7,流量计系统
- 格式:pptx
- 大小:31.83 MB
- 文档页数:88
控制液体流速的装置引言流体控制是一项重要的工程技术,在许多领域都有广泛的应用。
控制液体流速的装置是其中一种常见的装置,它可以通过调整流体的流动速度,实现对流量的精确控制。
本文将从原理、应用以及设计等方面全面探讨控制液体流速的装置。
原理1.流量控制器:通过在液体管道中设置阀门或节流装置来改变流体压力或截面积,并通过调整这些参数来控制液体的流速。
2.流量计:利用传感器测量液体流经的时间和流经截面积,通过计算来得出流速,并通过控制装置来调整流速。
应用控制液体流速的装置在许多行业中都有广泛的应用,以下是一些常见的应用领域:化工工业1.阀门控制:在化工流程中,液体的流速控制对于合成反应、混合、萃取等工艺至关重要。
2.节流装置:通过改变管道的截面积,实现对液体流速的调节。
3.计量装置:对液体流量进行准确的计量,保证工业过程的稳定性和质量。
食品加工1.流量控制:在食品加工中,液体的流速对于搅拌、混合、输送等步骤都有严格的要求。
2.罐内液位控制:通过控制液体的流入和流出速度,确保罐内液位处于稳定状态。
污水处理1.水流速控制:在污水处理中,合理的流速控制可以提高污水处理效率和处理质量。
2.溢流控制:通过控制液体的流速,避免系统溢流,保证污水处理过程的正常运行。
设计1.控制阀门:通过控制阀门的开度,从而调节管道截面积,以实现对液体流速的调节。
2.配流装置:通过设计专用的流体管道和分流装置,实现对流速的精确控制。
3.传感器和反馈系统:通过安装流量计传感器,测量实际流速,并通过反馈系统控制阀门,实现对流速的闭环控制。
4.自动控制系统:通过使用先进的自动控制技术,实现对液体流速的智能化控制和优化。
结论控制液体流速的装置在各个行业中都具有重要的应用价值。
通过合理的装置设计和精确的控制手段,可以实现对液体流速的精确控制,提高工业过程的稳定性和质量。
我们相信在未来的发展中,控制液体流速的装置将会得到更广泛的应用和进一步的发展。
电磁流量计详细参数
电磁流量计是一种测量导电液体体积流量的仪器。
它利用电磁感应原理,通过测量液体在磁场中的运动速度,来计算液体的流量。
电磁流量计具有准确度高、测量范围广、抗干扰能力强等优点,在工业生产和流体管理领域得到广泛应用。
下面将详细介绍电磁流量计的一些重要参数。
1.测量范围:
2.精度:
精度是指电磁流量计测量结果与真实值之间的偏差。
精度通常由百分比表示,如精度为±0.5%,表示测量结果的偏差不超过真实值的±0.5%。
3.输出信号类型:
4.管道尺寸:
5.电磁流量计材质:
6.电极材质:
电极是电磁流量计的重要组成部分,通常分为不锈钢电极和钽电极两种材料。
不锈钢电极适用于大多数导电液体的测量,而钽电极适用于特殊要求的应用场合。
7.介质温度:
8.介质压力:
9.电源要求:
10.抗干扰能力:
11.防护等级:
以上是电磁流量计的一些重要参数,不同厂家和型号的电磁流量计具体参数可能有所差异,用户在选型时应根据具体需求进行选择。
电磁流量计的参数影响着其在实际应用中的性能和可靠性,合理选择合适的参数对于仪表的正常运行和准确测量是非常重要的。
流量计说明书流量计说明书篇一:流量计使用方法及问题解析流量计外观及使用方法如下所示:接线时1,2,3是电源端使用的是24V供电4是数字量输出,也就是说该引脚输出一定频率的信号,信号的频率与流量相关。
频率关系为1HZ的频率对应一单位NV的的流量(该单位不是清楚是什么)5是模拟量输出,输出的是4-20mA的电流信号,电流大小与流量线性相关。
6、7是RS232串口输出,RXD接收端,TXD发送端。
