物理方法如区域熔炼熔析精炼
- 格式:ppt
- 大小:2.22 MB
- 文档页数:22
炉外精炼工艺技术炉外精炼是一种金属冶炼过程中常用的工艺技术,其目的是提高金属的纯度和质量。
相比于传统的炉内冶炼方法,炉外精炼技术更为高效、环保和灵活。
炉外精炼的基本原理是通过物理、化学和机械作用,将金属中的杂质和其他不纯物质去除,从而使金属变得更加纯净。
这种工艺技术可以应用在各种金属冶炼中,如钢铁冶炼、铝冶炼、铜冶炼等。
常见的炉外精炼方法包括真空处理、气体精炼和湿法精炼等。
真空处理是指在高真空环境中对金属进行处理,通过排除气体和其他杂质,从而提高金属的纯度。
气体精炼则利用特定气体(如氢气)与金属中的杂质发生反应,形成易挥发的化合物,从而将杂质从金属中分离出来。
湿法精炼则是利用溶剂、酸、碱等化学试剂,通过溶解和沉淀的过程,将杂质从金属中去除。
炉外精炼技术的应用使得金属冶炼过程更加灵活。
传统的炉内冶炼方法往往需要针对特定金属和合金开发相应的冶炼设备,而炉外精炼技术则可以适应多种金属的冶炼需求。
此外,炉外精炼还可以对金属进行组分调整,以满足不同规格和要求的产品生产。
与此同时,炉外精炼技术也有助于改善金属产品的质量。
通过去除杂质和其他不纯物质,金属的机械性能、化学性质和物理性能都能得到提高,从而使得金属产品更加耐用和可靠。
除了提高金属产品的质量外,炉外精炼技术还可以减少环境污染。
传统的炉内冶炼方法往往会产生大量的废气、废水和废渣,对环境造成严重的污染。
而炉外精炼技术则通过控制冶炼过程中的气体、液体和固体排放,使得废气减少、废水得到处理和回收、废渣变废为宝,从而实现了资源的循环利用和环境保护。
总之,炉外精炼工艺技术是一种高效、环保和灵活的金属冶炼方法。
它通过利用物理、化学和机械作用,对金属中的杂质和其他不纯物质进行去除,从而提高金属的纯度和质量。
这种技术的应用不仅可以改善金属产品的质量,还可以减少环境污染,实现资源的循环利用。
炉外精炼工艺技术是金属冶炼领域中的一项重要技术手段,它能够在金属冶炼过程中去除杂质和不纯物质,提高金属的纯度和质量。
铝合金液熔体处理精练法(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)职业教育材料成型与控制技术专业教学资源库《铝合金铸件铸造技术》课程教案铝合金液熔体处理—精炼法制作人:张保林陕西工业职业技术学院铝合金液熔体处理一、铝合金液的精炼处理概述铝合金熔体的净化是获得优质铸件的前提。
由于原材料和在熔炼、转送、浇铸过程中的吸气、氧化,铝合金液很容易受到溶解的氢、非金属夹杂物和多余的碱或碱土金属的污染,使浇注的铸件容易产生针孔、气孔、疏松、夹杂物等缺陷,并对铸件的力学性能、抗腐蚀性、气密性、阳极氧化性能及外观质量产生较大的损害。
因此,在浇铸前必须对其进行精炼净化,除气排夹杂物,以提高合金液的纯净度。
铝合金液的精炼方法很多,根据精炼机理,可分为吸附法和非吸附法两大类。
二、吸附精炼法吸附精炼法是依靠精炼剂产生的吸附作用达到除去氧化夹杂和气体的目的。
精炼作用仅发生在吸附界面上,不能对全部铝液发生作用,效果受到限制。
具体又分为浮游法和过滤法两种。
(1)浮游法浮游法的原理是向铝液中通入惰性气体(通常为氮、氩或加入盐类所产生的气体)产生大量的气泡,由于气泡中氢的分压为零,因此借助于铝液和气泡中氢分压之差氢便不断扩散进入气泡并上浮逸出液面。
与此同时,由于浸润性的差异,铝液中的夹杂物能被吸附在与之接触的气泡上,随之上浮而排除,从而达到除氢排夹杂的目的。
根据精炼剂的不同,浮游法分为通氮法、通氩法、通氯法和氯盐精炼法等。
①通氮精炼氮气价格便宜,常用于精炼铝合金,如图1所示。
但它存在的不足处是:为防止大量氮化物夹杂(如AlN、Mg3N2等)的形成,处理温度较低(700~730℃),从而限制了氢的扩散能力。
