.M: Really? I like ping pong too. There is going to be a ping pong match in our class this weekend.Why not come with us then? We can watch it together.W: OK. Many of my classmates like ping pong. Maybe, we can have a game between classes. M: Good idea! Let's talk about it on Thursday. We will need a whole day to prepare.Text 8M: Hello, Cathy. How are you today? I heard you were ill last week.W: I'm fine now. Thank you, Peter.M: What was the matter? Nothing serious I hope.W: Oh, no. I had a bad cold and had to stay in bed for two days.M: I’m glad you’re better. Anyway, what about your friend, Ann? I heard she was ill, too.W: She was ill, but she’s all right now.M: Everybody seems to have a cold now. One day is hot and the next day is cold.W: And very windy, too. Tha t’s why I'm wearing a sweater today. What do you think of it? Pretty, isn’t it?M: It certainly is. It must have cost a lot. Where did you buy it?W: Oh, my mother bought it for me. It was on sale. It was very cheap.M: Well, Cathy. I must say, it suits you very well.W: Really? Thank you.Text 9W: I thought you went to work. Why are you still home, Daniel?M: I didn’t want to tell you, but I lost my job last week.W: Uh-oh! What about the rent? How are you going to pay it?M: Um... I was hoping you’d help me out a little, Emily. Isn’t that what older sisters are for?W: Yeah, I guess they are…but I can’t pay my little brother’s rent forever. We’ll have to move to a cheaper place soon if you don’t get another job. What are you planning to do?M: I don’t kno w! I thought my job at the theater was perfect.W: You only sold tickets to people and helped them find their seats.M: Right, but I got to watch great performances for free!W: Come on! You could be doing something better than that! I know you’re a great cook and you’ve always wanted to open your own sandwich shop. Why don’t you try to do that?M: Where would I begin? I don't know anything about running a business.W: Well, I do. I’ve been running my online store for five years. I know all the legal stuff you have to do to get started. And my friend Mike just closed his coffee house, and it’s the perfect space for your sandwich shop. It has a nice little kitchen in it already.M: That sounds perfect! You're a great sister!Text 10I used to dislike television. I thought that people spent too much time watching it. A lot of myfriends, however, always talked about the sports programs and films on it. They never read any books or went out in the evenings. So I refused to buy a TV set.Last year I turned 60 a nd I retired from my job. My son bought me a TV set. “It will make you learn some of the latest news,” he said. It’s quite true. I’ve watched all the news programs. I know far more about the world now. And I read more books, too. In fact, I think I may follow one of the Open University TV courses next year. Perhaps I’ll get a degree when I'm 65.There’s only one problem. I get quite angry when people interrupt my favorite programs. My friends don’t understand that I can change at 60.【参考答案】1.C 【命题立意】考查学生对所听内容简单推断的能力。