该端口可以提供与PC的通信功能,也就对应需购买的软件。
连接方式为RX对应9针串口(电脑端口)的2,TX对应9针串口的3,GND 对应9针串口的5。
问题分析及解决方法1、流量计自带LCD屏显示功能,如果不能正常显示说明,电源未正确连接,检查123接线是否正确。
2、如未配液晶屏,需购买。
或通过3条中模拟量或数字量的自制显示单元实现(成本不会很高)3、如果正常显示,流量数显示不正确,说明参数未配置正确 1是输出流量没规律,说明流量计是坏的,需更换2输出线性相关只是大小不正确可通过以下方式解决1)通过串口发送命令对传感器重新标定或设定,但是通信协议需厂家提供。
厂家提供的软件不一定有该功能。
2)通过模拟量输出口,测量输出电流,然后将电流与流量相对应,对应关系可自己设定。
自己做一个小控制器通过这个关系将流量重新显示。
3)通过数字量口,测量频率信号,然后对应流量信号,也需要自己做控制器显示。
4、另一种可能是测量程不匹配,可参照下表确认,内径与最大最小流量的关系流量计说明书篇二:超声波流量计说明书SCT超声波流量计说明书(固定式、便携式通用)MKflo-2000F系列中文版超声波流量计说明书目录一概述 (4)1.1 引言 (4)1.2 SCT的特点 (4)1.3 工作原理 (4)1.6 可选备件 (5)1.7产品型号编码规则 (5)1.8接线图 (6)1.9 性能指标 (6)二开始安装测量 (8)2.1 开箱检查 (8)2.2 供电电源 (8)2.2.1 便携式 (8)2.2.2 固定式 (8)2.2.3 接线 (8)2.3 通电 (8)2.4 键盘 (8)2.5 怎样操作 (9)2.6 窗口简介 (10)2.7 快速输入管道参数和步骤 (10)2.8选择测量点 (11)2.9 探头接线 (11)2.10 安装探头 (12)2.10.1 探头安装距离 (12)2.10.2 探头安装方式 (12)2.10.3 V法 (12)2.10.4 Z法 (12)2.10.5 N法(不常用的方法) (13)2.10.6 W法(极不常用的方法) (13)2.10.7 插入式传感器的安装 (13)2.11 检查安装 (17)2.11.1 信号强度 (17)2.11.2数据数量 (18)2.11.3 总传输时间、时差 (18)2.11.4 传输时间比 (18)2.11.4 安装时注意的问题 (18)三怎样使用 (19)3.1 怎样判断流量计是否工作正常 (19)3.2 怎样选择流量单位制 (19)3.3 怎样选择瞬时流量单位 (19)3.4 怎样选择累积流量单位 (19)3.5 怎样选择累积器倍乘因子 (19)3.6 怎样打开或关闭流量累积器 (19)2MKflo-2000F系列中文版超声波流量计说明书3.7 怎样实现流量累积器清零 (19)3.8 怎样恢复出厂设置 (19)3.9 怎样使用阻尼器稳定流量显示 (20)3.10 怎样使用零点切除避免无效累积 (20)3.11 设置零点提高测量精度 (20)3.12 修改仪表系数(标尺因子)进行标定校正 (20)3.13 密码保护(加锁与开锁) (20)3.14 怎样使用打印机 (21)3.15 怎样使用4~20mA电流环输出 (21)3.16 怎样输出模拟电压信号 (21)3.17怎样输出累积脉冲 (21)3.18 怎样使用OCT输出 (21)3.19 怎样修改日期时间 (21)3.20 怎样调整LCD显示器 (22)3.21 怎样使用RS232串行口 (22)3.22怎样查看每日、每月、每年流量 (22)3.23 怎样对模拟输出进行校准 (22)3.24 查看电子序列号和其他细节 (22)四命令/显示窗口详解 (23)4.1 显示窗口一览表 (23)4.2 显示窗口顺序介绍 (24)五问题处理 (41)表1. 