马尔可夫过程的发展和应用
- 格式:doc
- 大小:201.50 KB
- 文档页数:6
马尔可夫决策过程简介马尔可夫决策过程(Markov Decision Process,MDP)是用来描述随机决策问题的数学模型。
它由俄罗斯数学家安德烈·马尔可夫在20世纪初提出,并在决策理论、控制论、人工智能等领域得到了广泛的应用。
MDP可以用于建模具有随机性和不确定性的环境,并且提供了一种优化决策的方法。
本文将简要介绍马尔可夫决策过程的基本概念、特性和应用。
1. 马尔可夫决策过程的基本概念马尔可夫决策过程是一个五元组(S, A, P, R, γ):- S 表示状态空间,即系统可能处于的所有状态的集合;- A 表示动作空间,即系统可以进行的所有动作的集合;- P 表示状态转移概率,即在某个状态下执行某个动作后转移到下一个状态的概率分布;- R 表示奖励函数,即在某个状态下执行某个动作所获得的即时奖励;- γ 表示折扣因子,用来平衡当前奖励和未来奖励的重要性。
在马尔可夫决策过程中,决策者需要根据当前的状态和可选的动作来选择一个最优的策略,使得长期累积的奖励最大化。
这种决策问题属于强化学习的范畴,即在与环境的交互中学习最优的决策策略。
2. 马尔可夫决策过程的特性马尔可夫决策过程具有以下重要特性:- 马尔可夫性质:即未来的状态只取决于当前状态和当前所执行的动作,与过去的状态和动作无关。
这一特性使得马尔可夫决策过程能够简洁地描述随机决策问题,并且具有较好的可解性。
- 最优性质:即存在一个最优的策略,使得长期累积的奖励最大化。
这一特性使得马尔可夫决策过程能够提供一种优化决策的方法,对于许多实际问题具有重要的应用价值。
除此之外,马尔可夫决策过程还具有一些其他重要的性质,如可达性、有限性等,这些性质为MDP的建模和求解提供了基础。
3. 马尔可夫决策过程的应用马尔可夫决策过程在很多领域都得到了广泛的应用,如人工智能、运筹学、经济学等。
其中,最为著名的应用之一就是强化学习,通过马尔可夫决策过程的建模和求解,可以学习到最优的决策策略,从而应用于机器人控制、智能游戏等领域。
自动驾驶技术是近年来备受关注的热门领域,它所涉及的技术涵盖了人工智能、计算机视觉、机器学习等多个方面。
在自动驾驶技术中,马尔可夫决策过程(Markov Decision Process, MDP)是一个重要的数学模型,它在自动驾驶中的应用对于提高驾驶系统的智能化水平具有重要意义。
马尔可夫决策过程最初是由苏联数学家安德列·马尔可夫提出的,它是描述一个随机自动化系统的数学模型。
在自动驾驶中,马尔可夫决策过程可以用来描述车辆所处的环境状态以及在不同状态下做出的决策。
这样的模型可以帮助自动驾驶系统更好地理解周围环境并做出合适的驾驶决策。
一、马尔可夫决策过程的基本原理马尔可夫决策过程是一种描述随机决策过程的数学框架,它包括了状态空间、动作空间、状态转移概率、奖励函数等要素。
在自动驾驶中,状态空间可以表示车辆所处的位置、周围车辆的行驶状态、交通信号灯状态等;动作空间则表示车辆可以采取的行为,比如加速、减速、转弯等。
状态转移概率描述了在不同状态下采取不同行动后,车辆可能转移到的下一个状态,而奖励函数则用来评估每个状态和动作的好坏,帮助车辆做出最优的决策。
二、MDP在自动驾驶中的应用在自动驾驶中,马尔可夫决策过程可以帮助车辆根据当前的环境状态选择最优的驾驶行为。
通过对状态空间、动作空间和奖励函数的建模,自动驾驶系统能够在不同的交通场景下做出理性的决策,比如避让障碍物、遵守交通规则、选择合适的车速等。
这种基于数学模型的决策方式,可以使自动驾驶系统更加智能化和人性化。
在实际的自动驾驶系统中,马尔可夫决策过程可以结合传感器数据、地图信息等多种输入,帮助车辆做出实时的决策。
比如在遇到交通拥堵时,马尔可夫决策过程可以帮助车辆选择最优的行驶路线,避免拥堵;在遇到突发状况时,马尔可夫决策过程可以帮助车辆做出快速反应,保障行车安全。
这种基于数学模型的决策方式,不仅可以提高车辆的自主行驶能力,还可以提高交通系统的整体效率。
随机过程中的马尔可夫过程在随机过程中的马尔可夫过程马尔可夫过程是在随机过程中常见且重要的一种形式。
它具有一定的数学特性和模型结构,能够描述在离散或连续时间段内状态的转移以及相关的概率。
