电动力学习题答案第一章 电磁现象的普遍规律
- 格式:doc
- 大小:30.00 KB
- 文档页数:6
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R)(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ⨯∇=⨯∇证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明fS f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ 证明p 的变化率为:⎰=V V t td ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
电动⼒学郭硕鸿第三版课后题⽬整理电动⼒学答案第⼀章电磁现象的普遍规律1、根据算符?的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(??++??+=??A A A A )()(221??-?=A2、设u 就是空间坐标z y x ,,的函数,证明:u u f u f ?=?d d )(, uu u d d )(AA ?=, uu u d d )(A A ??=?? 证明: 3、设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的⽅向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-?=? ; 3/)/1(')/1(r r r r -=-?=? ;0)/(3=??r r ;0)/(')/(33=?-?=??r r r r , )0(≠r 。
(2)求r ?? ,r ?? ,r a )(?? ,)(r a ?? ,)]sin([0r k E 及)]sin([0r k E ,其中a 、k 及0E 均为常向量。
4、应⽤⾼斯定理证明f S f ?=SVV d d ,应⽤斯托克斯(Stokes)定理证明??=??LSl S d d5、已知⼀个电荷系统的偶极矩定义为 'd '),'()(V t t Vx x p ?=ρ,利⽤电荷守恒定律0=??+??tρJ 证明p 的变化率为:=VV t t d ),'(d d x J p6、若m 就是常向量,证明除0=R 点以外,向量3/R )(R m A ?=的旋度等于标量3/R R m ?=?的梯度的负值,即?-?=??A ,其中R 为坐标原点到场点的距离,⽅向由原点指向场点。
7、有⼀内外半径分别为1r 与2r 的空⼼介质球,介质的电容率为ε,使介质球内均匀带静⽌⾃由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷与极化⾯电荷分布。
电动力学答案第一章电磁现象的普遍规律1. 根据算符的微分性与向量性,推导下列公式:2. 设是空间坐标的函数,证明:,,证明:3. 设为源点到场点的距离,的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:;;;,。
(2)求,,,,及,其中、及均为常向量。
4. 应用高斯定理证明,应用斯托克斯(Stokes)定理证明5. 已知一个电荷系统的偶极矩定义为,利用电荷守恒定律证明p的变化率为:6. 若m是常向量,证明除点以外,向量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质球内均匀带静止自由电荷,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为,求磁感应强度和磁化电流。
9. 证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。
10. 证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律11. 平行板电容器内有两层介质,它们的厚度分别为和,电容率为和,今在两板接上电动势为E 的电池,求:(1)电容器两极板上的自由电荷面密度和;(2)介质分界面上的自由电荷面密度。
(若介质是漏电的,电导率分别为和当电流达到恒定时,上述两物体的结果如何?12.证明:(1)当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足其中和分别为两种介质的介电常数,和分别为界面两侧电场线与法线的夹角。
(2)当两种导电介质内流有恒定电流时,分界面上电场线的曲折满足其中和分别为两种介质的电导率。
13.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体内电场线总是平行于导体表面。