实验结果表明,在大气压下熔炼时氮气气泡只能吸入约为本身容0.1积氢,精炼效果受一定影响。
氮气纯度要求高,含有微量氧和水分会极大地降低精炼效果,有资料表明,含氧量为0.5%即可使除气效果降低40%。
②通氩精炼精炼温度可提高到760℃,有利于增强氢的扩散能力。
冶炼金属的方法归纳公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-冶炼金属的方法归纳王志荣冶炼金属是从矿石中提取金属单质的过程,除物理方法外,金属的冶炼都是使金属从化合态转化为游离态的化学过程。
根据金属的化学活动性不同,工业上冶炼金属一般有以下几种方法:一. 物理方法用于提取最不活泼的金属。
Au、Pt等金属在自然界中主要以单质形式存在,可用物理方法分离得到。
如“沙土淘金”就是利用水冲洗沙子,将沙土冲走,剩下密度很大的金砂,再进一步分离便可得到金属金(Au)。
二. 化学方法绝大多数金属均用化学法提取。
这些金属冶炼的本质是用还原剂使矿石发生还原反应(或加热使金属元素还原),具体有以下三种:1. 电解法该法适合冶炼金属活动性很强的金属,因为这类金属不能用一般的还原剂使其从化合物中还原出来,只能用通电分解其熔融盐或氧化物的方法来冶炼。
对于某些不活泼金属,如铜、银等,也常用电解其盐溶液的方法进行精炼。
如电解精炼铜,用硫酸铜(或氯化铜)溶液作为电解液,粗铜(含锌、铁、镍、银、金等杂质)铜板作为阳极,用纯铜薄钢板作为阴极。
总反应:2. 热还原法该法可冶炼较活泼的金属,碳、一氧化碳、氢气、活泼金属等是常用的还原剂。
(1)用碳作还原剂(火法冶金)(缺点:易混入杂质,污染大)(2)氢气作还原剂(优点:得到的金属较纯,污染小,但价格较贵)(3)用一氧化碳作还原剂(缺点:有污染)(4)用比较活泼的金属作还原剂(缺点:易形成合金)(铝热反应)3. 热分解法有些金属仅用加热的方法就可以从矿石中得到,用该法可冶炼某些不活泼金属。
如工业上用焙烧辰砂矿(HgS)的方法制取汞:受热分解均可得到Hg和Ag:从矿石中提炼金属一般要经过三个步骤:(1)矿石的富集;(2)冶炼;(3)精炼。
金属冶炼的方法与金属的活动性顺序有相关性,即:。
冶金原理教学大纲一、课程在培养方案中的地位、目的和任务本课程系冶金专业的主业课程。
本课程是在无机化学、物理化学和冶金概论的基础上进行的。
通过学习,使学生掌握冶金过程的基本原理和使用原理分析问题解决问题的方法,为今后的专业学习和工作实践奠定基础。
二、课程的基本要求1、了解重要基本概念和基本原理的定义和含义;2、能运用所学的理论对基本冶金过程进行定性、定量分析;3、能够初步解决具体的研究问题;4、不要背诵公式定理,而要在理解的基础上学会灵活运用。
各章的基本要求:1.冶金熔体a.冶金熔体的基本概念和特点;三元相图相平衡(初晶面,划分三角形,平衡线、平衡点的性质,冷却过程分析,等温截面图)。
要求能够熟练的进行冷却过程分析,会根据相图选择合理的熔体成分;b.了解各种冶金熔体的结构理论,特别是对于冶金炉渣,要求会应用所学的理论解释相关现象;c.了解冶金熔体的物理化学性质及其变化规律,能够使用公式进行简单的计算,以及正确的查图都区有关参数;d.掌握熔渣的酸碱性、氧化性的表示方法,会用来初步分析问题;了解渣与金属间的反应;e.会读图获取熔体的热力学参数。
2.热力学基础a.了解热力学的性质和应用,严格与动力学相区分;b.掌握吉布斯自由能图的构筑和应用方法、图中线的斜率的变化规律,会计算化合物的分解压。
