四种典型全控型器件比较
- 格式:docx
- 大小:23.69 KB
- 文档页数:6
四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。
导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
22222、电力晶体管(GTR) 1)电力晶体管的结构:R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。
四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。
四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。
自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。
(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。
容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。
在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。
(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。
(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。
目前,其研制水平已达4500V/1000A。
开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。
GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。
MOSFET的开关时间一般在10--100ns之间。
IGBT的开关时间要低于电力MOSFET。
驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。
典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。
其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。
GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。
目前,GTO 已达到3000A、4500V的容量。
大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。
其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。
1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。
当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。
根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。
1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。
对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。
门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。
四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。
四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。
自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。
(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。
容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。
在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。
(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。
(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。
目前,其研制水平已达4500V/1000A。
开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。
GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。
MOSFET的开关时间一般在10--100ns之间。
IGBT的开关时间要低于电力MOSFET。
驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。
四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。
导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
2222R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)2、电力晶体管(GTR) 1)电力晶体管的结构:内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。
第四讲全控型电力电子器件4.1概述门极可关断晶闸管(Gate-Turn-OffThyristor —GTO )在晶闸管咨询世后不久出现;20世纪80年代以来,信息电子技术与电力电子技术在各自开展的根底上相结合——高频化、全控型、采纳集成电路制造工艺的电力电子器件,从而将电力电子技术又带进了一个崭新时代;典型代表——门极可关断晶闸管、电力晶体管(GiantTransistor ——GTR)、电力场效应晶体管(PowerMOSFET)、尽缘栅双极晶体管(Insulated-gateBipolarTransistor ——IGBT 或IGT)。
4.2门极可关断晶闸管〔Gate-Turn-OffThyristor —GTO 〕门极可关断晶闸管是晶闸管的一种派生器件; 能够通过在门极施加负的脉冲电流使其关断;GTO 的电压、电流容量较大,与一般晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。
4.2.1GTO 的结构和工作原理结构:与一般晶闸管的相同点:PNPN 四层半导体结构,外部引出阳极、阴极和门极;和一般晶闸管的不同:GTO 是一种多元的功率集成器件,内部包含数十个甚至数百个共阳极的小GTO 元,这些GTO 元的阴极和门极那么在器件内部并联在一起。
c)图1-13AG K GGKN 1P 1N 2N 2P 2b)a)AGK图1GTO 的内部结构和电气图形符号 a)各单元的阴极、门极间隔排列的图形b)并联单元结构断面示意图c)电气图形符号工作原理:与一般晶闸管一样,能够用图2所示的双晶体管模型来分析121=+αα是器件临界导通的条件。
当a 1+a 2>1时,两个等效晶体管过饱和而使器件导通;当a 1+a 2<1时,不能维持饱和导通而关断AP 1AGK N 1P 2P 2N 1N 2a)b)图2GTO 的双晶体管模型GTO 能够通过门极关断的缘故是其与一般晶闸管有如下区不: 〔1〕设计2α较大,使晶体管V 2操纵灵敏,易于GTO 关断;〔2〕导通时21αα+更接近1〔,一般晶闸管15.121≥+αα〕导通时饱和不深,接近临界饱和,有利门极操纵关断,但导通时管压落增大;〔3〕多元集成结构使GTO 元阴极面积特殊小,门、阴极间距大为缩短,使得P 2基区横向电阻特殊小,能从门极抽出较大电流 导通过程:与一般晶闸管一样,只是导通时饱和程度较浅;关断过程:强烈正相应——门极加负脉冲即从门极抽出电流,那么2b I 减小,使I K 和2C I 减小,2C I 的减小又使A I 和1C I 减小,又进一步减小2V 的基极电流。