本文将对马尔可夫过程的基本概念、特性和应用进行详细介绍。
一、概述马尔可夫过程是一种随机过程,其状态转移满足马尔可夫性质。
马尔可夫性质是指在给定当前状态下,未来和过去的转移概率仅与当前状态有关,与过去状态无关。
这种性质使得马尔可夫过程具有简化模型和简单计算的优势,被广泛应用于各个领域。
二、基本概念1. 状态空间:马尔可夫过程的状态空间是指所有可能取值的集合。
例如,一个骰子的状态空间为{1, 2, 3, 4, 5, 6}。
2. 转移概率:马尔可夫过程中的状态转移概率描述了从一个状态到另一个状态的概率。
用P(Xt+1 = j | Xt = i)表示从状态i转移到状态j的概率。
3. 转移矩阵:将所有状态之间的转移概率整合到一个矩阵中,称为转移矩阵。
转移矩阵是一个方阵,大小为n×n,其中n是状态空间的数量。
4. 平稳分布:在马尔可夫过程中,如果某个状态的概率分布在经过无限次转移后保持不变,那么该概率分布称为平稳分布。
平稳分布可以通过解线性方程组来计算。
三、特性1. 马尔可夫链:马尔可夫过程可以看作是离散时间的马尔可夫链。
马尔可夫链是指具有无记忆性质的随机序列,即未来状态只依赖于当前状态。
2. 齐次马尔可夫过程:如果马尔可夫过程的转移概率与时间无关,那么称为齐次马尔可夫过程。
齐次马尔可夫过程的转移概率矩阵在时间上保持不变。
3. 连续时间马尔可夫过程:如果马尔可夫过程的时间是连续的,则称为连续时间马尔可夫过程。
连续时间的马尔可夫过程可以用微分方程来描述。
四、应用领域1. 金融学:马尔可夫过程常用于金融市场的建模和分析,例如股票价格的预测和风险管理。
2. 信号处理:马尔可夫过程可以用于信号和图像的分析与处理,包括语音识别和图像识别等领域。
马尔可夫决策过程在实际中的应用马尔可夫决策过程(MDP)是一种用于描述随机决策问题的数学框架。
通过MDP,我们可以建立起一种数学模型,用于描述智能体在不断地与环境互动中,做出决策以达成其某种目标的过程。
MDP在现实生活中有着广泛的应用,从工程领域到经济学领域,都能看到它的身影。
首先,我们来看看MDP在工程领域的应用。
在工程领域,MDP常常被用来描述系统控制问题。
比如,在自动驾驶汽车中,驾驶系统需要通过对周围环境的感知和分析,来做出合适的决策,比如加速、减速、转弯等。
而这些决策往往需要考虑到环境的不确定性,比如其他车辆的突然变道、行人的横穿等。
这时,MDP就可以派上用场,通过建立状态空间、动作空间和奖励函数,来帮助汽车系统做出最优的决策。
除了工程领域,MDP在经济学领域也有着广泛的应用。
在金融投资领域,投资者需要面对各种不确定性因素,比如股票市场的波动、宏观经济环境的变化等。
此时,MDP可以帮助投资者建立起一个数学模型,通过对各种因素的分析和建模,来帮助投资者做出最优的投资决策。
比如,通过MDP可以对不同的投资组合进行优化,找到最佳的资产配置方案,以达到投资组合的最大化收益或最小化风险。
此外,MDP还在医疗领域有着重要的应用。
在临床决策支持系统中,医生需要根据患者的病情和各种医疗因素,来做出诊断和治疗建议。
而这些决策往往需要考虑到患者的个体差异以及疾病的不确定性。
通过MDP可以建立起一个医疗决策支持系统,帮助医生做出更为科学和合理的决策,提高患者的治疗效果和生存率。
总的来说,马尔可夫决策过程在实际中有着广泛的应用,不仅在工程、经济学和医疗领域有着重要的作用,而且还在其他领域也有着诸多应用。
通过对环境的建模和分析,MDP可以帮助决策者做出更为科学和合理的决策,提高决策的效率和效果。
随着人工智能和数据科学的发展,相信MDP会在更多领域展现出其强大的应用价值。
马尔可夫决策过程在机器学习中的应用引言机器学习是一门涉及人工智能和计算机科学的领域,其目的是使计算机系统能够从数据中学习并自主改善性能。
而马尔可夫决策过程(Markov Decision Process,MDP)是机器学习中的一个重要概念,它能够帮助机器学习系统做出决策并优化其性能。
本文将探讨马尔可夫决策过程在机器学习中的应用,介绍其基本概念、特点以及在实际问题中的应用。
马尔可夫决策过程的基本概念马尔可夫决策过程是一个数学框架,用于描述决策问题中随机性和不确定性。
它由五个要素组成:状态空间、动作空间、状态转移概率、奖励函数和折扣因子。