c.掌握绘制热力学平衡的方法,能够熟练的绘制Me-O系、Me-O-S系的平衡图、电势-pH图,会举一反三建立其他体系的平衡图如Me-Cl-O系的平衡图等;并能用来初步解决具体问题,如解释冶金现象、选择工艺条件等;d.掌握碳的燃烧反应特别是布多尔反应的平衡关系,掌握氢的燃烧反应及C-H-O系的平衡,会进行平衡计算并建立变价金属氧化物用CO和H2、C还原的平衡图;明确熔渣中金属氧化物的还原的对比关系;理解真空还原、金属热还原的原理;e.掌握不同标准状态的换算关系,并会运用活度进行精炼的平衡计算,了解熔析精炼、区域熔炼的原理。
物理处理法工作方式
物理处理法是一种通过物理过程来处理或改变物质性质的方法。
这种方法通常涉及到力、热、光、电、磁等物理因素的应用。
以下是一些常见的物理处理法的工作方式:
1. 热处理:这是一种通过加热和冷却来改变材料性质的方法。
例如,淬火可以使钢变得更硬,而退火则可以消除钢的内应力。
2. 冷冻处理:这是一种通过降低温度来改变物质性质的方法。
例如,冷冻干燥可以去除物质中的水分,而冷冻粉碎则可以将物质破碎成更小的颗粒。
3. 辐射处理:这是一种通过使用电磁波(如紫外线、X射线)或粒子束(如电子束)来改变物质性质的方法。
例如,辐射灭菌可以杀死微生物,而辐射交联则可以改善聚合物的性质。
4. 压力处理:这是一种通过施加压力来改变物质性质的方法。
例如,压缩可以使气体液化,而高压处理则可以提高食物的保质期。
5. 磁力处理:这是一种通过使用磁场来改变物质性质的方法。
例如,磁分离可以用于提取磁性物质,而磁控溅射则可以用于制造薄膜。
6. 电化学处理:这是一种通过使用电流来改变物质性质的方法。
例如,电解可以用于提取金属,而电抛光则可以用于提高表面的光洁度。
以上就是一些常见的物理处理法的工作方式,具体的应用需要根
据物质的性质和处理的目标来确定。
浅谈初中化学中物质的提纯和分离作者:徐海兵来源:《中学化学》2015年第10期物质的分离是指将混合物里的几种物质分开,得到几种较纯净的物质。
而物质的提纯是利用被提纯物质与杂质的性质不同,选择适当的实验手段将杂质除去。
物质的分离和提纯目的不同,但在实验操作上,大多需要一些相同的方法。
在初中化学实验中一般分为物理方法和化学方法两大类。
一、物理方法物理方法包括过滤法、降温结晶法、蒸发结晶法等。
初中要求对上述方法达到理解其原理、应用范围、实验操作过程和了解主要仪器的目标。
1.过滤法适用于固、液混合物的分离和提纯,且固体不溶于液体。
例如粗盐的提纯。
2.降温结晶法适用于两种物质在水中溶解度随温度变化差异较大的混合物的分离和提纯。
例如硝酸钾中含有少量食盐的分离。
; ;3.蒸发结晶法适用于固体物质在水中溶解度随温度变化不大的混合物的分离和提纯。
例如从食盐溶液中回收氯化钠晶体。
二、化学方法一般分为转化法、吸收法、溶解法、沉淀法、气化法、加热法、置换法等。
运用上述方法时一般遵循下列四项原则。
(1)在提纯的过程中,不能引入新的杂质,不减少被提纯物质的量。
(2)在提纯过程中,尽量使杂质转化为被提纯的物质。
(3)在提纯过程中,如生成新杂质,此杂质应易与被提纯物质分离开。
(4)在分离过程中,若选用的试剂将被分离的物质转化为其他物质,应采取适当方法将中间物质转化为被分离的物质。
1.转化法就是将混合物中的杂质与某种试剂反应生成被提纯的物质。
例如,一氧化碳中混有少量的二氧化碳气体,可将混合气体通过红热的炭层,使二氧化碳转化为一氧化碳。
2.吸收法若气体混合物中的杂质能与某种试剂反应(即被吸收),可将混合气体通过盛有该试剂的吸气瓶,再经干燥后即可把杂质除去。
例如,上述例子中一氧化碳中混有少量的二氧化碳气体,可将混合气体先后通过盛有NaOH溶液和浓硫酸的洗气瓶,从而得到纯净的一氧化碳。
CO2+2NaOHNa2CO3↓+H2O3.溶解法此法是指混合物中的杂质能与某种试剂反应而被溶解掉,被提纯的物质不反应,然后再采取适当的措施(如过滤、洗涤、干燥)而把杂质除去。