四种典型全控型器件的比较四种典型全控型器件的比较一、对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO)1)GTO的结构与工作原理芯片的实际图形GTO结构的纵断面GTO结构的纵断面图形符号GTO的内部结构和电气图形符号2)工作原理:设计?2较大,使晶体管V2控制灵敏。
导通时?1+?2=1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
22222、电力晶体管(GTR)1)电力晶体管的结构:内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS 大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P 型反型成N型,沟通了漏极和源极。
此时,若在漏源极之间加正向电压,则电子将从源极横向穿过沟道,然后垂直(即纵向)流向漏极,形成漏极电流i D。
电压U GS(th)称为开启电压,u GS超过U GS(th)越多,导电能力就越强,漏极电流i D也越大。
4、绝缘栅双极晶体管(IGBT)1)基本结构内部结构简化等效电路电气图形符号2)绝缘栅双极晶体管(IGBT)的工作原理:IGBT的驱动原理与电力MOSFET基本相同,它是一种压控型器件。
其开通和关断是由栅极和发射极间的电压u GE决定的,当u GE为正且大于开启电压u GE(th)时,MOSFET内形成沟道,并为晶体管提供基极电流使其导通。
当栅极与发射极之间加反向电压或不加电压时,MOSFET内的沟道消失,晶体管无基极电流,IGBT关断。
PNP晶体管与N沟道MOSFET组合而成的IGBT称为N沟道IGBT,记为N-IGBT。
对应的还有P沟道IGBT,记为P-IGBT。
N-IGBT和P-IGBT统称为IGBT。
由于实际应用中以N沟道IGBT为多。
二、对四种典型全控型器件进行容量及频率比较GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用。
目前,GTO的容量水平达6000A/6000V、 1000A/9000V ,频率为1kHZ。
GTR是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力,其额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。
电力场效应晶体管电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。
IGBT属于具有功率MOSFET的高速性能与双极的低电阻性能的功率器件。
它的应用范围一般都在耐压600V以上、电流10A以上、频率为1kHz以上的区域。
三、对四种典型全控型器件进行驱动方式及驱动功率比较1、门极可关断晶闸管(GTO)对门极驱动电路的要求:1)正向触发电流i G。
由于GTO是多元集成结构,为了使内部并联的GTO元开通一致性好,故要求GTO门极正向驱动电流的前沿必须有足够的幅度和陡度,正脉冲的后沿陡度应平缓。
2)反向关断电流﹣i G。
为了缩短关断时间与减少关断损耗,要求关断门极电流前沿尽可能陡,而且持续时间要超过GTO的尾部时间。
还要求关断门极电流脉冲的后沿陡度应尽量小。
GTO的驱动电路:小容量GTO门极驱动电路较大容量GTO桥式门极驱动电路2、电力晶体管(GTR)1)对基极驱动电路的要求:①由于GTR主电路电压较高,控制电路电压较低,所以应实现主电路与控制电路间的电隔离。
②在使GTR导通时,基极正向驱动电流应有足够陡的前沿,并有一定幅度的强制电流,以加速开通过程,减小开通损耗。
③GTR导通期间,在任何负载下,基极电流都应使GTR处在临界饱和状态,这样既可降低导通饱和压降,又可缩短关断时间。
④在使GTR关断时,应向基极提供足够大的反向基极电流,以加快关断速度,减小关断损耗。
⑤应有较强的抗干扰能力,并有一定的保护功能2)基极驱动电路:3、电力场效应晶体管(Power MOSFET)电力MOSFET是一种压控型器件,图为其驱动:电力MOSFET的一种驱动电路4、绝缘栅双极晶体管(IGBT)1)对驱动电路的要求:①IGBT是电压驱动的,具有2.5~5.0 V的阈值电压,有一个容性输入阻抗,因此IGBT对栅极电荷非常敏感,故驱动电路必须很可靠,保证有一条低阻抗值的放电回路,即驱动电路与IGBT的连线要尽量短。
②用内阻小的驱动源对栅极电容充放电,以保证栅极控制电压u GE有足够陡的前后沿,使IGBT的开关损耗尽量小。
另外,IGBT开通后,栅极驱动源应能提供足够的功率,使IGBT不退出饱和而损坏。
③驱动电路中的正偏压应为12~15 V,负偏压应为–2~–10 V。
④IGBT多用于高压场合,故驱动电路应与整个控制电路在电位上严格隔离。
⑤驱动电路应尽可能简单实用,具有对IGBT的自保护功能,并有较强的抗干扰能力。
⑥若为大电感负载,IGBT的关断时间不宜过短,以限制d i/d t所形成的尖峰电压,保证IGBT的安全。
驱动电路:在用于驱动电动机的逆变器电路中,为使IGBT能够稳定工作,要求IGBT的驱动电路采用正负偏压双电源的工作方式。
为了使驱动电路与信号电隔离,应采用抗噪声能力强,信号传输时间短的光耦合器件。
基极和发射极的引线应尽量短,基极驱动电路的输入线应为绞合线,其具体电路如图所示。
四、分析四种典型全控型器件存在的问题并讨论其发展前景1、门极可关断晶闸管(GTO)GTO采用了大直径均匀结技术和全压接式结构,通过少子寿命控制技术折衷了GTO导通电压与关断损耗两者之间的矛盾。
GTO在高压(VBR>33000V)/大功率(0.5-20MVA)牵引、工业和电力逆变器中是应用的最为普遍的功率半导体器件。
装有ABB元件的GTO组件已在北京地铁、天津地铁等城市轨道交通车辆上使用,在欧洲广泛用于铁路、交通、牵引、电源及矿井提升机、斩波电源等领域。
缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低。
2、电力晶体管(GTR)GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。
在开关电源和UPS 内,GTR正逐步被功率MOSFET和IGBT所代替。
GTR既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。
3、电力场效应晶体管(Power MOSFET)80年代初期出现的?MOS功率场效应晶体管和功率集成电路的工作频率达到兆赫级。
集成电路的技术促进了器件的小型化和功能化。
这些新成就为发展高频电力电子技术提供了条件,推动电力电子装置朝着智能化、高频化的方向发展。
缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
4、绝缘栅双极晶体管(IGBT)绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)综合了电力晶体管(Giant Transistor—GTR)和电力场效应晶体管(Power MOSFET)的优点,具有良好的特性,应用领域很广泛。
缺点:开关速度低于MOSFET,电压,电流容量不及GTO 。
2010年,中国科学院微电子研究所成功研制国内首款可产业化IGBT芯片,由中国科学院微电子研究所设计研发的15-43A /1200V IGBT系列产品(采用Planar NPT器件结构)在华润微电子工艺平台上流片成功,各项参数均达到设计要求,部分性能优于国外同类产品。
这是我国国内首款自主研制可产业化的IGBT(绝缘栅双极晶体管)产品,标志着我国全国产化IGBT芯片产业化进程取得了重大突破,拥有了第一条专业的完整通过客户产品设计验证的IGBT工艺线。
该科研成果主要面向家用电器应用领域,联合江苏矽莱克电子科技有限公司进行市场推广,目前正由国内着名的家电企业用户试用,微电子所和华润微电子将联合进一步推动国产自主IGBT产品的大批量生产。
参考文献:《中国学术期刊电子杂志》《中国电力百科全书》《电工技术》《电力电子交流技术》《中国集成电路》《现代电力电子技术基础》。