其中,状态空间描述了系统可能处于的所有状态,动作空间描述了系统可以采取的所有可能动作,状态转移概率描述了系统在某个状态下采取某个动作后转移到下一个状态的概率,奖励函数描述了系统在某个状态下采取某个动作后所获得的奖励,折扣因子则用于平衡当前奖励和未来奖励的重要性。
马尔可夫决策过程的特点马尔可夫决策过程具有以下几个特点:首先,它是一个基于数学模型的框架,能够形式化地描述决策问题,使得问题的求解变得更加系统化和规范化;其次,它考虑了不确定性和随机性,能够适应实际决策问题中的复杂环境;再次,它能够综合考虑当前奖励和未来奖励,能够做出长期的最优决策;最后,它是一种通用的模型,能够应用于各种不同领域的决策问题,如自动驾驶、智能游戏等。
马尔可夫决策过程在实际问题中的应用马尔可夫决策过程在实际问题中有着广泛的应用,下面将介绍其中的一些应用场景。
首先,马尔可夫决策过程在自动驾驶领域有着重要的应用。
在自动驾驶系统中,车辆需要根据当前的状态和环境来做出决策,如何避免障碍物、调整车速等。
马尔可夫决策过程能够帮助自动驾驶系统建立数学模型,根据当前状态和环境来选择最优的动作,从而实现安全、高效的自动驾驶。
其次,马尔可夫决策过程在智能游戏中也有着重要的应用。
在智能游戏中,玩家的决策往往涉及到不确定性和随机性,如何在复杂的环境中做出最佳决策是一个挑战。
马尔可夫过程及其应用随机事件、随机行为在我们的日常生活中无处不在,如天气的变化、股票市场的波动、人口的增长等。
数学上,这些随机事件可用随机变量表示,我们关心的是这些随机变量的发展和演化,进而了解问题的本质和规律。
这就是概率论和随机过程所要研究的内容。
马尔可夫过程是一种重要的随机过程,具有广泛的应用。
马尔可夫过程是指具有“无记忆性”的随机过程,它的未来状态只与当前状态相关,而与过去的状态无关。
具有马尔可夫性质的随机过程常常被称为“马尔可夫链”。
马尔可夫过程包含以下三个要素:状态空间、转移概率矩阵和初值分布。
其中状态空间是指系统可能处于的状态集合,转移概率矩阵是指从一个状态到另一个状态的概率,初值分布是指系统在初始状态的概率分布。
马尔可夫过程中的状态可以是离散的,也可以是连续的。
马尔可夫过程有以下几个重要的性质:无后效性、可达性、可约性、不可二分性、周期性和吸收性。
其中,无后效性是指过去的状态信息对于未来的状态预测没有影响;可达性是指从一个状态出发,存在一条路径能够到达另一个状态;可约性是指所有状态可以通过状态的合并来降低状态的个数;不可二分性是指任何一个状态要么是不可达状态,要么是不可分状态;周期性是指存在一些状态,从这些状态出发,经过若干次转移后又会回到该状态,形成一个循环;吸收性是指存在一些状态,从这些状态出发,不会回到其他状态,这些状态称为吸收态。
马尔可夫过程在实际应用中有广泛的应用,如金融工程、生物信息学、信号处理、通信系统等领域。
以下就几个领域举例说明。
一、金融工程金融市场的波动是随机的,因此建立一个能够描述金融市场运动的随机过程非常必要。
马尔可夫过程可以很好地描述金融市场的波动行为。
例如,利用高斯-马尔可夫过程可以描述股票价格的变化,通过将市场建模成一个马尔可夫链,可以对股票价格、波动率等重要金融指标进行预测。
二、生物信息学生物序列比对是生物信息学中一个非常重要的问题。
基于概率模型的生物序列比对方法包括基础的重叠模型和马尔科夫模型。
马尔可夫过程与鞅马尔可夫过程和鞅是概率论和随机过程中常见且重要的概念。
它们在各个领域都有广泛的应用,例如金融、生物学、物理学等。
本文将介绍马尔可夫过程和鞅的基本概念和特性,并探讨它们的应用。
一、马尔可夫过程马尔可夫过程是指具有马尔可夫性质的随机过程。
马尔可夫性质是指在已知当前状态下,未来发展的过程与过去的发展无关。
换句话说,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫过程可以用一个状态空间和状态转移概率矩阵来描述。
状态空间是指所有可能的状态组成的集合,状态转移概率矩阵描述了从一个状态转移到另一个状态的概率。
马尔可夫过程可以分为离散时间和连续时间两种。
离散时间马尔可夫过程是指时间以离散的方式前进,状态也是离散的。
连续时间马尔可夫过程是指时间是连续的,状态可以是离散的或连续的。
马尔可夫过程有很多重要的性质,例如马尔可夫链的平稳分布、不可约性、遍历性等。
