电磁场与电磁波第七章
- 格式:ppt
- 大小:990.00 KB
- 文档页数:75
《电磁场与电磁波》习题解答 第七章 正弦电磁波7.1 求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中cos cos cos n x y z x y z x y zαβγ=++=++e e e e r e e e故(cos cos cos )()cos cos cos n x y z x y z x y z x y z αβγαβγ⋅=++⋅++=++e r e e e e e e则j()[(cos cos cos )]22222[(cos cos cos )]2e ()()n r t j x y z t m m x x y y z zj x y z t m e j e j βωβαβγωβαβγωββ⋅-++-++-==∇=∇+∇+∇==e E E E E e E e E e E E E而22j[(cos cos cos )]222{e }x y z t m t t βαβγωω++-∂∂==-∂∂E E E故222222()(0j j t μεβμεωμεω∂∇-=+=+=∂EE E E E E 可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程2220t με∂∇-=∂EE故E 表示沿e n 方向传播的平面波。
7.2 试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解 表征沿+z 方向传播的椭圆极化波的电场可表示为12()j z x x y y E jE e β-=+=+E e e E E式中取121[()()]21[()()]2j zx x y y x y j zx x y y x y E E j E E e E E j E E e ββ--=+++=---E e e E e e显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。
解 E m 为常矢量。
在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。
试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。
在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。
解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。
与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。
当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。
解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。
解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。
考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。
当该电磁波进入某理想介质后,波长变为0.09m 。
设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。
第7章 导行电磁波前面我们讨论了电磁波在无界空间的传播以及电磁波对平面分界面的反射与透射现象。
在这一章中我们将讨论电磁波在有界空间的传播,即导波系统中的电磁波。
所谓导波系统是指引导电磁波沿一定方向传播的装置,被引导的电磁波称为导行波。
常见的导波系统有规则金属波导(如矩形波导、圆波导)、传输线(如平行双线、同轴线)和表面波波导(如微带线),图7.0.1给出了一些常见的导波系统。
导波系统中电磁波的传输问题属于电磁场边值问题,即在给定边界条件下解电磁波动方程,这时我们可以得到导波系统中的电磁场分布和电磁波的传播特性。
在这一章中,将用该方法讨论矩形波导、圆波导和同轴线中的电磁波传播问题以及谐振腔中的场分布及相关参数。
然而,当边界比较复杂时,用这种方法得到解析解就很困难,这时如果是双导体(或多导体)导波系统且传播的电磁波频率不太高,就可以引入分布参数,用“电路”中的电压和电流等效前面波导中的电场和磁场,这种方法称为“等效传输线”法。
这一章我们还将用该方法讨论平行双线和同轴线中波的传播特性。
7.1导行电磁波概论任意截面的均匀导波系统如图7.1.1所示。
为讨论简单又不失一般性,可作如下假设: (1)波导的横截面沿z 方向是均匀的,即导波内的电场和磁场分布只与坐标x ,y 有关,与坐标z 无关。
(2)构成波导壁的导体是理想导体,即σ=∞。
(3)波导内填充的媒质为理想介质,即0σ=,且各向同性。
(4)所讨论的区域内没有源分布,即0ρ=0=J 。
a 矩形波导b 圆柱形波导c 同轴线传输线d 双线传输线e 微带线图7.0.1 常见的几种导波系统(5)波导内的电磁场是时谐场,角频率为ω。
设波导中电磁波沿+z 方向传播,对于角频率为ω的时谐场,由假设条件(1)和(2)可将其电磁场量表示为()()()(),,,,,,,z z x y z x y e x y z x y e γγ--==E E H H (7.1.1)式中γ称为传播常数,表征导波系统中电磁场的传播特性。
第七章 时变电磁场7-1 设真空中电荷量为q 的点电荷以速度)(c v v <<向正z 方向匀速运动,在t = 0时刻经过坐标原点,计算任一点位移电流。
