七年级上册北师大版数学第三章知识点及巩固练习(教案)
- 格式:doc
- 大小:55.00 KB
- 文档页数:4
全新修订版(教案)七年级数学上册老师的必备资料家长的帮教助手学生的课堂再现北师大版第三章整式及其加减小结与复习一•学习目的和要求:1・对本章内容的认识更全面、更系统化。
2.进一步加深对本章基础知识的理解以及基本技能的掌握,并能灵活运用。
二•学习重点和难点:重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用与提三•学习方法:归纳,总结交流、练习探究相结合四•教学目标和教学目标解析教学目标1同类项同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。
例如:-加勺与3加S是同类项;无2)异与2),3兀2是同类项。
注意:同类项与系数大小无关,与字母的排列顺序无关。
教学目标2合并同类项法则合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变,女口:3m3H2-2m3n2 = (3- 2)/713H2= 。
教学目标3括号与添括号法则去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。
如:+ (a + /? — c) = a + b — c , — (a + b — c) = —ci — b + c教学目标4升幕排列与降幕排列为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降壽排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升壽排列。
如:多项式+a2b-丄b'a + d-l2按字母a升幕排列为:—l + d —丄—3a,+/b + 2/b。
2注意:(1)重新排列后还是多项式的形式,各项的位置发生变化,其他都不变。
(2)各项移动时要连同它前面的符号。
北师大版数学七年级上册第三单元教学设计及复习一. 教材分析北师大版数学七年级上册第三单元主要内容包括分数和小数的互化、分数的乘除法运算、以及分数的应用。
分数和小数的互化是基础,分数的乘除法运算是在此基础上进行的拓展,分数的应用则是将分数运算应用于实际问题中。
本单元的内容较为重要,是七年级数学的基础知识之一。
二. 学情分析七年级的学生已经掌握了小数和分数的基本概念,对小数和分数的运算也有一定的了解。
但学生在分数的乘除法运算方面可能会存在一定的困难,因此在教学过程中,需要重点引导学生理解和掌握分数的乘除法运算规律。
此外,学生对实际应用题的解决能力还需加强,因此在教学应用题时,要注重培养学生的分析问题和解决问题的能力。
三. 教学目标1.知识与技能:使学生理解和掌握分数和小数的互化方法,掌握分数的乘除法运算规律,并能应用于实际问题中。
2.过程与方法:通过自主学习、合作交流等方法,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.教学重点:分数和小数的互化,分数的乘除法运算规律。
2.教学难点:分数的乘除法运算规律的应用。
五. 教学方法1.采用自主学习、合作交流的教学方法,鼓励学生积极参与课堂讨论,培养学生的思维能力和团队协作能力。
2.运用实例讲解,让学生在实际问题中理解分数的运算规律。
3.采用激励性评价,激发学生的学习兴趣和自信心。
六. 教学准备1.教材、教案、PPT等教学资料。
2.相关实际问题素材。
3.课堂练习题。
七. 教学过程1.导入(5分钟)利用实例引入分数和小数的互化,激发学生的学习兴趣。
2.呈现(10分钟)讲解分数和小数的互化方法,引导学生通过自主学习掌握互化技巧。
3.操练(10分钟)设计一些分数和小数的互化练习题,让学生在课堂上进行实际操作,巩固所学知识。
4.巩固(10分钟)讲解分数的乘除法运算规律,引导学生通过合作交流总结运算规律。
第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
第三章《去括号》教案(新版)北师大版一、学生状况分析“去括号”是义务教育课程标准实验教科书《数学》(北师大版)七年级上册第三章《字母表示数》的第5节。
本节课是学生在学习本章第一节《字母表示数》后,对字母表示数已具有一定的认知水平,特别是经历了用火柴棒摆正方形的数学实践活动,在此基础上引导学生去发现、比较、猜想与归纳。
结合学生心理和生理特征,充分体现由简单到复杂,由特殊到一般的思维过程。
突出了学生对知识的发生及其发展过程的整体认识。
学生天生就有一种追求完整,化繁为简的审美情结,也就是说:学生在心理上有一种与生俱来的去括号地冲动。
因而不必担心学生的学习热情、兴趣。
教师要组织学生立足基本知识点和基本技能,培养学生有条理地思考问题的习惯,引导他们每一个运算步骤都要依据的重要性。
相信学生能很好地掌握,为后面的学习打下坚实的基础。
二、教学任务分析“去括号”是从已有的知识构建回顾出发,遵从情景引入的理念,灵活地、创设性的处理教材的一节课。
在前面的学习过程中,学生已有“观察,分析,比较情景中的问题→建构数学模型→猜测→总结,交流→验证”的情感体验与经历。
本节课由于其内容简单,大部分学生也具备独立探究去括号法则的能力,鉴于此,本节课除了让学生体验自主求知的学习兴趣,增强自信之外,还要充分发挥本小节教材大量的基本运算、严密的代算推理的特点。
从注重双基、揭示知识发生过程着手,充分体现老师的主导功能,更好地发展学生有条理地进行思考和表达的能力。
《新课程与教学改革》中要求教学必须进行价值本位的转移,突出对人的生命存在及其发展的整体关怀。
本课时教学让学生自己动手,让学生大胆去说,去观察,探讨,引导学生去发现、比较、猜想与归纳。
注重的是学生自己探索性活动的投入程度和积极性,突出“以人为本,张扬个性”的教学价值理念。