这些性质对于理解和分析马尔可夫过程的行为具有重要意义。
马尔可夫过程在实际应用中有广泛的应用。
例如,在金融领域中,马尔可夫过程可以用来建模股票价格的变动。
在生物学领域中,马尔可夫过程可以用来描述基因的突变和演化。
在物理学领域中,马尔可夫过程可以用来描述粒子在空间中的运动。
二、鞅鞅是一种具有平衡性质的随机过程。
简单来说,鞅是指在给定过去的信息下,未来的期望与当前的值相等。
换句话说,鞅是一种没有偏差的随机过程。
鞅可以用来描述随机过程的平衡性质和无偏性质。
它在金融、统计学、信息论等领域中有广泛的应用。
鞅的性质使得它成为一种重要的工具,在金融领域中可以用来建模和分析股票价格、期权价格等。
在统计学中,鞅可以用来估计未知参数和预测未来值。
在信息论中,鞅可以用来描述信息的平衡性质和无偏性质。
三、马尔可夫过程与鞅的应用马尔可夫过程和鞅在各个领域都有广泛的应用。
它们可以用来建模和分析各种随机过程,并提供了一种有效的工具和方法。
在金融领域中,马尔可夫过程和鞅可以用来建模和分析股票价格的变动。
马尔可夫决策过程简介马尔可夫决策过程(Markov Decision Process, MDP)是一种用于描述随机决策问题的数学框架。
它是由苏联数学家安德雷·马尔可夫在20世纪初提出的,被广泛应用于控制理论、人工智能、经济学等领域。
马尔可夫决策过程的核心思想是通过数学模型描述决策者在具有随机性的环境中做出决策的过程,以及这些决策对环境的影响。
本文将介绍马尔可夫决策过程的基本概念和应用。
1. 随机过程马尔可夫决策过程是建立在随机过程的基础上的。
随机过程是指随机变量随时间变化的过程,它可以用来描述许多自然现象和工程问题。
在马尔可夫决策过程中,状态和行动都是随机变量,它们的变化是随机的。
这种随机性使得马尔可夫决策过程具有很强的适用性,可以用来描述各种真实世界中的决策问题。
2. 状态空间和转移概率在马尔可夫决策过程中,环境的状态被建模为一个有限的状态空间。
状态空间中的每个状态都代表了环境可能处于的一种情况。
例如,在一个机器人导航的问题中,状态空间可以表示为机器人可能所处的每个位置。
转移概率则描述了从一个状态转移到另一个状态的概率。
这个概率可以用一个转移矩阵来表示,矩阵的每个元素代表了从一个状态到另一个状态的转移概率。
3. 奖励函数在马尔可夫决策过程中,决策者的目标通常是最大化长期的累积奖励。
奖励函数用来描述在不同状态下采取不同行动所获得的奖励。
这个奖励可以是实数,也可以是离散的,它可以是正也可以是负。
决策者的目标就是通过选择合适的行动,使得累积奖励达到最大。
4. 策略在马尔可夫决策过程中,策略是决策者的行动规则。
它描述了在每个状态下选择行动的概率分布。
一个好的策略可以使得决策者在长期累积奖励最大化的同时,也可以使得系统的性能达到最优。
通常情况下,我们希望找到一个最优策略,使得系统在给定的状态空间和转移概率下能够最大化累积奖励。
5. 值函数值函数是描述在给定策略下,系统在每个状态下的长期累积奖励的期望值。
马尔可夫决策过程在实际中的应用马尔可夫决策过程(Markov Decision Process, MDP)是一种用于描述决策问题的数学模型,它可以应用于各种实际场景中的决策问题。
MDP模型可以帮助我们理解和解决诸如控制、规划、资源分配等问题,并在实际中发挥着重要作用。
本文将从实际案例出发,探讨马尔可夫决策过程在实际中的应用。
无人驾驶汽车中的路径规划无人驾驶汽车是近年来备受瞩目的技术创新,其核心技术之一就是路径规划。
在城市道路网中,无人驾驶汽车需要根据实时道路交通情况和目标位置,做出决策选择最佳路径。
这个问题可以被建模为马尔可夫决策过程,其中每个路口可以视作一个状态,车辆在每个路口做出转向决策,转向的结果受到随机的交通状况影响。
MDP模型可以帮助无人驾驶汽车做出最优路径选择,以实现高效、安全的自动驾驶。
供应链管理中的库存控制在供应链管理中,库存控制是一个重要的问题。
企业需要平衡存货成本和订单交货率,以最大化利润。
马尔可夫决策过程可以应用于库存控制的决策问题中。
在这个问题中,系统的状态可以被定义为当前库存水平,决策可以是下一时刻的订货量。
通过建立MDP模型,企业可以制定最优的订货策略,以最大化利润并满足交货要求。