硬件上电自检信息及原因对策 (41)表2. 工作时错误代码原因及对策 (42)其他常见问题问答 (43)六热量和其他物理量测量 (44)6.1 功能介绍 (44)6.2热量测量硬件接线 (44)6.3怎样进行热量测量 (44)6.4温度、压力等信号的量程范围设置 (44)6.5联网时模拟输入量的读取 (44)七质量保证及服务维修支持 (45)7.1 质量保证 (45)7.2 公司服务 (45)7.3 产品升级 (45)7.4 技术咨询 (45)八附录 (46)8.1常用液体声速和粘度 (46)8.2 常用材料声速 (46)8.3水中声速表(1标准大气压下) (47)3MKflo-2000F系列中文版超声波流量计说明书一概述1.1 引言欢迎您选择使用性能更优异、功能更多、采用专利技术制造的MKFLO-2000F系列中文版超声波流量计。
产品名称:SMC流量计pf3w7说明书SMCCORPORATION成立于1959年,总部设在日本东京都。
时至今日,SMC已成为世界级的气动元件研发、制造、销售商。
在日本本土更拥有庞大的市场网络,为客户提供产品及售后服务。
SMC 作为世界最著名的气动元件制造和销售的跨国公司,其销售网及生产基地遍布世界。
SMC产品以其品种齐全、可靠性高、经济耐用、能满足众多领域不同用户的需求而闻名于世。
在日本市场占有率已超过60%的SMC,通过分布于世界51个国家的海外子公司及分销商,将世界各国SMC产品的生产、销售连成一体,为用户提供直接、完善的服务。
在实际应用中,所选用仪表精度相同的情况下,考虑实际测量的流量值范围,尽量压缩仪表的量程区间使之最接近被测量数值以达到提高测量精准度的目的。
和用格尺量1cm 的东西会比用米尺量准确一点是一个道理。
以电磁流量计为举例市场上通用型的性能有较大差别,有些精度高、功能多,有些精度低、功能简单。
精度高的仪表基本误差为(±0.5%~±1%)R,精度低的仪表则为(±1.5%~±2.5%)FS,两者价格相差1~2倍。
因此测量精度要求不很高的场所(例如非贸易核算仅以控制为目的,电磁流量计只要求高可靠性和优良重复性的场所)选用高精度仪表在经济上是不合算的。
有些型号仪表声称有更高的精确度,基本误差仅(±0.2%~±0.3%)R,但有严格的安装要求和参比条件,例如环境温度20~22℃,前后直管段长度要求分别大于10D和3D(通常为5D和2D),甚至提出流量传感器要与前后直管组成一体在流量标准装置上作实流校准,以减少夹装影响。
因此在多种型号选择比较时不要单纯只看高指标,涡街流量计要详细阅读制造厂样本或说明书做综合分析。
市场上EMF的功能差别也很大,简单的就只是测量单向流量,只输出模拟信号带动后位仪表;多功能仪表有测双向流、量程切换、上下限流量报警、空管和电源切断报警、小信号切除、流量显示和总量计算、自动核对和故障自诊断、与上位机通信和运动组态等。
有些型号仪表的串行数字通信功能可选多种通信接口和专用芯片(ASIC),涡轮流量计以连接HART协议系统、PROFTBUS、Modbus、CONFIG、FF现场总线等。
使用EMF的前提是被测液体必须是导电的,不能低于阈值(即下限值)。
电导率低于阈值会产生测量误差甚至不能使用,超过阈值即使变化也可以测量,示值误差变化不大,通用型EMF的阈值在10-4~(5×10-6)S/cm 之间,视型号而异。
使用时还取决于传感器和转换器间流量信号线长度及其分布电容,制造厂使用说明书中通常规定电导率相对应的信号线长度。