2017年吉林省长春市高考数学二模试卷(文科)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项涂在答题卡上)1.已知集合A={0,1,2},B={y|y=2x,x∈A}则A∩B=() A.{0,1,2} B.{1,2} C.{1,2,4} D.{1,4}2.已知复数z=1+i,则下列命题中正确的个数为()①;②;③z的虚部为i;④z在复平面上对应点在第一象限.A.1 B.2 C.3 D.43.下列函数中,既是奇函数又在(0,+∞)单调递增的函数是()A.y=e x+e﹣x B.y=ln(|x|+1)C.D.4.圆(x﹣2)2+y2=4关于直线对称的圆的方程是( )A.B.C.x2+(y﹣2)2=4 D.5.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A.25500立方尺B.34300立方尺C.46500立方尺D.48100立方尺6.某游戏设计了如图所示的空心圆环形标靶,图中所标注的一、二、三区域所对的圆心角依次为,,,则向该标靶内投点,该点落在区域二内的概率为()A.B. C. D.7.在△ABC中,D为三角形所在平面内一点,且,则=( )A.B. C. D.8.运行如图所示的程序框图,则输出结果为( )A.1008 B.1009 C.2016 D.20179.关于函数,下列叙述有误的是()A.其图象关于直线对称B.其图象可由图象上所有点的横坐标变为原来的倍得到C.其图象关于点对称D.其值域是[﹣1,3]10.如图是民航部门统计的2017年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()。
长春市普通高中2017届高三质量监测(二)语文本试题卷共10页,22题。
全卷满分150分。
考试用时150分钟。
一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1-3题。
孔府档案是围绕孔子直系后裔历代衍圣公的活动所形成的文书档案,也是我国现存数量最多、收藏最完整、内容最丰富、涵盖时间最长的私家档案文献。
因档案中保存了衍圣公与明清以来中央和地方机构之间事务往来的大量文书资料,使其又兼具官方档案的性质。
孔府档案表明,居住在孔府的衍圣公凭借大宗主的地位,在家族中建立了严密的宗族组织和管理机构,并通过修宗谱、订族规等方式统管全国各地的孔氏族人,孔氏家族宗族体系之完整、宗法制度之完善、祖训族规之完备,是其他宗族很难比拟的。
孔子世家谱汇集了分散在全国80余处支派的谱系衍变信息和流寓朝鲜半岛的孔氏族人的世系信息,其对于考察孔氏宗族繁衍,迁移、发展和影响等,具有重大参考价值。
崇儒尊孔是历代统治者巩固和强化统治秩序的手段,孔子直系后裔也因之被扶植成为拥有部分政治和经济特权的世袭贵族。
朝廷与与孔氏贵族之间有着相互依存的共同利益,这在孔府档案中都有较深刻的反映。
明清帝王或亲赴辟雍诣学观礼,或临幸阙里释奠孔子,或遣子派官致祭庙林;对孔子后裔或优免差徭,或置官封爵,或赐土赐民。
这固然表明国家对孔子学说的尊崇和对孔子后裔的优待,但也是出于强化国家思想的需要。
孔府是中国历史上持续时间最长的贵族地主庄园,保存了成序列的土地文书,包括不下10万件的各种土地执照、纳税和过割凭证等。
这些文献信息,为研究明清以来的地权分配和转移、土地买卖和经营、租佃制度及其变迁,以及农业耕作制度等经济史问题提供了翔实而可靠的材料,对探索中国古代基层社会实态和演变轨迹具有重重要价值。
孔府司房日用账簿、日收支款项账簿等,也为探究明清及民国时期基层社会的商业贸易网络、物价和生活水平及其变迁等,提供了全面而原始的记录。
在中华优秀传统文化传承和弘扬越来越受到重视的今天,孔府档案的价值也日渐凸显,它不仅保留了作为道德规范存在的族规家训,还记载了族人弘扬孝道、敦睦宗族、彰显忠义的言行事迹,其中可资弘扬家风、传承家训、承继家史的资料,无疑是文化传承的重要思想宝库。
吉林省吉林市2017届高三第二次模拟考试英语试题第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18. C £9.15.答案是C。
1. Where are the speakers?A. On a plane.B. On a bus.C. On a ship2. What time is it now?A. 7:00.B. 7:25.C. 7:30.3. What does the man mean?A. He is too busy to help her.B. His hands are holding something.C. He wants to move the sofa all by himself.4. Who is the woman?A. Mr. Johnson‟s secretary.B. Mr. Johnson‟s wife.C. Mr. Johnson‟s mother.5. How does the man feel?A. Worried.B. Excited.C. Unconcerned.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6至8题。
6. Why did Mary‟s parents make her stay at home yesterday evening?A. To let her do her homework.B. To let her take care of her baby sister.C. To let her watch TV.7. What did Mary do yesterday evening?A. She watched boxing on TV.B. She watched a movie about boxing.C. She went to a concert.8. What did John do last night?A. He watched boxing on TV.B. He went to the cinema.C. He went to a concert.听第7段材料,回答第9至11题。
吉林省吉林市普通中学2017届高三数学毕业班第二次调研测试试题理(扫描版)吉林市普通中学2016—2017学年度高中毕业班第二次调研测试数 学(理科)参考答案与评分标准一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置. 13. [0,2];2n 三、解答题17解:(1)由图象知A=1, 54(),2126T πππω=-== ----------------------------------------------------3分将点(,1)6π代入解析式得sin()1,3πϕ+=因为||2πϕ<,所以6πϕ=所以()sin(2)6f x x π=+ --------------------------------------------------------------------------5分(2)由(2)cos cos a c B b C -=得: (2sin sin )cos sin cos A C B B C -= 所以2sin cos sin(),2sin cos sin A B B C A B A =+=因为(0,)A π∈,所以sin 0A ≠,所以12cos ,,233B B A C ππ==+= -------------------------------8分25()sin(),0,263666A f A A A πππππ=+<<<+<,所以1sin()(,1]62A π+∈所以1()(,1]22A f ∈ ------------------------------------------------------------------------10分18.