(不考虑滞后效应)解 选取圆柱坐标系,由题意知点电荷在任意时刻的位 置为),0 ,0(vt ,且产生的场强与角度φ无关,如习题图7-1 所示。
设) , ,(z r P φ为空间任一点,则点电荷在P 点产生的电场强度为304R q πεRE =,其中R 为点电荷到P 点的位置矢量,即)(vt z r z r -+=e e R 。
那么,由tt d ∂∂=∂∂=ED J 0ε,得 ()()()()()()()25222225224243vt z rr vt z qv vt z r vt z qrv zr d -+--+-+-=ππe e J 。
7-2 已知真空平板电容器的极板面积为S ,间距为d ,当外加电压t V V sin 0ω=时,计算电容器中的位移电流,且证明它等于引线中的传导电流。
习题图7-1 P (r ,φ,z )x解 在电容器中电场为t dV E sin 0ω=,则 t dV t D J d cos 00ωωε=∂∂=, 所以产生的位移电流为t dSV S J I d d cos 00ωωε==;已知真空平板电容器的电容为dSC 0ε=,所带电量为t CV CV Q ωsin 0==,则传导电流为t dSV t CV t QI cos cos d d 000ωωεωω===; 可见,位移电流与传导电流相等。
7-3 已知正弦电磁场的频率为100GHz ,试求铜及淡水中位移电流密度与传导电流密度之比。
解 设电场随时间正弦变化,且t E m x sin ωe E =,则位移电流t E tm r x d cos 0ωωεεe DJ =∂∂=, 其振幅值为m r d E J ωεε0=传导电流t E m x ωσσsin e E J ==,振幅为m E J σ=,可见σωεε0r d J J =; 在海水中,81=r ε,m S /4=σ,则5.11241021036181119=⨯⨯⨯⨯=-ππJJ d;在铜中,1=r ε,m S /108.57⨯=σ,则871191058.9108.5102103611--⨯=⨯⨯⨯⨯⨯=ππJ J d。
第七章 平面电磁波的反射和透射 习题解答7-1.空气中的平面电磁波电场幅值为10V/m ,垂直入射到εr =25的无耗非磁性介质的表面,试确定:(1)反射系数和透射系数;(2)在空气中的驻波比;(3)入射波、反射波和透射波的平均功率流密度。
解 (1)由于空气和无耗非磁性介质的磁导率为120μμμ=≈所以,空气和无耗非磁性介质中的波阻抗分别为()()12120120245;πηπηπ==Ω====Ω 由此得到垂直入射情况下,两理想介质分界面的反射系数和透射系数为 2121241200.6724120r ηηππηηππ--==≈-++22122240.3324120t ηπηηππ⨯==≈++(2)驻波比定义为 11max minE r SE r由此得到空气中的驻波比为 1106750611067r .S.r .(3)假定电场矢量沿x e 方向,入射波沿+Z 方向传播,则可写出垂直入射情况下,入射波、反射波和透射波的电场和磁场复振幅矢量表达式为()()()1110110001111i i i i jk zi x jk z jk zi i z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ ()()()()1110000111111r r jk zr x jk z jk zr r r r z x y z z z E e E e E e e e e e E H k E ηηη-⎧=⎪⎨=⨯⨯=⎪-⎩= ()()()2220220002111t t tt jk z t x jk z jk zt t z x y E e E e E e z z z e e e e E H k E ηηη---⨯⎧=⎪⎨=⨯=⎩=⎪ 根据平均功率流密度的定义式*1Re 2av S E H ⎡⎤=⨯⎣⎦ 有11*2*10010111Re Re 2212jk z jk zi i i i av i i x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦()111*2*0010111Re Re 2221jk z jk zr r r r av r r x y z E e E e E S E H e e e ηη⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯-=- ⎪⎣⎦⎢⎥⎝⎭⎣⎦ 22*2*20020111Re Re 2212jk z jk z t t t tav t t x y z E e E e E S E H e e e ηη--⎡⎤⎛⎫⎡⎤⎢⎥=⨯=⨯= ⎪⎣⎦⎢⎥⎝⎭⎣⎦而1200012024106733i r iti ;;EV /m ;E rE .V /m ;EtE.V /m数值代入得到()212011000.13/2iav zz W m S e e π=⨯≈⨯()221 6.70.06/2120rav z z W m S e e π=-⨯-≈-⨯()221 3.30.07/224tav z z W m S e e π=≈⨯7-4.一均匀平面电磁波沿+Z 方向传播,其电场强度矢量为()()()100sin 200cos V/m x y t kz t kz ωω=-+-E e e(1)应用麦克斯韦方程求相伴的磁场H ;(2)若在传播方向上z =0处放置一无限大的理想导体板,求z <0区域中的合成波的电场E 1和磁场H 1;(3)求理想导体板表面的电流密度。