医疗资源分配中的决策支持医疗资源分配是一个涉及生命和健康的重要问题。
在医院管理中,决策者需要合理分配有限的医疗资源,以满足病人的需求和提高医疗效率。
马尔可夫决策过程可以被应用于医疗资源的分配决策支持系统中。
通过对医院各个科室、病房、手术室等资源状态的建模,结合医疗资源需求的预测,可以利用MDP模型制定最优的资源分配策略,以提高医疗服务的质量和效率。
金融投资中的交易决策在金融投资领域,交易决策是一个关键问题。
投资者需要根据市场行情和资产的预期收益,做出买卖决策以获取最大的收益。
马尔可夫决策过程可以被应用于金融交易决策中。
通过对市场状态和资产价格的建模,结合投资者的风险偏好和收益目标,可以利用MDP模型制定最优的交易策略,以获取最大的投资收益。
马尔可夫链法的研究与应用【马尔可夫链法的研究与应用】【引言】马尔可夫链法是一种重要的随机过程分析方法,在概率论与统计学领域有着广泛的应用。
其基本思想是通过状态转移概率来描述随机事件之间的相互关系,从而用于建模和预测各种实际问题。
本文将围绕马尔可夫链法的研究和应用展开讨论,探讨其数学原理、相关应用和发展前景。
【正文】1. 马尔可夫链法的数学原理1.1 随机过程与状态空间马尔可夫链法基于随机过程的理论基础,即研究系统状态随机变化的数学模型。
状态空间是描述系统可能状态的集合,通过定义每个状态之间的转移概率,可以构建状态转移矩阵来描绘状态之间的相互关系。
1.2 马尔可夫性质马尔可夫链的核心是满足马尔可夫性质,即当前状态的转移只与其前一个状态有关,与其他历史状态无关。
这种性质可以用数学公式表示为P(Xn+1=xi| X0=x0, X1=x1, ..., Xn=xn) = P(Xn+1=xi|Xn=xn),其中X是状态变量,xi是状态空间中的一个状态。
1.3 马尔可夫链的平稳分布在马尔可夫链中,存在一个平稳分布,即状态在长期下趋于稳定的概率分布。
平稳分布的计算可以通过解状态转移矩阵的特征向量得到,对于周期性的马尔可夫链需要特殊处理。
2. 马尔可夫链法的应用领域2.1 自然语言处理马尔可夫链法在自然语言处理领域有着广泛的应用。
通过建立基于观测文本的马尔可夫模型,可以实现文本的自动生成、词性标注、语言模型等任务。
利用马尔可夫链模型可以生成自动回复的对话机器人,实现智能客服等应用。
2.2 金融市场分析马尔可夫链方法在金融市场分析中也发挥着重要的作用。
通过分析股票市场的历史数据,建立马尔可夫链模型,可以预测未来的股票价格走势,提供决策参考。
马尔可夫链法还可以用于研究金融风险管理、投资组合优化等问题。
2.3 基因序列分析在生物信息学领域,马尔可夫链模型可以用于分析基因序列的相关性和统计特征。
通过构建基因组中的马尔可夫模型,可以帮助研究人员理解基因间的关联关系,预测蛋白质结构等。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计(论文)课程名称:应用随机过程设计题目:马尔可夫过程的发展与应用院系:电子信息与工程学院班级:通信一班设计者:学号:指导教师:***设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用1. 随机过程发展简述在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。
一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。
虽然如此,随机过程一般理论的研究通常认为开始于30年代。
1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。
这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。
稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。
1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。
1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。
60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。