(本小题满分12分)解:(Ⅰ)设数列{a n }的公比为q ,当1q =时,符合条件,133a a ==,a n =3 -----------------------------------2分当1q ≠时,21313(1)91a q a q q ⎧=⎪⎨-=⎪-⎩所以21213(1)9a q a q q ⎧=⎪⎨++=⎪⎩,解得1112,2a q ==- ----5分 1112()2n n a -=⨯-综上:a n =3或1112()2n n a -=⨯- ---------------------------------------------------6分注:列方程组21211139a q a a q a q ⎧=⎪⎨++=⎪⎩求解可不用讨论 (Ⅱ)证明:若a n =3,则b n =0,与题意不符;222231112()3()22n n n a ++=⨯-=⨯,222233log log 22n n n b n a +=== -----------------8分 14111(1)1n n n c b b n n n n +===-++ ----------------------------------------------------10分123111111(1)()()1122311n c c c c n n n ++++=-+-++-=-<++ ---------12分19.(本小题满分12分)解 (Ⅰ) 由题意可知,这20名工人年龄的众数是30, --------------------------------2分这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,------------------------------4分(Ⅱ) 这20名工人年龄的茎叶图如图所示:------------------------------------------7分(Ⅲ) 记年龄为24岁的三个人为A 1,A 2,A 3;年龄为26岁的三个人为B 1,B 2,B 3则从这6人中随机抽取2人的所有可能为{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2}, {A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B ,3},{A 3,B 1},{A 3,B 2},{A ,3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3}共15种。
长春市普通高中2017届高三质量监测(二)数 学(理 科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知集合{}0x x P =≥,1Q 02x xx ⎧+⎫=≥⎨⎬-⎩⎭,则()R Q P = ð( ) A .(),2-∞ B .(],1-∞- C .()1,0- D .[]0,22、复数12i i--的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3、已知随机变量ξ服从正态分布()21,σN ,若()20.15ξP >=,则()01ξP ≤≤=( )A .0.85B .0.70C .0.35D .0.15 4、已知:p 函数()f x x a =+在(),1-∞-上是单调函数,:q 函数()()log 1a g x x =+(0a >且1a ≠)在()1,-+∞上是增函数,则p ⌝成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、若x ,y 满足约束条件5315153x y y x x y +≤⎧⎪≤+⎨⎪-≤⎩,则35x y +的取值范围是( )A .[]13,15-B .[]13,17-C .[]11,15-D .[]11,17-6、一个几何体的三视图如图所示,则该几何体的体积为( )A .163B .203C .152D .1327、已知平面向量a ,b 满足a = ,2b = ,3a b ⋅=-,则2a b += ( )A .1 B . C .4D .8、下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为1A 、2A 、⋅⋅⋅⋅⋅⋅、16A ,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )A .6B .10C .91D .929、已知函数()1cos cos 22f x x x x =+,若将其图象向右平移ϕ(0ϕ>)个单位后所得的图象关于原点对称,则ϕ的最小值为( ) A .6π B .56π C .12πD .512π10、设m ,R n ∈,若直线()()1120m x n y +++-=与圆()()22111x y -+-=相切,则m n +的取值范围是( ) A .(),22⎡-∞-++∞⎣ B .(),⎡-∞-+∞⎣C .22⎡-+⎣ D .(][),22,-∞-+∞11、若()F ,0c 是双曲线22221x y a b-=(0a b >>)的右焦点,过F 作该双曲线一条渐近线的垂线与两条渐近线交于A ,B 两点,O 为坐标原点,∆OAB 的面积为2127a ,则该双曲线的离心率e =( )A .53B .43C .54D .8512、设数列{}n a 的前n 项和为n S ,且121a a ==,(){}2n n nS n a ++为等差数列,则n a =( ) A .12n n- B .1121n n -++ C .2121n n -- D .112n n ++二、填空题(本大题共4小题,每小题5分,共20分.)13、62x ⎛ ⎝的展开式中常数项为 .14、已知0a >且曲线y x a =与0y =所围成的封闭区域的面积为2a ,则a = .15、正四面体CD AB 的外接球半径为2,过棱AB 作该球的截面,则截面面积的最小值为 . 16、已知函数()f x 为偶函数且()()4f x f x =-,又()235,01222,12x x x x x f x x -⎧--+≤≤⎪=⎨⎪+<≤⎩,函数()12xg x a ⎛⎫=+ ⎪⎝⎭,若()()()F x f x g x =-恰好有4个零点,则a 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)在C ∆AB 中,tan 2A =,tan 3B =. ()1求角C 的值;()2设AB =C A . 18、(本小题满分12分)根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如下图显示.()1已知[)30,40、[)40,50、[)50,60三个年龄段的上网购物者人数成等差数列,求a,b的值;()2该电子商务平台将年龄在[)30,50之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.19、(本小题满分12分)如图,在四棱锥CDP-AB中,PA⊥平面CDAB,D2PA=AB=A=,四边形CDAB满足DAB⊥A,C//DB A且C4B=,点M为CP中点,点E为C B边上的动点,且C λBE=E.()1求证:平面D A M⊥平面CPB;()2是否存在实数λ,使得二面角DP-E-B的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.20、(本小题满分12分)在C ∆AB 中,顶点()1,0B -,()C 1,0,G 、I 分别是C ∆AB 的重心和内心,且G//C I B. ()1求顶点A 的轨迹M 的方程;()2过点C 的直线交曲线M 于P 、Q 两点,H 是直线4x =上一点,设直线C H 、PH 、Q H 的斜率分别为1k ,2k ,3k ,试比较12k 与23k k +的大小,并加以证明. 