电动力学答案第一章电磁现象的普遍规律1.根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇A A A A )()(221∇⋅−∇=×∇×A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=c c c c BA B A A B A B )()()()(∇⋅+×∇×+∇⋅+×∇×=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+×∇×=⋅∇,所以A A A A A A )()()(21∇⋅−⋅∇=×∇×即A A A A )()(221∇⋅−∇=×∇×A2.设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )(,u u u d d )(A A ⋅∇=⋅∇,uu u d d )(AA ×∇=×∇证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=×∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zx y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)(u A ×∇=3.设222)'()'()'(z z y y x x r −+−+−=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
第一章电磁现象的普遍规律根据算符的微分性与矢量性,推导以下公式:解:矢量性为①②③微商性④⑤由②得⑥⑦⑥+⑦得上式得令得设μ是空间坐标x,y,z的函数,证明:解:①②③设为原点到场点的距离,的方向规定为从原点指向场点。
证明以下结果,并体会对原变数求微商〔〕与对场变数求微商〔〕的关系〔最后一式在r=0点不成立,见第二章第五节〕⑵求及,其中及均为常矢量。
解:⑴⑵4. 4. ⑴应用高斯定理证明⑵应用斯托克斯〔Stokes〕定理证明解:⑴⑵5. 5. 一个电荷系统的偶极矩定义为利用电荷守恒定律证明的变化率为解:取被积区域大于电荷系统的区域,即V的边界S上的,那么。
6. 假设是常矢量,证明除R=0点以外矢量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
解:有一内外半径分别为和的空心介质球,介质的电容率为,使介质内均匀带静止自由电荷,求空间各点的电场;⑵极化体电荷和极化面电荷分布。
解:⑴对空间Ⅰ做高斯面,由:对空间Ⅱ:做高斯面,由对空间Ⅲ:做高斯面,由⑵由时,由边值条件:(由1指2)向8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为μ,求磁感应强度和磁化电流。
解:⑴由所以所以方向为对区域Ⅱ由方向为对区域Ⅲ有:(2) (2) 由由由同理由证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。
即:解:由均匀介质有①②③④由①②得两边求散度由③④得10.证明两个闭合的恒定电流圈之间的相互作用力大小相等,发向相反。
〔但两个电流元之间的相互作用力一般并不服从牛顿第三定律〕解:令两个线圈中的电流分别为和。
电流圈对另一个电流圈中的电流元的作用力为:⑴其中⑵是电流圈在电流元处激发的磁感应强度,是从中的电流元到电流元的矢径。
将⑵式代入⑴式,并对积分,利用斯托克斯定理,同时注意到,即得到电流圈对的作用力:⑶同样,电流圈对中的电流元的作用力为:⑷其中⑸是电流圈在电流元处激发的磁感应强度,是从电流元到电流元的矢径。
1. 半径为a 的球形区域内充满分布不均匀的体密度电荷,设其体密度为ρ(r )。
若已知电场分布为e r (r 3+Ar 2) r≤ae r (a 5+Aa 4)r -2 r>a 式中的A 为常数,试求电荷体密度ρ(r )。
解 0<r ≤a ()()[]Ar r Ar r r rr E r r r E r45112232222+=+∂∂=∂∂=⋅∇ r >a ()()[]0112452222=+∂∂=∂∂=⋅∇-r Aa a r rr E r r r E r 是一个电荷球体,球内电荷密度()Ar r 4520+=ερ 总的电荷量()[]()45002024454Aa a dr Ar r r Q a+=+=⎰πεεπ因此球外电场为204re Q E rπε=2. 海水的电导率σ=4 S/m ,相对介电常数εr =81。
求频率f=1MH z 时,海水中的位移电流与传导电流的振幅之比。
解 设传导电流密度cos m J E J t σω== 位移电流200sin r r D m D JJ J t A m t t εεωεεωσσ∂∂===-∂∂61202108.8510481r D J J ωεεπσ-⨯⨯⨯⨯==3. 自由空间的磁场强度为H =e x H m cos(ωt -kz)A/m ,式中的k 为常数。
试求位移电流密度和电场强度。
E =()sin x x D y z m y H H DJ H e e kH t kz e t z yω∂∂∂==∇⨯=-=-∂∂∂ ()0011sin m y E H kH t kz e t ωεε∂=∇⨯=-∂ 对t 积分得()01cos m y E kH t kz e ωεω=--4. 铜的电导率σ=5.8×107S/m ,相对介电常数εr =1。