2. 马尔可夫过程发展2.1 马尔可夫过程简介马尔科夫过程(MarKov Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。
无后效的随机过程称为马尔科夫过程。
马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。
我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。
马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。
2.2 马尔可夫过程的发展20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。
1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。
出于扩大极限定理应用范围的目的,马尔科夫在20世纪初开始考虑相依随机变量序列的规律,并从中选出了最重要的一类加以研究。
1906年他在《大数定律关于相依变量的扩展》一文中,第一次提到这种如同锁链般环环相扣的随机变量序列,其中某个变量各以多大的概率取什么值,完全由它前面的一个变量来决定,而与它更前面的那些变量无关。
这就是被后人称作马尔科夫链的著名概率模型。
也是在这篇论文里,马尔科夫建立了这种链的大数定律。
用一个通俗的比喻来形容,一只被切除了大脑的白鼠在若干个洞穴间的蹿动就构成一个马尔科夫链。
因为这只白鼠已没有了记忆,瞬间而生的念头决定了它从一个洞穴蹿到另一个洞穴;当其所在位置确定时,它下一步蹿往何处与它以往经过的路径无关。
这一模型的哲学意义是十分明显的,用前苏联数学家辛钦(1894-1959〕的话来说,就是承认客观世界中有这样一种现象,其未来由现在决定的程度,使得我们关于过去的知识丝毫不影响这种决定性。
这种在已知“现在”的条件下,“未来”与“过去”彼此独立的特性就被称为马尔科夫性,具有这种性质的随机过程就叫做马尔科夫过程,其最原始的模型就是马尔科夫链。
这既是对荷兰数学家惠更斯(Ch. Huygens, 1629-1659)提出的无后效原理的概率推广,也是对法国数学家拉普拉斯(P. S. Laplace, 1749-1827)机械决定论的否定。
这里应该指出,尽管拉普拉斯对概率论的早期发展作出过重大贡献,但是他的部分哲学观点是不利于这门学科的深入发展的。
十八世纪以来,随着牛顿力学的彻底胜利,一种机械唯物主义的决定论思潮开始在欧洲科学界蔓延,鼓吹最力者就是拉普拉斯。
1759年他在巴黎高等师范学院发表了一篇题为《概率论的哲学探讨》的演讲,淋漓尽致地表达出了这种思想。
他说:“假如有人知道了某一时刻支配自然的一切力,以及它的一切组成部分的相对位置,又假如他的智力充分发达,能把这一切数据加以充分的分析,把整个宇宙中从最巨大的天体到最微小的原子的一切运动完全包括在一个公式里面,这样对他就没有什么东西是不确定的了,未来也好,过去也好,他都能纵览无遗。
”1812年,拉普拉斯又进一步提出“神圣计算者”的观念,认为这个理想的数学家只须知道世界某一时刻的初始状态,就可以从一个无所不包的微分方程中算出过去和未来的一切状态。
换句话说,他认为任意系统在t > t0时的状态x可由其初始时刻t0和初始状态x0唯一决定。
这可真是笔判终身、细评流年,数学家可以摆个卦摊了。
马尔科夫的概率模型从根本上否定了系统中任一状态x与其初始状态x0之间的因果必然性,从而也否定了“神圣计算者”的神话。
还应该指出,马尔科夫所建立的概率模型不但具有深刻的哲学意义,而且具有真实的物质背景,在他的工作之前或同时,一些马尔科夫链或更复杂的随机过程的例子已出现在某些人的研究中,只不过这些人没有自觉地认识到这类模型的普遍意义或用精确的数学语言表述出来罢了。
例如苏格兰植物学家布朗( R. Brown, 1773-1858) 于1827年发现的悬浮微粒的无规则运动、英格兰遗传学家高尔顿(F.Galton, 1822-1911) 于1889年提出的家族遗传规律、荷兰物理学家埃伦费斯特( P. Ehrenfest, 1880-1933) 于1907年关于容器中分子扩散的实验,以及传染病感染的人数,谣言的传播,原子核中自由电子的跃迁,人口增长的过程等等,都可用马尔科夫链或过程来描述。