21、(本小题满分12分)设函数()()()1ln 1f x ax x bx =-+-,其中a 和b 是实数,曲线()y f x =恒与x 轴相切于坐标原点. ()1求常数b 的值;()2当01x ≤≤时,关于x 的不等式()0f x ≥恒成立,求实数a 的取值范围;()3求证:10000.41000.5100011001100001000e ⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲 如图,过点P 作圆O 的割线PBA 与切线PE ,E 为切点,连接AE ,BE ,∠APE 的平分线与AE ,BE 分别交于点C ,D ,其中30∠AEB = .()1求证:D DD CE PB P ⋅=B PAP ;()2求C ∠P E 的大小. 23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x y O 中,曲线1C的参数方程为21x y ⎧=⎪⎨=-+⎪⎩(t 为参数),以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为ρ=.()1求曲线1C 的普通方程与曲线2C 的直角坐标方程;()2试判断曲线1C 与2C 是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x a a =++-+,R x ∈. ()1当3a =时,求不等式()7f x >的解集;()2对任意R x ∈恒有()3f x ≥,求实数a 的取值范围.长春市普通高中2017届高三质量监测(二)数学(理科)参考答案及评分标准一、选择题(本大题包括12小题,每小题5分,共60分)1.D2.A3.C4.C5.D6.D7.B8.B9.C 10.A 11.C 12.A简答与提示:1. 【命题意图】本题主要考查集合交集与补集的运算,属于基础题.【试题解析】D 由题意可知{|1Q x x =-≤或2}x >,则{|12}Q x x =-<≤R ð,所以{|02}P Q x x =≤≤R ð. 故选D.2. 【命题意图】本题考查复数的除法运算,以及复平面上的点与复数的关系,属于基础题.【试题解析】A131255ii i-=--,所以其共轭复数为3155i +. 故选A.3. 【命题意图】本题考查正态分布的概念,属于基础题,要求学生对统计学原理有全面的认识.【试题解析】C (01)(12)0.5(2)0.35P P P ξξξ==->=≤≤≤≤. 故选C. 4. 【命题意图】本题借助不等式来考查命题逻辑,属于基础题. 【试题解析】C 由p 成立,则1a ≤,由q 成立,则1a >,所以p ⌝成立时1a >是q 的充要条件.故选C.5. 【命题意图】本题主要考查线性规划,是书中的原题改编,要求学生有一定的运算能力. 【试题解析】D 由题意可知,35x y +在(2,1)--处取得最小值,在35(,)22处取得最大值,即35[11,17]x y +∈-.故选D.6. 【命题意图】本题通过正方体的三视图来考查组合体体积的求法,对学生运算求解能力有一定要求.【试题解析】D 该几何体可视为正方体截去两个三棱锥,所以其体积为41138362--=. 故选D.7. 【命题意图】本题考查向量模的运算.【试题解析】B|2|+==a b . 故选B.8. 【命题意图】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题. 【试题解析】B 由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10. 故选B.9. 【命题意图】本题主要考查三角函数的图像和性质,属于基础题.【试题解析】C 由题意()sin(2)6f x x π=+,将其图像向右平移ϕ(0)ϕ>个单位后解析式为()sin[2()]6f x x πϕ=-+,则26k πϕπ-=,即212k ππϕ=+()k ∈N ,所以ϕ的最小值为12π. 故选C.10. 【命题意图】本题借助基本不等式考查点到直线的距离,属于中档题.【试题解析】A由直线与圆相切可知||m n +=理得1mn m n =++,由2()2m n mn +≤可知211()4m n m n ++≤+,解得(,2[2)m n +∈-∞-++∞ . 故选A.11. 【命题意图】本题主要考查双曲线的几何性质,结合着较大的运算量,属于难题.【试题解析】C 由题可知,过I 、III 象限的渐近线的倾斜角为θ,则tan b aθ=,222tan 2ab a bθ=-,因此△OAB 的面积可以表示为3222112tan 227a b a a a a b θ⋅⋅==-,解得34b a=,则54e =. 故选C.12. 【命题意图】本题是最近热点的复杂数列问题,属于难题. 【试题解析】A 设(2)n n n b nS n a =++,有14b =,28b =,则4n b n =, 即(2)4n n n b nS n a n =++= 当2n ≥时,1122(1)(1)01n n n n S S a a n n ---++-+=-所以12(1)11n n n n a a n n -++=-,即121n n a a n n -⋅=-,所以{}n a n 是以12为公比,1为首项的等比数列,所以11()2n n a n -=,12n n n a -=. 故选A.二、填空题(本大题包括4小题,每小题5分,共20分)13.60 14.4915.83π 16.192,8⎛⎫⎪⎝⎭简答与提示: 13. 【命题意图】本题主要考查二项式定理的有关知识,属于基础题.【试题解析】由题意可知常数项为2246(2)(60C x =. 14. 【命题意图】本题考查定积分的几何意义及微积分基本定理,属于基础题.【试题解析】由题意32223aa x ==⎰,所以49a =.15. 【命题意图】球的内接几何体问题是高考热点问题,本题通过求球的截面面积,对考生的空间想象能力及运算求解能力进行考查,具有一定难度.【试题解析】由题意,面积最小的截面是以AB 为直径,可求得AB =,进而截面面积的最小值为283ππ=.16. 【命题意图】本题主要考查数形结合以及函数的零点与交点的相关问题,需要学生对图像进行理解,对学生的能力提出很高要求,属于难题.【试题解析】由题意可知()f x 是周期为4的偶函数,对称轴为直线2x =. 若()F x 恰有4个零点,有(1)(1)(3)(3)g f g f >⎧⎨<⎩,解得19(2,)8a ∈.17. (本小题满分12分)【命题意图】本小题主要考查两角和的正切公式,以及同角三角函数的应用,并借助正弦定理考查边角关系的运算,对考生的化归与转化能力有较高要求. 【试题解析】解:(1) +,tan tan()A B C C A B π+=∴=-+(3分)tan 2,tan 3,tan 1,4A B C C π==∴=∴=(6分)(2)因为tan 3B =sin 3sin 3cos cos B B B B⇒=⇒=,而22sincos 1B B +=,且B 为锐角,可求得sin B =.(9分)所以在△ABC 中,由正弦定理得,sin sin AB AC B C =⨯=.(12分)18. (本小题满分12分)【命题意图】本小题主要考查统计与概率的相关知识、离散型随机变量的分布列以及数学期望的求法. 