设铜中的传导电流密度为J =e x J m cosωt A/m 2。
试证明在无线电频率范围内铜中的位移电流与传导电流相比是可以忽略的。
第一章电磁现象的普遍规律一、填空题1.已知介质中的极化强度,其中A为常数,介质外为真空,介质中的极化电荷体密度;与垂直的表面处的极化电荷面密度分别等于和。
答案: 0, A, -A2.已知真空中的的电位移矢量=<5xy+)cos500t,空间的自由电荷体密度为。
答案:3.变化磁场激发的感应电场的旋度等于。
答案:4.介电常数为的均匀介质球,极化强度A为常数,则球内的极化电表面极化电荷密度等于荷密度为,答案0,5.一个半径为R的电介质球,极化强度为,则介质中的自由电荷体密度为,介质中的电场强度等于.答案:二、选择题1.半径为R的均匀磁化介质球,磁化强度为,则介质球的总磁矩为A. B. C. D. 0答案:B2.下列函数中能描述静电场电场强度的是A. B.C. D.<为非零常数)答案:D3.充满电容率为的介质平行板电容器,当两极板上的电量<很小),若电容器的电容为C,两极板间距离为d,忽略边缘效应,两极板间的位移电流密度为:A. B. C. D.答案:A4.下面矢量函数中哪一个不能表示磁场的磁感强度?式中的为非零常数A.(柱坐标> B. C. D.答案:A5.变化磁场激发的感应电场是A.有旋场,电场线不闭和B.无旋场,电场线闭和C.有旋场,电场线闭和D.无旋场,电场线不闭和答案:C6.在非稳恒电流的电流线的起点.终点处,电荷密度满足A. B. C. D.答案:D7.处于静电平衡状态下的导体,关于表面电场说法正确的是:A.只有法向分量。
B.只有切向分量。
C.表面外无电场。
D.既有法向分量,又有切向分量答案:A8.介质中静电场满足的微分方程是A. B.。
C. D.答案:B9.对于铁磁质成立的关系是A. B. C. D.答案:C10.线性介质中,电场的能量密度可表示为A. 。
B.。
C.D.答案:B三、思考题1、有人说:“当电荷分布具有某种对称性时,仅要根据高斯定理的积分形式这一个方程就可以求解静电场的分布。
1. 半径为a的球形区域充满分布不均匀的体密度电荷,设其体密度为ρ(r)。
若已知电场分布为er(r3+Ar2) r≤aer(a5+Aa4)r-2 r>a式中的A为常数,试求电荷体密度ρ(r)。
解 0<r≤a ()()[]ArrArrrrrErrrEr45112232222+=+∂∂=∂∂=⋅∇r>a ()()[]0112452222=+∂∂=∂∂=⋅∇-rAaarrrErrrEr是一个电荷球体,球电荷密度()Arr452+=ερ总的电荷量()[]()45224454AaadrArrrQ a+=+=⎰πεεπ因此球外电场为24reQE rπε=2. 海水的电导率σ=4 S/m,相对介电常数εr=81。
求频率f=1MH z时,海水中的位移电流与传导电流的振幅之比。
解设传导电流密度cosmJ E J tσω==位移电流200sinr rD mD JJ J t A mt tεεωεεωσσ∂∂===-∂∂6122108.8510481rDJJωεεπσ-⨯⨯⨯⨯==3. 自由空间的磁场强度为H=e x H m cos(ωt-kz)A/m,式中的k为常数。
试求位移电流密度和电场强度。
()sin x x D y z m y H H DJ H e ekH t kz e t z yω∂∂∂==∇⨯=-=-∂∂∂ ()0011sin m y E H kH t kz e t ωεε∂=∇⨯=-∂ 对t 积分得()01cos m y E kH t kz e ωεω=--4. 铜的电导率σ=5.8×107S/m ,相对介电常数εr =1。
设铜中的传导电流密度为J =e x J m cosωt A/m 2。
试证明在无线电频率围铜中的位移电流与传导电流相比是可以忽略的。
由J E σ=得JE σ=位移电流200sin D m D JJ J t A m t t εωεωσσ∂∂===-∂∂12078.851015.810r D J J ωεεωσ-⨯⨯⨯==⨯5. 正弦交流电压源u=U m sinωt 连接到平行板电容器的两个极板上,如图所示。
电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:BA B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )(,uu u d d )(A A ⋅∇=⋅∇,u u u d d )(A A ⨯∇=⨯∇ 证明:3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:r r r /'r =-∇=∇ ; 3/)/1(')/1(r r r r -=-∇=∇ ;0)/(3=⨯∇r r ;0)/(')/(33=⋅-∇=⋅∇r r r r , )0(≠r 。
(2)求r ⋅∇ ,r ⨯∇ ,r a )(∇⋅ ,)(r a ⋅∇ ,)]sin([0r k E ⋅⋅∇及)]sin([0r k E ⋅⨯∇ ,其中a 、k 及0E 均为常向量。