根据以上分析,确定本节课的教学目标如下:1、在具体情境中体会去括号的必要性,能运用运算律去括号。
2、总结去括号的法则,并能利用法则解决简单的问题。
北师大版数学七年级上册《第三章整式及其加减》教学设计一. 教材分析北师大版数学七年级上册第三章《整式及其加减》是学生在初中阶段第一次接触整式运算的内容。
本章主要介绍了整式的概念、加减法运算以及简单的应用。
内容上由浅入深,逐步引导学生掌握整式的运算规律。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题能力。
二. 学情分析七年级的学生已经掌握了实数的基础知识,具备一定的逻辑思维能力。
但是,对于整式运算这类抽象的数学概念,学生可能刚开始会感到困惑。
因此,在教学过程中,需要注重引导学生理解整式的概念,通过具体的例子让学生感受整式运算的规律。
三. 教学目标1.理解整式的概念,掌握整式的加减法运算规则。
2.能够运用整式加减法解决实际问题。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.整式的概念及其理解。
2.整式的加减法运算规则及其应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究整式的运算规律。
2.利用多媒体课件,生动展示整式的运算过程,帮助学生形象理解。
3.分组讨论,合作学习,提高学生的团队合作能力。
六. 教学准备1.多媒体课件。
2.练习题及答案。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引入整式的概念,激发学生的兴趣。
例如:已知小明身高1.6米,小华比小明高0.5米,请问小华的身高?2.呈现(10分钟)讲解整式的概念,并通过例题展示整式的加减法运算。
引导学生理解整式的运算规律。
3.操练(10分钟)学生分组进行练习,教师巡回指导。
练习题包括简单的整式加减法运算。
4.巩固(10分钟)讲解练习题,引导学生总结整式加减法的运算规律。
5.拓展(10分钟)通过多媒体课件展示一些复杂的整式加减法运算,引导学生运用所学知识解决问题。
6.小结(5分钟)总结本节课所学内容,强调整式的概念和整式加减法的运算规律。
7.家庭作业(5分钟)布置一些有关整式加减法的练习题,要求学生在家庭中完成。
《探索与表达规律》教学设计学习目标1.能分析日历和图形问题中的简单数量关系,并会用代数式表示.2.通过观察日历和图形、交流分析数量关系的过程,提高学生分析问题和解决问题的能力.重点分析实际问题中的数量关系.难点用代数式表示实际问题中的数量关系.第一环节情境引入课题请同学们随便想一个自然数,将这个数乘5减7,再把结果乘2加14,老师一定知道你的结果的个位数字是几?你知道为什么吗?(设计意图:使学生体会到数学中的规律性以及用代数式表示规律的可行性与应用性,预计3分钟)教师:这节课我们将一起探究日历和图形中的规律.第二环节合作探究日历中的规律探究活动1 请同学们认真观察日历表,回答下列问题:(1)请找出同一横线上三个相邻数之间的关系;(2)请找一找竖列三个相邻数的关系;(3)请找一找左上、右下对角线上三个相邻数的关系;(4)请找一找左下、右上对角线上三个相邻数的关系.你能用字母表示这些关系吗?(设计意图:用问题引导学生的思考,从特殊入手,发现规律。
让学生体会用字母表示规律的思维过程,5分钟)探究活动2(1)日历红色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中的9个数之间的其他关系吗?用代数式表示.(设计意图:教师示范验证过程,规范学生的数学推理的书写过程.预计8分钟)探究活动3(1)如果将方框改为十字形框,你能发现哪些规律?(2)你还能设计其他形状的包含数字规律的数框吗?(3)如果有一个如第1问的十字形框中的5个数的和为110,则其中最小的数是多少?这5个数的和能为121吗?为什么?(4)你能根据这个十字形数框提出问题解答吗?(设计意图:教师讲解后让学生及时练习,有助于对知识的掌握与巩固,第2问给学生表达的机会,锻炼其提出问题解决问题的能力,预计7分钟)小结:从日历中的数这个具体问题入手,通过观察、分析、比较、猜想得出规律,表示出规律,并利用规律解决了简单问题.第三环节探究图形中的规律探究活动4创新1 班要上一节主题班会,需要重新摆放桌椅,按照班委会要求准备了充足的桌子(一张桌子坐6人),根据以下问题探究规律.1.按图(1)的方式摆放餐桌和椅子,完成下表桌子张数12345…n可坐人数(设计意图:由贴近生活的情景问题开始,由学生自主探索,经历观察、比较、归纳、猜想、验证,了解探索规律的过程)2.若按图2 的方式摆放餐桌和椅子,完成下表:(设计意图:巩固加深学生对探索规律的过程和方法的理解):3.能力提升:问题1:班委提出利用8张这样的桌子想要坐更多的人,应选择哪种方法摆放?问题2:现在有40张这样的桌子,若按照第一种摆放方式,每8张拼成1张大桌子,一共可以坐______人.问题3:如果有8n张桌子,仍然按第一种规律8张拼成一张大桌子,此时桌子周围可以坐多少人?你是怎么想的?你能根据这个图形提出问题并解答吗?(设计意图:通过这几个问题,加大了题目的开放性,不仅在探索过程中培养了学生的创造能力,也使学生在对数学的生活化和生活的数学化都有较好的体验,预计15分钟)第四环节学生总结收获探索规律的方法和步骤是什么呢?(教师分析)通过本节课的学习,你有什么收获?(设计意图:给学生表达的机会,培养学生及时归纳总结知识的方法的好习惯,3分钟)第五环节学以致用mm的黑白两种颜色的大理石地砖,按如图的方1.某展览馆选用规格为600600式铺设通向展厅的走廊地面,依据上图规律,第4个图形需要黑色大理石地砖________块,第n个图形中需要黑色大理石地砖________块.2.下面是用棋子摆成的“小房子” ,摆第10个这样的“小房子” 需要多少枚棋子?摆第n个这样的“小房子”呢?你是如何得到的?3.将连续的奇数1,3,5,7,9…排成如图所示的数表.(1)十字形框中的五个数之和与中间数17有什么关系?(2)设十字框中间的奇数为a,用含a的代数式表示框中五个奇数之和为______.(3)若将十字形框上下左右移动,可框住另外五个数,这五个数的和还有上述规律吗?(4)已知被十字框框中的五个奇数之和为6025,则十字框中间的奇数是______.(5)被十字框框中的五个奇数之和能等于2019吗?能等于2015吗?说说你的理由.结语:同学们,把你的年龄的两位数的十位与个位对调,然后相减,得到一个数,记下这个数,我知道你得到的数一定能被9整除. 同学们试一试,想知道为什么吗?下节课我们将探索其中的规律.。