本题主要考查数据处理能力.【试题解析】(1)由图可知0.035a =,0.025b =. (4分)(2) 利用分层抽样从样本中抽取10人,其中属于高消费人群的为6人,属于潜在消费人群的为4人. (6分)从中取出三人,并计算三人所获得代金券的总和X , 则X 的所有可能取值为:150,200,250,300.363101(150)6C P X C ===,21643101(200)2C C P X C ===, 12643103(250)10C C P X C ===, 343101(300)30C P X C ===,(10分) 且1131150200250300210621030EX =⨯+⨯+⨯+⨯=. (12分)19. (本小题满分12分)【命题意图】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用. 本小题对考生的空间想象能力与运算求解能力有较高要求.【试题解析】解:(1) 取PB 中点N ,连结MN 、AN ,M 是PC 中点,1//,22MN BC MN BC ∴==,又//BC AD ,//,MN AD MN AD ∴=,∴四边形ADMN 为平行四边形,AP AD AB AD ⊥⊥ ,AD ∴⊥平面PAB ,AD AN ∴⊥,AN MN ∴⊥AP AB = ,AN PB ∴⊥,AN ∴⊥平面PBC ,AN ⊂ 平面ADM ,∴平面ADM ⊥平面PBC . (6分)(2) 存在符合条件的λ.以A 为原点,AB 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立空间直角坐标系A xyz -,设(2,,0)E t ,(0,0,2)P ,(0,2,0)D ,(2,0,0)B从而(0,2,2)PD =- ,(2,2,0)DE t =-,则平面PDE 的法向量为1(2,2,2)n t =-,又平面DEB 即为xAy 平面,其法向量2(0,0,1)n =,则1212122cos ,3||||n n n n n n ⋅<>===⋅, 解得3t =或1t =,进而3λ=或13λ=.(12分) 20. (本小题满分12分) 【命题意图】本小题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法,椭圆方程的求法、直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求. 【试题解析】解:(1) 已知11(||||||)||||22ABC A S AB AC BC r BC y ∆=++⋅=⋅,且||2BC =,||3A y r =,其中r 为内切圆半径,化简得:||||4AB AC +=,顶点A 的轨迹是以B C 、为焦点,长轴长为4的椭圆(去掉长轴端点),其中2,1,a c b ===进而其方程为22143x y +=(0)y ≠.(5分)(2) 1232k k k =+,以下进行证明:当直线PQ 斜率存在时,设直线:(1)PQ y k x =-且11(,)P x y ,22(,)Q x y ,(4,)H m联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩可得2122834k x x k +=+,212241234k x x k -=+. (8分)由题意:13m k =,1214y m k x -=-,2324y m k x -=-.11212312()(4)()(4)(4)(4)y m x y m x k k x x --+--+=--21212121212882(5)()2424224()1636363m k kx x m k x x mk m mk x x x x k ++-+++====-+++当直线PQ 斜率不存在时,33(1,),(1,)22P Q -,231332222333m m m k k k -++=+== 综上可得1232k k k =+. (12分) 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值以及函数零点的情况. 本小题对考生的逻辑推理能力与运算求解有较高要求. 【试题解析】解:(1) 对()f x 求导得:1()ln(1)1ax f x a x b x-'=-++-+,根据条件知(0)0f '=,所以101b b -=⇒=. (3分)(2) 由(1)得()(1)ln(1)f x ax x x =-+-,01x ≤≤1()ln(1)11axf x a x x-'=-++-+22(1)(1)21()1(1)(1)a a x ax ax a f x x x x -+--++''=-+=-+++. ① 当12a ≤-时,由于01x ≤≤,有221()()0(1)a a x a f x x ++''=-≥+,于是()f x '在[0,1]上单调递增,从而()(0)0f x f ''≥=,因此()f x 在[0,1]上单调递增,即()(0)0f x f ≥=而且仅有(0)0f =;②当0a ≥时,由于01x ≤≤,有221()0(1)ax a f x x ++''=-<+,于是()f x '在[0,1]上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,1]上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =;③当102a -<<时,令21min{1,}a m a+=-,当0x m ≤≤时,221()()0(1)a a x a f x x ++''=-≤+,于是()f x '在[0,]m 上单调递减,从而()(0)0f x f ''≤=,因此()f x 在[0,]m 上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.综上可知,所求实数a的取值范围是1(,]2-∞-.(8分)(3) 对要证明的不等式等价变形如下:2110000100010000.41000.55210001100111()()(1)(1)100001000100001000e e ++<<⇔+<<+ 所以可以考虑证明:对于任意的正整数n,不等式215211(1)(1)n n e n n+++<<+恒成立. 并且继续作如下等价变形 2152112111(1)(1)()ln(1)1()ln(1)52n n e n n n n n n +++<<+⇔++<<++211(1)ln(1)0()5111(1)ln(1)0()2p n n nq n n n ⎧++-<⎪⎪⇔⎨⎪++->⎪⎩对于()p 相当于(2)中21(,0)52a =-∈-,12m =情形,有()f x 在1[0,]2上单调递减,即()(0)0f x f ≤=而且仅有(0)0f =.取1x n=,当2n ≥时,211(1)ln(1)05nn n++-<成立;当1n =时,277(1)ln 21ln 210.710555+-=-<⨯-<.从而对于任意正整数n 都有211(1)ln(1)05n n n++-<成立.对于()q 相当于(2)中12a =-情形,对于任意x ∈[0,1],恒有()0f x ≥而且仅有(0)0f =. 取1x n=,得:对于任意正整数n 都有111(1)ln(1)02n n n++->成立. 因此对于任意正整数n ,不等式215211(1)(1)n n e n n+++<<+恒成立.