地基处理监测与检验方法NXPowerLite
- 格式:ppt
- 大小:11.37 MB
- 文档页数:39
PBN飞行研讨本文在开篇对基于性能的导航PBN做了整体的说明,接下从RNP 发展的历史着手对相关概念作进一步解释说明,以便于大家清晰地理解这些全新的概念。
RNP飞行实质上是基于导航精度的飞行,因而接着阐述了导航精度的相关问题。
之后,通过分析正常航班相关飞行程序,介绍正常航班RNP飞行的步骤,并对相关要点作解释说明,此部分内容包含实际可能遇到的情况如复飞,绕飞的风险因素。
最后对航班如发生设备失效的特殊情况,依据模拟机训练科目作相应的处置说明。
PBN应用的整体认识:基于性能的导航PBN(Performance Based Navigation),它是未来航空业界核心的飞行技术,是全球导航技术的主要发展方向,是一种全新的运行概念,它覆盖了航路,终端区,进近和着陆的所有飞行阶段,对飞机制造商,飞行员,机务,空管都提出了新的要求,势必对各航空公司航班飞行和运行系统产生重大影响和变革。
根据ICAO 第36次会议的要求,各缔约国要在2016年以全球一致的步调过度到PBN运行,具有垂直引导的APV(Baro-VNAV,GNSS)将作为主要的进近方式或精密进近的备份方式(用于取代目视和非精密进近),在2016年所有相关跑道都将实施APV。
从民航发展上来看:PBN是当今新通讯,导航方式以及监视技术的不断发展的必然结果,其工作是运用导航系统中的星基或陆基导航设备来实现空中导航(自由飞行)的一种导航方式,它即不需要地面的无线电信标,也不需要依靠空中交通管制的引导,就可以使飞机能在空域中的任何位置建立的航路点之间飞行,使得航路设计更加灵活,优化,使得即便在地面导航设施欠缺的机场和航路上,或者在地形复杂的区域中也能够安全和高效的飞行。
航空公司如选择应用ICAO RNP或RNP/RNA V运行可从提高安全性、运行全新更优化航路和飞行运行程序中获益。
根据中国民航总局规划,今后将对实施RNP运行较好的航空公司提供优先航路权。
基于以上认识,我们应该从时代的需要和航空业发展的需求来认识PBN的重要性,尽早尽快的认识和把握好这种全新的飞行方式。
1、概念静态混合器是一种新型先进的化工单元设备,自70年代开始应用后,迅速在国内外各个领域得到推广应用。
众所周知,对于二股流体的混合,一般用搅拌的方法。
这是一种动态的混合设备,设备中有运动部件。
而静态混合器内主要构件静态混合单元在混合过程中自身并不运动,而是凭借流体本身的能量并借助静态混合单元的作用使流体得到分散混合,设备内无一运动部件。
2、流体的混合机理对于层流和湍流等不同的场合,静态混合器内流体混合的机理差别很大。
层流时是“分割---位置移动---重新汇合”的三要素对流体进行有规则的反复作用,从而达到混合;湍流时,除以上三要素外,由于流体在流动的断面方向产生剧烈的涡流,有很强的剪切力作用于流体,使流体的细微部分进一步被分割而混合。
3、静态混合器的混合形态静态混合器在基本工艺流程中的组合方法见下图所示的两种类型。
在实际应用中往往将多种基本流程组合在一起使用。
两种液体汇合部位的结构,应根据液体的粘度、密度、混合比、互溶性等来确定。
尤其当两种液体一接触就反应或凝胶而相变时,更要注意汇合部位的结构、流速以及混合器的选择。
3.1层流的混合经静态混合器混合后的流体的混合形态,与经具有传动部件的混合机或搅拌机混合的混合形态有明显的差别。
图二表示采用静态混合器混合两种流体是产生的典型层流混合状态。
混合状态由条带状变为连续的或不连续的线状及粒子状,而状态的变化取决于流体混合时的雷诺数和韦伯数。
例如:当流速、粘度、混合器直径一定时,如果流体间表面张力大,流体的混合形态则从条带状转向线状,进而变化到粒子状。
混合器单元数、管径和流速的选定混合器的单元数和直径随流体的性质(粘度、互溶性、密度)、混合比、希望达到的混合状态、接触面上液体的结构变化等而不同,可通过试验和经验来确定。
通常基于雷诺数并经试验确定混合器的放大倍数。
但当雷诺数R e<100(严格地说在1以下)时,混合程度、混合状态与雷诺数无关,只取决于混合器的单元数。
地基处理工程监测方案一、前言地基处理是指对土壤进行改良或加固的工程技术,旨在提高土壤的承载能力和抗沉降能力。
在地基处理工程中,为了确保施工质量和工程安全,需要对地基处理工程进行全程监测,及时发现并解决施工中可能出现的问题。
本文将针对地基处理工程的监测方案进行详细阐述。
二、监测目的和内容1. 监测目的地基处理工程的监测目的主要包括:了解地基处理工程的施工进度和质量;及时发现地基处理工程施工中可能出现的问题;为工程设计和施工提供数据支撑。
2. 监测内容地基处理工程的监测内容主要包括:地基土壤的力学性质监测;地基土壤的变形监测;地基处理工程的进度监测;地基处理工程的质量监测;地基处理工程施工安全监测。
三、监测方案1. 地基土壤的力学性质监测(1)监测方法:采用现场取样试验和实验室试验相结合的方法,对地基土壤的抗压强度、抗剪强度、变形模量进行监测。