七年级上册第三单元北师大版数学全文共5篇示例,供读者参考七年级上册第三单元北师大版数学1一、教学目标:通过观察生活中的大量物体,认识基本的几何体,数学教案-北师大版数学(七年级上)新教材教案生活中的图形(一)。
经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。
二、教学过程:1、引入:(1)幻灯投影p2的彩图,利用现实生活的背景让学生说出熟悉的几何体(如球体、长方体、正方体等)(2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的.名称。
2、过程:(1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
(2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。
(3)学生回答问题。
老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。
(4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。
(5)组织学生讨论如何对以上几何体进行分类:1)按底面2)按侧面学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。
3、议一议:投影p3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:(1)、上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?(3)请找出上图中与笔筒形状类似的物体?(4)请找出上图中与地球形状类似的物体?4、想一想:生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。
5、小结:与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。
我们也学会简单地区别不同的物体。
6、作业:p4习题七年级上册第三单元北师大版数学2教学目标1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;2.通过运算,培养学生的运算能力;3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
北师大版七年级数学上册第三章知识点整理北师大版七年级数学上册第三章知识点整理七上第三章整式及其加减1.字母表示数1)字母表示运算律 2)字母表示计算公式字母可以表示任何数2.代数式1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(m+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.2)书写要求:①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”.②除法一般写成分数形式③ 如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。
3.整式1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式.① 系数:单项式中的数字因数(包括其前面的符号)② 次数:单项式中,所有字母的指数的和;单独的数字是0次单项式.注意:(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;(2)单项式中不含加减运算;(3)π是常数,在单项式中相当于数字因数;(4)定义中的“数”可以是小数,也可以是分数、整数.2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式;次数:多项式里,次数最高项的次数,是多项式的次数;注意:(1)确定多项式的项时,不要忽略它的符号;(2)关于某个字母的n次m项式,要求是合并同类项后的最简多项式.3) 整式:单项式和多项式统称为整式.4)同类项:① 概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项.②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.整式的加减:1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项2)法则:几个整式相加减,用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果.5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律.。
第三章 整式及其加减
小结与复习
一.学习目的和要求:
1.对本章内容的认识更全面、更系统化。
2.进一步加深对本章基础知识的理解以及基本技能的掌握,并能灵活运用。