这样依据不等式215211(1)(1)n n e n n+++<<+,再令10000n =利用左边,令1000n = 利用右边,即可得到10000.41000.5100011001()()100001000e <<成立.(12分) 22. (本小题满分10分)【命题意图】本小题主要考查平面几何的证明,具体涉及到弦切角定理以及三角形 相似等内容. 本小题重点考查考生对平面几何推理能力.【试题解析】解:(1) 由题意可知,EPC APC ∠=∠,PEB PAC ∠=∠, 则△PED ∽△PAC ,则PE PD PAPC=,又PE ED PBBD=,则ED PB PD BD PAPC⋅=. (5分)(2) 由EPC APC ∠=∠,PEB PAC ∠=∠,可得CDE ECD ∠=∠,在△ECD 中,30CED ∠= ,可知75PCE ∠= . (10分) 23. (本小题满分10分) 【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、利用直线的参数方程的几何意义求解直线与曲线交点的距离等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】解:(1) 对于曲线1C 有1x y +=,对于曲线2C 有2214x y +=.(5分)(2) 显然曲线1C :1x y +=为直线,则其参数方程可写为21x y ⎧=⎪⎪⎨⎪=-⎪⎩(为参数)与曲线2C :2214x y +=联立,可知0∆>,所以1C 与2C 存在两个交点,由12t t +=,1285t t =,得21||d t t =-==. (10分)24. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及绝对值不等式及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】解:(1)当3a =时,()174,2135,22341,2x x f x x x x ⎧-≤⎪⎪⎪=<<⎨⎪⎪-≥⎪⎩所以()7f x >的解集为{}02x x x <>或 (5分) (2)()2122121f x x a x a x a x a a a =-+-+≥-+-+=-+由()3f x ≥恒成立,有13a a -+≥,解得2a ≥所以a 的取值范围是[)2,+∞ (10分)。
第Ⅰ卷第一部分听力(1-20小题)在笔试结束后进行。
注意事项:英语听力共两节,共20小题;每小题1.5分,满分30分。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A.£19.15.B.£9.15.C.£9.18.答案是B。
1.Where does the conversation probably take place?A.In a library.B.In a laboratory.C.In a restaurant.2.What does the man mean ?A.He knows Thomas’ birth date.B.The woman is good with dates.C.He has trouble remembering dates.3.What is the weather like now?A.FineB.HotC.Rainy.4.What will the speakers do tomorrow afternoon?A.Go to a park.B.Go shopping.C.Eat out with Joe.5.What is the man complaining about?A.His work.B.The weather.C.The noise from neighbors.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中多给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
吉林市普通中学2016—2017学年度高中毕业班第二次调研测试英语本试卷分第I卷(选择题)和第II卷(非选择题)。
第I卷1至10页,第II卷10至12页。
共150分.考试时间120分钟。
注意事项:请按照题号顺序在答题纸上各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.第I卷第一部分:听力(共两节, 满分30分)第一节(共5小题;每小题1。
5分, 满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍。
1. When will the man meet with Nick?A。
On May 12th。
B. On May 14th。
C. On May 15th。
2. What does the woman want the man to do?A。
Get her a disk.B. Repair a computer。
C. Help to deal with a document.3. How long has the man been working?A。
For seven hours。
B。
For half an hour. C. For seven and a half hours。
4. What are the speakers mainly talking about?A。
A supermarket。
B。
A new store. C。
A piece of furniture.5. What weather does the woman dislike?A. Foggy。
B。
Cloudy。
C。
Sunny.第二节(共15小题;每小题1。
5分,满分22。
5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置.听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
吉林省长春市2017年高考二模理科数学试卷答 案一、选择题1~5.BCDDC 6~10.BACDA 11~12.BA 二、填空题13.211e 22+14.91 15.1 080 16.2 三、解答题17.解:(1)由题可知1112(23())n n a n a *+=--∈N , 从而有13n n b b +=,11112a b =-=, 所以{}n b 是以1为首项,3为公比的等比数列. (2)由(1)知113n b -=,从而1132n n a -=+,13131(3)312log log n n n c n --+==>-,有12(1)01212n n T c c c n n n ->+++=++⋯+⋅⋅⋅-=,所以(1)2n n n T ->.18.解:(1)根据统计数据做出列联表如下:经计算7.287 6.635k ≈>,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关. (2)(ⅰ)按照分层抽样的方式抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4.416420(0)P X ==,13416420(1)P X ==,22416420(2)P X ==,31416420(3)P X ==,44420(4)P X ==即X 的分布列为:416416416(ⅱ)在抗倒伏的玉米样本中,高茎玉米有10株,占5,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,则~(505,)2B ξ,即2E 50205np ξ==⨯=,23D (1)501255np p ξ=-=⨯⨯=.19.