(2)监测频率:按照工程进度和施工要求,每隔一定时间对地基土壤的力学性质进行监测。
(3)监测要求:对地基土壤的力学性质进行监测时,要保证取样试验的准确性和可靠性,确保监测数据的真实性。
2. 地基土壤的变形监测(1)监测方法:采用灵敏度计、水准仪、测斜仪等监测设备对地基土壤的沉降和倾斜进行监测。
(2)监测频率:地基土壤的变形监测应根据地基处理工程的施工进度和变形情况,合理安排监测频率。
(3)监测要求:对地基土壤的变形监测数据进行及时处理,及时发现并解决施工中可能出现的问题,确保地基处理工程的质量和安全。
3. 地基处理工程的进度监测(1)监测方法:采用现场观测、施工日志等方法,对地基处理工程的施工进度进行监测。
(2)监测频率:地基处理工程的进度监测应根据施工进度和工程要求,合理安排监测频率。
(3)监测要求:及时了解地基处理工程的施工情况,确保施工进度和质量符合设计要求。
4. 地基处理工程的质量监测(1)监测方法:采用地基处理质量检测仪器和设备对地基处理工程的质量进行监测。
软基处理监测及检测方案1 编制依据1.1《xxxx设计图》1.2 《建筑地基处理技术规范》(JGJ79-2002);1.3 《岩土工程勘察规范》(GB50021-2001);1.4 《土工试验规程》(SL237-1999)。
2 工程概况3 软基处理施工监测检测的意义监测检测是软基处理工程的重要组成部分。
在地基加固的施工过程中,需进行必要的监测检测工作,通过埋入地基土中的各种仪器,可反映出地基预压荷载大小、地基的固结、沉降和位移随时间和空间的变化。
通过对这些观测数据进行处理、分析、计算,从而对地基加固的施工质量、地基的加固效果做出评估。
这是实现对地基加固施工过程的动态监测、动态检测、指导施工的必要手段,可为后续工程的施工、场区的使用提供重要的依据。
4 监测检测项目及数量加固区监测项目有:表层沉降观测、分层沉降观测、孔隙水压力观测、边桩位移观测、深层水平位移观测以及水位观测;检测项目有:静力触探、场地卸载前钻探、十字板剪切、标贯以及砂、土密实度。
具体监测检测项目设置如表1所示。
表1 加固区主要监测检测项目一览表5 监测检测总要求5.1 现场观测仪器埋设要求(1)沉降板沉降板在铺设砂垫层设置排水板后进行,在埋设沉降板之前发生的沉降可根据原始地面标高、砂垫层厚度和沉降板埋设前的砂垫层标高等数据推算出。
沉降板埋设后要注意保护,一旦被损坏应立即修复并补测标高。
(2)孔隙水压力计孔隙水压力计布置在淤泥层中,要求自上而下淤泥底面布置一个,淤泥层中间隔3.0m布置,在插板完成后设置,要求每个钻孔埋设一个孔压测头,埋设应满足有关技术规程的要求。
(3)分层沉降仪分层沉降仪布置在淤泥中,分层沉降磁环要求淤泥底面和顶面各布置一个,淤泥层中间隔3.0m布置,分层沉降管和磁环在插板完成后设置。
(4)测斜管测斜管布置在预压土坡脚,要求测斜管渗入淤泥层下下卧层2.0m以上深度,在插板完成后设置。
(5)边桩边桩在插板和水平排水系统完成后设置。
霍尼韦尔厂级监控信息系统(SIS)方案及其应用梁启泉戴宗缭王亚刚夏春明(霍尼韦尔中国公司电站部北京100016,霍尼韦尔研发中心上海200051)摘要一个与DCS系统一体化的、面向过程控制的实时数据库以及信息管理平台。
本文还简述了企业知识数字化理念,和基于SIS系统的各种电厂优化控制的应用技术。
关键词DCS 过程控制实时数据库信息管理 SIS系统优化控制1 霍尼韦尔电站SIS 系统的推出随着20世纪90年代以计算机技术为基础的控制系统、网络通讯技术在电力行业的广泛应用,极大地提高了机组的自动化水平。
在此基础上,在电力行业不失时机地推出SIS系统,使各控制系统之间、各机组之间、过程监控与企业管理之间,信息管理与共享逐步成为现实。
“厂网分开、竟价上网”,随着国内电力体制改革的深入展开,电力集中建设过后,各电力企业将面临效益最大化的市场竞争。
越发要求各电力企业同步实现管控一体化信息平台,提高工实用文档厂优化控制水平,体现电厂长远投资效益。
国内电力行业SIS系统一经推出和实施,立即引起国内外各方的重视。
世界控制领域的权威杂志“ARC”在2003年的报告中,对此作了较大篇幅的报道和积极的评价。
近年来,霍尼韦尔公司为配合国内电厂SIS系统的发展,整合了它的PHD(Plant History Database)数据库和Uniformance信息管理平台,结合多年来在电站优化控制方面的经验和应用,推出具有自己特色的火电厂SIS系统。
其中,PHD数据库和Uniformance信息管理平台,已经在国内石化、冶金和化工行业应用,发挥者极其重要的作用。
在国内电站已有部分的应用。
2 霍尼韦尔SIS系统的框架霍尼韦尔SIS系统框架包括:硬件和网络、实时和历史数据库、网上实时监控管理平台以及无线移动平台,加上电厂优化控制应用。
2.1 硬件和网络(如图一所示)实用文档MISIDC图一,霍尼韦尔SIS系统硬件和网络的基本配置2.2 实时和历史数据库(PHD)PHD数据库是霍尼韦尔公司自主知识产权的高技术产品。