流量计操作说明书目录一、流量计转换器操作说明1、操作框图2、主界面3、各通道状态界面4、功能选择界面5、用户密码输入界面6、用户密码重输界面7、用户设置选择界面8、报警范围设置界面9、压缩因子参数设置界面10、时钟设置界面11、温压输入量程设置界面12、输出量程选择界面13、用户密码修改界面14、通讯及接口参数设置界面二、流量计转换器MODBUS通讯编程说明1、转换器串口通讯简要说明2、MODBUS 协议简介3、ASCII传输方式4、RTU传输方式5、地址域6、功能域7、数据域一、流量计转换器操作说明流量计转换器面板上共有:上(↑)、下(↓)、左(←)、右(→)、模式(M)和回车( )六个键,通过这六个键可以对流量计进行各种操作。
1、操作框图:说明:1、除主界面外,其它任何界面显示时,如在30秒内无按键操作,则程序自动取消该界面,返回至主界面。
2、7个用户设置界面中,选择界面中的确定或取消后返回至上一级的用户设置选择界面,并且7个用户设置界面之间可以用←、→键相互切换。
3、用户设置选择界面通过按模式(M)键返回至功能选择界面。
4、功能选择界面通过按模式(M)键返回至主界面。
2、主界面:(1)主界面中,使用率表示多次采样中数据被正确采用的比例。
(2)主界面状态下,按←、→键可以在主界面和各通道状态界面之间切换。
(3)当瞬时流量、压力或温度的测量值超出设定范围时即报警(相应的汉字字符显示颜色反转)。
如压力超出范围时,界面中对应的“压力”两字显示颜色反转,如下图:(4)当压缩因子参数设置错误(即各组分摩尔百分比含量的累加值≠100%)时即报警,此时,主界面中对应的“累计量”三字显示颜色反转。
(5)当流量计测量的是工况流量时,瞬时流量显示的单位为m3/h,否则,当流量计测量的是换算至标准状态下的标况流量时,瞬时流量的显示单位为Nm3/h。
(6)按M键,出现功能选择界面。
3、各通道状态界面:(1)按←、→键可以在各通道状态界面和主界面之间切换。
流量计实验报告7页一、实验目的1.了解流量计的基本原理和构成;2.学习利用流量计测量流量和流速;3.掌握计算流量的方法。
二、实验原理1.流量计的分类流量计按照测量原理和作用方式的不同可以分为许多类别。
当前较为常见的流量计包括体积计、质量计、速度计和压降计等。
流量计一般由流量传感器、变送器、网络通信模块和LCD液晶显示屏等几个部分组成。
理论上,同时对流量计进行体积和重量的计量能够得到相同的结果,因为它们之间只是一个简单的比例关系。
不过由于现实中一些因素的影响,比如管道内部的摩擦、流体的黏滞度等,导致结果上可能有一些差异。
一般情况下,计算流量需要以下公式:Q=VA其中,Q为流量,V为平均流速,A为管道横截面积。
当管道为圆形时,横截面积的计算公式为:A=πr²其中,r为管道半径。
综合以上公式,我们可以推导出流量计的计算公式:三、实验过程1. 将流量计的实验装置与水泵、水槽等连接,使得水流从槽中通过流量计进入排水管,然后回流到水槽中。
2. 打开电源,将管道内的水流放行一会,等待流量计的显示屏稳定。
3. 记录显示屏上的数字,然后提高水泵的流量,再次记录数字。
4. 根据流量计的计算公式计算流量。
5. 重复以上步骤多次,加深对实验结果的认识。
四、实验结果本次实验中采用的流量计为普通流量计。
在实验中我们通过调整水泵的流量,记录流量计的数值并多次重复实验,得到了以下数据:流量流速1.68 L/s 0.01517 m/s通过计算公式:A=πr²=3.14×0.01²=0.000314故得到本次实验的流量计算结果为:6.40748×10⁻³m³/s。
本次实验使用普通流量计测量了指定水泵流量下的水流流量,并通过实验结果得到了正确的计算公式。
同时,还深入了解了流量计的分类和基本组成等知识。