解:(1)证明:因为AD BCD BC BCD AD BC ⊥⊂⊥平面,平面,所以,又AC BC ACAD A BC ACD BC ABC ABC ACD ⊥=⊥⊂⊥因为,,所以平面,平面,所以平面平面.(2)由已知可得CD =如图所示建立空间直角坐标系,由已知(0,0,0)(0,2,0)C B A ,,,D ,1)2E .有31()2CE =,(3,0,1)CA = (3,0,0)CD =,设平面ACE 的法向量(,,z)n x y =,有001002z n CA n CE y z +=⎧=⎪⎨=++=⎪⎩,令1x =,得(1,0,n =-, 设平面CED 的法向量(,,z)m x y =,有01002m CD m CE y z ⎧=⎧=⎪⎪⎨⎨=++=⎪⎪⎩, 令y=1,得(0,1,2)m =-,二面角A CE D --的余弦值||23cos ||||25n m n m θ===.20.解:(1)联立方程有,2402x y py⎧+=⎪⎨=⎪⎩,有280y p -+=,由于直线与抛物线相切,得22832048p p p y x ====-,,所以.(2)假设存在满足条件的点(,0)(0)M m m >,直线l :x ty m =+,有28x ty m y x=+⎧⎨=⎩,2880y ty m -=-,设1221(,)(,)A x B y y x ,,有121288y yt y y m +==-,,22222111||()(1)AM x m y t y =-+=+,22222222||()(1)BM x m y t y =-+=+,22222222212111114()||||(1)(1)(1)4t mAM BM t y t y t m ++=+=+++,当4m =时,2211||||AM BM +为定值,所以(4,0)M . 21.解:(1)()1af x x a x'=+--,因为()f x 存在极值点为1,所以(1)02201f a a '=-==,即,,经检验符合题意,所以1a =. (2)()1(1)(1)(0)a af x x a x x x x'=+--=+-> ①0()()(0,0)a f x f x '≤+∞>当时,恒成立,所以在上为增函数,不符合题意; ②0()0a f x x a '>==当时,由得,()00()0()x a f x x a f x f x ''>><<<当时,,所以为增函数,当时,,所为减函数,所以当x a =时,()f x 取得极小值()f a又因为()f x 存在两个不同零点12x x ,,所以()0f a <,即()211ln 02a a a a a +--<整理得1ln 12a a >-,作()y f x =关于直线x a =的对称曲线()(2)g x f a x =-,令2()()()(2)()22lna x h x g x f x f a x f x a x a x-=-=--=--222222()220(2)()a a h x a x x x a a '=-+=-+≥---+所以()(0,2)h x a 在上单调递增,不妨设1222221()()0()(2)()()x a x h x h a g x f a x f x f x <<>==->=,则,即, 又因为212(0,)(0,)a x a x a -∈∈,,且()f x 在(0,)a 上为减函数,故211222a x x x x a +<->,即,又1ln 12a a >-,易知1212a x x >>+成立,故.22.解:(1)由22(3sin )12ρθ+=得22143x y +=,该曲线为椭圆.(2)将1tcos tsin x y αα=+⎧⎨=⎩代入22143x y +=得224cos 6cos 9()0t t αα-+-=,由直线参数方程的几何意义,设12||||||||t PB PA t ==,,1226cos t t 4cos αα-+=-,1229t t 4cos α-=-,所以122127|||||t t |4cos 2PA PB α+=-==-,从而24cos 7α=,由于(0)2πα∈,,所以cos α.23.解:(1)令24x ||1||6245x x x y x -+≤⎧⎪==<<⎨-⎩+⎪≥+-,-1,-1x 5,x 5,可知|||65|1x x ++-≥,故要使不等式|||m 5|1x x ++-≤的解集不是空集,有6m ≥.(2)证明:由a b ,均为正数,则要证a b b a a b a b ≥,只需证1a b b a a b --≥,整理得()1a b ab-≥,由于当a b ≥时,0a b -≥,可得1a ba b -⎛⎫≥ ⎪⎝⎭,当0a b a b <-<时,,可得1a ba b -⎛⎫> ⎪⎝⎭,可知a b ,均为正数时1a ba b -⎛⎫≥ ⎪⎝⎭,当且仅当a b =时等号成立, 从而a b b a a b a b ≥成立.吉林省长春市2017年高考二模理科数学试卷解 析一、选择题1.【考点】交集及其运算.【分析】由题意求出集合B ,由交集的运算求出A∩B . 【解答】解:由题意可知,集合A={0,1,2},则B={}2A xy y x =∈,={1,2,4},所以A∩B={1,2}, 故选:B .2.【考点】复数求模.【分析】利用复数的模、共轭复数、虚部与复数与平面内点的对应关系即可判断出正误. 【解答】解:∵复数z=1+i , ②z = ②1z i =-,正确; ③z 的虚部为1;④z 在复平面上对应点(1,1)在第一象限. 可得:①②④正确,③错误. 故选:C .3.【考点】奇偶性与单调性的综合.【分析】根据函数的单调性和奇偶性判断即可. 【解答】解:对于A .B 选项为偶函数,排除, C 选项是奇函数,但在(0,+∞)上不是单调递增函数. 故选:D .4.【考点】关于点、直线对称的圆的方程. 【分析】求出圆(x ﹣2)2+y 2=4的圆心关于直线y =对称的坐标,即可得出结论. 【解答】解:设圆(x ﹣2)2+y 2=4的圆心关于直线y =对称的坐标为(a ,b ),则312222b a b a ⎧=-⎪⎪-⎨+⎪=⎪⎩, ∴a=1,∴圆(x ﹣2)2+y 2=4的圆心关于直线y x =对称的坐标为( ,从而所求圆的方程为()(2214x y -+=.故选D .5.【考点】由三视图求面积、体积.【分析】由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.【解答】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为12018625=46502⨯⨯⨯立方尺.故选C .6.【考点】向量在几何中的应用.【分析】利用三角形以及向量关系,求解三角形的面积即可. 【解答】解:由已知,在△ABC 中,D 为三角形所在平面内一点,且11AD AB AC 32=+,点D 在AB 边的中位线上,且为靠近BC 边的三等分点处,从而有ABD ABC 1S S 2=△△,ABC 1S S 3=△ACD △,ABC ABC 111S 1S S 236⎛⎫=--= ⎪⎝⎭△BCD △△,有S 1S 3=△BCD △ABD .故选:B .7.【考点】程序框图.【分析】由已知,S=0﹣1+2﹣3+4+…﹣2015+2016=1008,即可得出结论 【解答】解:由已知,S=0﹣1+2﹣3+4+…﹣2015+2016=1008. 故选A .8.【考点】正弦函数的对称性.