也正是在统计物理、量子力学、遗传学以及社会科学的若干新课题、新事实面前,决定论的方法显得百孔千疮、踵决肘见。
有趣的是,马尔科夫本人没有提到他的概率模型在物理世界的应用,但是他利用了语言文学方面的材料来说明链的性质。
在《概率演算》第四版中,他统计了长诗《叶甫盖尼·奥涅金》中元音字母和辅音字母交替变化的规律:这是长诗开头的两句,意为:“我不想取悦骄狂的人生,只希望博得朋友的欣赏。
”诗人那火一般的诗篇在数学家那里变成了一条冷冰冰的锁链:在这条锁链上只有两种链环,C代表辅音、代表元音(为了使问题简化起见,不仿把两个无音字母算作辅音)。
马尔科夫分别统计了在C后面出现C和的概率p和1-p,以及在后出现C和的概率q和1-q,把结果与按照俄语拼音规则计算出的结果进行比较,证实了语言文字中随机的(从概率的意义上讲)字母序列符合他所建立的概率模型。
完成了关于链的大数定律的证明之后,马尔科夫又开始在一系列论文中研究链的中心极限定理。
1907年他在《一种不平常的相依试验》中证明了齐次马尔科夫链的渐近正态性;1908年在《一个链中变量和的概率计算的极限定理推广》中作了进一步的推广;1910年他发表了重要的论文《成连锁的试验》,在其中证明了两种情况的非齐次马尔科夫链的中心极限定理。
与此同时他在一些假定的前提下证明了模型的各态历经性,成为在统计物理中具有重要作用的遍历理论中第一个被严格证明的结果。
遍历理论亦称ergodic 理论, 是奥地利物理学家玻耳兹曼(L. Boltzmann, 1844-1906) 于1781年提出来的,其大意是:一个系统必将经过或已经经过其总能量与当时状态相同的另外的任何状态。
马尔科夫链的引入,在物理、化学、天文、生物、经济、军事等科学领域都产生了连锁性的反应,很快地涌现出一系列新的课题、新的理论和新的学科,并揭开了概率论中一个重要分支--随机过程理论蓬勃发展的序幕。
3 马尔可夫过程的应用3.1 马尔可夫应用概述马尔可夫随机过程的发展史说明了理论与实际之间的密切关系。
许多研究方向的提出,归根到底是有其实际背景的。
反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。
下面简略介绍一下马尔可夫随机过程本身在各方面的应用情况。
在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。
当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。
物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。
湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。
探讨太阳黑子的规律及其预测时,时间序列方法非常有用。
化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。
随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以此来构造生物现象的模型。
研究群体的增长问题时,提出了生灭型随机模型,两性增长模型,群体间竞争与生尅模型,群体迁移模型,增长过程的扩散模型等等。
有些生物现象还可以利用时间序列模型来进行预报。
传染病流行问题要用到具有有限个状态的多变量非线性生灭过程。
在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。
许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。
这类概率模型涉及的过程叫排队过程,它是点过程的特例。
排队过程一般不是马尔可夫型的。
当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。
在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。
传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。