二.学习重点和难点:
重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用。
难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算的灵活运用与提
高。
三.学习方法:
归纳,总结 交流、练习 探究 相结合
四.教学目标和教学目标解析:
教学目标1 同类项
同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都
是同类项。
例如:n m 2-与n m 23是同类项;32y x 与232x y 是同类项。
注意:同类项与系数大小无关,与字母的排列顺序无关。
教学目标2 合并同类项法则
合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持
不变,如:23232323)23(23n m n m n m n m =-=-。
教学目标3 括号与添括号法则
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都
不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。
如:c b a c b a -+=-++)(, c b a c b a +--=-+-)(
教学目标4 升幂排列与降幂排列
为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数大小
顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
如:多项式12
1322233-+-+-a a b b a ab b a
按字母a 升幂排列为:b a b a ab a b a 3232232
11++--+-。
注意:(1)重新排列后还是多项式的形式,各项的位置发生变化,其他都不变。
(2)各项移动时要连同它前面的符号。
(3)某项前的符号是“+”,在第一项位置时,正号“+”可省略,其他位置不能省,排列时
注意添加或省略。
教学目标5 整式加减的一般步骤
(1)如果有括号,那么先去括号。
有多重括号时,先小括号,再中括号,最后大括号。
(2)如果有同类项,再合并同类项。
五.教学过程设计(合作 交流 自主探究)
能力训练1
1.在式子:a 3 , x-y 2 ,- 12
y 2,1-x-5xy 2,-x 中,哪些是单项式,哪些是多项式?哪些是整式? 单项式有: 多项式有:
整式有:
2.- 12 y 2的系数是( ),次数是( ); a 3
的系数是( ),次数是( )。
3 x-y 2
的项是( ),次数是( );1-x-5xy 2的项是( ),次数是( ),是( )次( )项式。
能力训练2
1.下列各组是不是同类项:
(1) 4abc 与 4ab (2) -5m 2n 3与2n 3m 2 (3)-0.3 x 2y 与y 2x
2.合并下列同类项:
(1) 3xy – 4 xy – xy = ( ) (2) -a -a -2a=( )
(3) 0.8ab 3 - a 3 b+0.2ab 3 =( )
3.若5x 2y 与是 x m y n 同类项,则m=( ) n=( )
若5x 2y 与 x m y n 的和是单项式, m=( ) n=( )
(通常我们把一个多项式的和项按照某个字母的指数人大到小(降幂),或者从小到大(升
幂)的顺序排列.如 :-4x 2+5x+5 也可以写成:5+5x-4x 2 )
能力训练3
1.去括号:(1)+(x -3)= (2) -(x -3)=
(3)-(x+5y -2)= (4)+(3x -5y+6z)=
2.计算:
(1)x -(-y -z+1)= ( 2 ) m+(-n+q)= ;
( 3 )a - ( b+c -3)= ( 4 ) x+(5-3y)= 。
3.多项式 x-5xy 2 与 -3x+ xy 2
的和是 它们的差是
多项式-5a+4ab 3减去一个多项式后是2a,则这个多项式是
探究,交流与提高
1.计算:
(1)3( xy2-x2y) -2(xy+xy2)+3x2y;
(2)5a 2-[a 2+ (5a 2-2a)-2(a 2-3a)]
2.化简求值:14 (-4 x 2 +2x -8)- 12 (x -2)其中x = 12
3、长方形的长为2x cm ,宽为4cm ,梯形的上底为x cm ,下底为上底的3倍,高为5cm ,
两者谁的面积大?大多少?
4、一公园的成票价是15元,儿童买半票,甲旅行团有x (名)成年人和y (名)儿童;
乙旅行团的成人数是甲旅行团的2倍,儿童数比甲旅行团的2倍少8人,这两个旅行团的
门票费用总和各是多少?。
5、礼堂第1排有a 个座位,后面每排都比前一排多1个座位,第二排有多少个座位?第
3排呢?用m 表示第n 排座位数,m 是多少?当a=20,n =19时,计算m 的值。
分析:第一排有a 个座位,第二排有( )个座位,第三排有( )
个座位?第4排有( )个座位。
所以第n 排有 个座位,即m= ,所以,当a=20,n =19时, m=
直击考点 挑战自我
1探索规律并填空:(1) ……
(2)计算:
2、小丽做一道数学题:“已知两个多项式A ,B ,B 为4x 2-5x -6,求A +B .”,小丽把A +B 看成A -B
计算结果是-7x 2+10x +12.根据以上信息,你能求出A +B 的结果吗?
六.归纳小结,反思分享
1. 通过本次课的复习你最大的收获是什么?
2本章的学习过后,你想和同学们说点什么?
七.作业布置:
课本74页 复习题2
;3121321;211211-=⨯-=⨯;4131431-=⨯=
+⨯)1(1n n =⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯200720061431321211。