4. 应用高斯定理证明f S f ⨯=⨯∇⎰⎰SVV d d ,应用斯托克斯(Stokes )定理证明⎰⎰=∇⨯LSϕϕl S d d5. 已知一个电荷系统的偶极矩定义为'd '),'()(V t t Vx x p ⎰=ρ,利用电荷守恒定律0=∂∂+⋅∇tρJ证明p 的变化率为:⎰=VV t t d ),'(d d x J p6. 若m 是常向量,证明除0=R 点以外,向量3/R )(R m A ⨯=的旋度等于标量3/R R m ⋅=ϕ的梯度的负值,即ϕ-∇=⨯∇A ,其中R 为坐标原点到场点的距离,方向由原点指向场点。
7. 有一内外半径分别为1r 和2r 的空心介质球,介质的电容率为ε,使介质球内均匀带静止自由电荷f ρ,求:(1)空间各点的电场;(2)极化体电荷和极化面电荷分布。
第一章电磁现象的普遍规律
1. 根据算符的微分性与矢量性,推导下列公式:
解:矢量性为
①
②
③微商性
④
⑤
由②得
⑥
⑦
⑥+⑦得
上式得
令得
2.设μ是空间坐标x,y,z的函数,证明:
解:①
②
③
3.设为原点到场点的距离,的方向规定为从原点指向场点。
⑴证明下列结果,并体会对原变数求微商
()
与对场变数求微商
()
的关系
(最后一式在r=0点不成立,见第二章第五节)
⑵求及,其中及均为常矢量。
解:⑴
⑵
4. 4.⑴应用高斯定理证明
⑵应用斯托克斯(Stokes)定理证明
解:⑴
⑵
5. 5.已知一个电荷系统的偶极矩定义为
利用电荷守恒定律
证明的变化率为
解:
取被积区域大于电荷系统的区域,即V的边界S上的,则。
6. 若是常矢量,证明除R=0点以外矢量的旋度等于标量的梯度的负值,即,其中R为坐标原点到场点的距离,方向由原点指向场点。
解:
7. 有一内外半径分别为和的空心介质球,介质的电容率为,使介质内均匀带静止自由电荷,求
⑴空间各点的电场;⑵ 极化体电荷和极化面电荷分布。
解:⑴对空间Ⅰ做高斯面,由:
对空间Ⅱ:做高斯面,由
对空间Ⅲ:
做高斯面,由
⑵由
时,由边值条件:
(由1指向2)
8. 内外半径分别为和的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流,导体的磁导率为μ,求磁感应强度和磁化电流。
解:⑴由
所以
所以
方向为
对区域Ⅱ
由
方向为
对区域Ⅲ有:
(2)(2)由
由
由
同理
由
得
9. 证明均匀介质内部的体极化电荷密度总是等于体自由电荷密度的倍。
即:
解:由均匀介质有
①
②
③
④
由①②得
两边求散度
由③④得
10. 证明两个闭合的恒定电流圈之间的相互作用力大小相等,发向相反。
(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)
解:令两个线圈中的电流分别为和。
电流圈对另一个电流圈中的电流元的作用力为:
⑴
其中
⑵
是电流圈在电流元处激发的磁感应强度,是从中的电流元到电流元的矢径。
将⑵式代入⑴式,并对积分,利用斯托克斯定理,同时注意到,即得到电流圈对的作用力:
⑶
同样,电流圈对中的电流元的作用力为:
⑷
其中
⑸
是电流圈在电流元处激发的磁感应强度,是从电流元到电流元的矢径。
对的作用力为
⑹
注意到
于是有
11. 平行板电容器内有两层介质,它们的厚度分别为和,电容率为和,令在两板接上电动势为的电势,求:⑴电容器两板上的自由电荷面密度⑵介质分界面上的自由电荷面密度;若介质是漏电的,电导率分别为和,当电流达到恒定时,上述两问题的结果如何?
解:
由
得
当介质漏电时
由
得
有
同理
12. 证明:⑴当两种绝缘介质的分界面上不带自由电荷时,电场线的曲折满足:
其中和分别为两种介质的介电常数,和分别为界面两侧电场线与法线的夹角。
⑵当两种导电介质内流有恒电流时,分界面上电场线曲折满足,其中σ1和σ2分别为两种介质的电导率。
解:⑴
切向分量连续有
代入上式得:
⑵,
切向分量连续,
有
代入上式得
13.试用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面;在恒定电流情况下,导体的电场线总是平行于导体表面。
解:⑴由边值关系:
又由边值关系
即
因为假设为静电情况
即导体外的电场线总是垂直于导体表面。
⑵在恒定电流情况下:由
因为
所以
即导体内电场线总是平行于导体表面。
14. 内外半径分别为和的无限长圆柱形电容器,单位长度荷电为,极间填充电导率为的非磁性物质
(1)证明在介质中任何一点传导电流与位移电流严格抵消,因此内部无磁场。
(2)求随时间的衰减规律
(3)求与轴相距为r的地方的能量耗散功率密度
(4)求长度为L的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率
解:(1)
由(3)得
++
又
即与严格抵消。
(2)由
=
2LE=
E=
J= -
解得
当t=0时
(3)t场对自由电荷所做的功率密度为
(4)
而长为L的一段介质总的静电能为
W=
所以能量耗散功率等于静电能减少率。