【分析】利用正弦函数的图像和性质,判断各个选项是否正确,从而得出结论.【解答】解:关于函数2sin 314y x π⎛⎫=++ ⎪⎝⎭,令4x π=-,求得y=﹣1,为函数的最小值,故A 正确;由2sin 14y x π⎛⎫=++ ⎪⎝⎭图像上所有点的横坐标变为原来的13倍,可得2sin 34y x π⎛⎫=+ ⎪⎝⎭的图像,故B 正确;令11x 12π=,求得y=1,可得函数的图像关于点1112π⎛⎫⎪⎝⎭,1对称,故C 错误;函数的值域为[﹣1,3],故D 正确, 故选:C .9.【考点】进行简单的合情推理.【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【解答】解:由图可知D 错误.故选D . 10.【考点】几何概型. 【分析】求出扇形AOC 的面积为34π,扇形AOB 的面积为3π,从而得到所求概率. 【解答】解:设OA=3,则,由余弦定理可求得AOP=30°,所以扇形AOC 的面积为34π,扇形AOB 的面积为3π,从而所求概率为31434ππ=. 故选A .11.【考点】双曲线的简单性质.【分析】利用已知条件求出a ,b 求出双曲线方程,利用双曲线的定义转化求解三角形的最小值即可.【解答】解:双曲线C 的渐近线方程为,一个焦点为0F (,,可得22a 43b =,a 2cb ==,双曲线方程为22143y x -=,设双曲线的上焦点为F',则|PF|=|PF'|+4,△PAF 的周长为|PF|+|PA|+|AF|=|PF'|+4+|PA|+3,当P 点在第一象限时,|PF'|+|PA|的最小值为|AF'|=3, 故△PAF 的周长的最小值为10. 故选:B .12.【考点】利用导数研究函数的单调性.【分析】令F (x )=f (x )+2x ,求出导函数F'(x )=f'(x )+2>0,判断F (x )在定义域内单调递增,由f(1)=1,转化()2log 313f 1xx -<--为()22log 31233f log 1x x -+-<,然后求解不等式即可.【解答】解:令F (x )=f (x )+2x ,有F'(x )=f'(x )+2>0,所以F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为()2log 313f 1xx -<--等价于()22log 31233f log 1x x-+-<,令2t log 31x=-,有f (t )+2t <3,则有t <1,即2log 311x -<,从而312x-<,解得x <1,且x≠0.故选:A . 二、填空题13.【考点】定积分.【分析】根据定积分的计算法则计算即可.【解答】解:11ex dx x ⎛⎫+ ⎪⎝⎭⎰=222111111ln ln ln122222ex x e e e ⎛⎫⎛⎫+=+-+=+ ⎪ ⎪⎝⎭⎝⎭故答案为:21122e +.14.【考点】归纳推理.【分析】由三角形数组可推断出,第n 行共有2n ﹣1项,且最后一项为n2,所以第10行共19项,最后一项为100,即可得出结论.【解答】解:由三角形数组可推断出,第n 行共有2n ﹣1项,且最后一项为n2, 所以第10行共19项,最后一项为100,左数第10个数是91. 故答案为91.15.【考点】排列、组合的实际应用.【分析】根据题意,求甲、乙两人至少一人参加,则分2种情况讨论:①、若甲乙同时参加,②、若甲乙有一人参与,分别求出每种情况下的情况数目,由分类计数原理计算可得答案, 【解答】解:根据题意,分2种情况讨论: ①若甲乙同时参加,先在其他6人中选出2人,有C 62种选法, 选出2人进行全排列,有A 22种不同顺序, 甲乙2人进行全排列,有A 22种不同顺序,甲乙与选出的2人发言,甲乙发言中间需恰隔一人,有2种情况,此时共有2226222C A A 120=种不同顺序,②若甲乙有一人参与,在甲乙中选1人,有C 21种选法,在其他6人中选出3人,有C 63种选法, 选出4人进行全排列,有A 44种不同情况,则此时共有134264C C A 960=种,从而总共的发言顺序有1080种不同顺序. 故答案为:1080.16.【考点】球内接多面体.【分析】由正弦定理可求出三角形PBC 外接圆半径为,F 为BC 边中点,求出,利用勾股定理结论方程,求出四棱锥P ﹣ABCD 外接球半径.【解答】解:由已知,设三角形PBC 外接圆圆心为O1,由正弦定理可求出三角形PBC,F 为BC 边中点,求出11O F=2, 设四棱锥的外接球球心为O ,外接球半径的平方为221BD O F 42⎛⎫+= ⎪⎝⎭,所以四棱锥外接球半径为2.故答案为2. 三、解答题17.【考点】数列与不等式的综合;数列的求和. 【分析】(1)利用数列的递推关系式推出()111223N n n a a n *+⎛⎫=∈ ⎪-⎝⎭-,然后证明{n b }是以1为首项,3为公比的等比数列.(2)求出13n n b -=,化简1132n n a -=+,推出131313log 312n n n o c l g n --⎛⎫=+>=- ⎪⎝⎭,然后通过数列求和,证明结果.18.【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列. 【分析】(1)利用已知条件写出2×2列联表即可. (2)(i )按照分层抽样的方式抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4;求出概率即可得到即X 的分布列.(ii )设取出高茎玉米的株数为ξ,判断概率满足ξ~B (50,),然后求解期望与方差. 19.【考点】二面角的平面角及求法;平面与平面垂直的判定.【分析】(1)证明AD ⊥BC ,AC ⊥BC ,推出BC ⊥平面ACD ,然后证明平面ABC ⊥平面ACD . (2)建立空间直角坐标系,求出相关点的坐标,求出平面ACE 的法向量,平面CED 的法向量,利用空间向量的数量积求解二面角A ﹣CE ﹣D 的余弦值. 20.【考点】直线与抛物线的位置关系. 【分析】(1)联立方程有,,通过△=0,求出p=4,即可求解抛物线方程.(2)假设存在满足条件的点M (m ,0)(m >0),直线l :x=ty+m ,有,y 2﹣8ty ﹣8m=0,设A (x 1,y 1),B (x 2,y 2),利用韦达定理弦长公式,化简求解即可.21.【考点】利用导数研究函数的单调性;利用导数研究函数的极值. 【分析】(1)求出,利用f (x )存在极值点为1,结合f'(1)=0,求出a .(2)求出,通过①当a≤0时,②当a >0时,判断函数的单调性求出函数的极值,所以当x=a 时,f (x )取得极小值f (a ),利用f (x )存在两个不同零点x 1,x 2,f (a )<0,作y=f (x )关于直线x=a 的对称曲线g (x )=f (2a ﹣x ),令h (x )=g (x )﹣f (x )=f (2a ﹣x )﹣f (x ),求出导数,利用函数的单调性,最值推出结果.22.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的关系化简曲线C 1的极坐标方程为普通方程;(2)对参数方程x ,y 代入椭圆方程,然后根据直线参数方程的几何意义,设|PA|=|t 1|,|PB|=|t 2|,结合韦达定理得到所求.23.【考点】不等式的证明;绝对值不等式的解法.【分析】(1)利用绝对值不等式推出|x+1|+|x﹣5|≥6,转化不等式|x+1|+|x﹣5|≤m的解集不是空集,推出m即可;(2)利用分析法,集合指数函数的性质,推出结果即可.。