全控器件MOSFET和IGBT
- 格式:ppt
- 大小:3.53 MB
- 文档页数:26
四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。
导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
22222、电力晶体管(GTR) 1)电力晶体管的结构:R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。
简述IGBT的主要特点和工作原理一、简介IGBT,Insulated Gate Bipolar Transistor,是一种复合全控电压驱动功率半导体器件。
由BJT(双极晶体管)和IGFET(绝缘栅场效应晶体管)组成。
IGBT兼有MOSFET 的高输入阻抗和GTR 的低导通压降的优点。
GTR 的饱和电压降低,载流密度大,但驱动电流更大。
MOSFET的驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT结合了以上两种器件的优点,驱动功率小,饱和电压降低。
非常适合用于直流电压600V及以上的变流系统,如交流电机、逆变器、开关电源、照明电路、牵引驱动等领域。
IGBT模块是由IGBT(绝缘栅双极晶体管)和FWD(续流二极管)通过特定的电路桥封装而成的模块化半导体产品。
封装后的IGBT模块直接应用于逆变器、UPS不间断电源等设备。
IGBT模块具有节能、安装维护方便、散热稳定等特点。
一般IGBT也指IGBT模块。
随着节能环保等理念的推进,此类产品将在市场上越来越普遍。
IGBT是能量转换和传输的核心器件,俗称电力电子器件的“CPU”,广泛应用于轨道交通、智能电网、航空航天、电动汽车、新能源设备等领域。
二、IGBT的结构下图显示了一种N 沟道增强型绝缘栅双极晶体管结构。
N+区称为源极区,其上的电极称为源极(即发射极E)。
N基区称为漏区。
器件的控制区为栅极区,其上的电极称为栅极(即栅极G)。
沟道形成在栅区的边界处。
C 极和E 极之间的P 型区域称为子通道区域。
漏极区另一侧的P+ 区称为漏极注入器。
它是IGBT独有的功能区,与漏极区和子沟道区一起构成PNP双极晶体管。
它充当发射极,将空穴注入漏极,进行传导调制,并降低器件的通态电压。
《N沟道增强型绝缘栅双极晶体管》IGBT的开关作用是通过加正栅电压形成沟道,为PNP(原NPN)晶体管提供基极电流,使IGBT导通。
反之,加反向栅压消除沟道,切断基极电流,就会关断IGBT。
MOSFET和IGBT区别MOSFET和IGBT内部结构不同,决定了其应用领域的不同。
1,由于MOSFET的结构,通常它可以做到电流很大,可以到上KA,但是前提耐压能力没有IGBT强。
2,IGBT可以做很大功率,电流和电压都可以,就是一点频率不是太高,目前IGBT 硬开关速度可以到100KHZ,那已经是不错了.不过相对于MOSFET的工作频率还是九牛一毛,MOSFET可以工作到几百KHZ,上MHZ,以至几十MHZ,射频领域的产品. 3,就其应用,根据其特点:MOSFET应用于开关电源,镇流器,高频感应加热,高频逆变焊机,通信电源等等高频电源领域;IGBT集中应用于焊机,逆变器,变频器,电镀电解电源,超音频感应加热等领域开关电源(Switch Mode Power Supply;SMPS) 的性能在很大程度上依赖于功率半导体器件的选择,即开关管和整流器。
虽然没有万全的方案来解决选择IGBT还是MOSFET的问题,但针对特定SMPS应用中的IGBT 和 MOSFET进行性能比较,确定关键参数的范围还是能起到一定的参考作用。
本文将对一些参数进行探讨,如硬开关和软开关ZVS (零电压转换)拓扑中的开关损耗,并对电路和器件特性相关的三个主要功率开关损耗—导通损耗、传导损耗和关断损耗进行描述。
此外,还通过举例说明二极管的恢复特性是决定MOSFET 或 IGBT导通开关损耗的主要因素,讨论二极管恢复性能对于硬开关拓扑的影响。
导通损耗除了IGBT的电压下降时间较长外,IGBT和功率MOSFET的导通特性十分类似。
由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数载流子所需的时间导致了导通电压拖尾(voltage tail)出现。
这种延迟引起了类饱和(Quasi-saturation)效应,使集电极/发射极电压不能立即下降到其VCE(sat)值。
这种效应也导致了在ZVS情况下,在负载电流从组合封装的反向并联二极管转换到 IGBT的集电极的瞬间,VCE电压会上升。
•BJT开关速度慢,为少子器件,有存储时间。
即使基极电流已经切断甚至反向,集电极与发射极仍然保持导通一段时间。
然后才进入下降时间。
这段时间产生了电压、电流交叉。
低压BJT由于β值高,存储时间小,主要损耗为导通损耗,开关损耗不太大。
IGBT擎住效应:IGBT在集电极与发射极之间有一个寄生PNPN晶闸管,其等效电路如下图所示。
在V2的基极与发射极之间并有一个扩展电阻Rbr,在此电阻上P型体区的横向空穴会产生一定压降,对J3结来说,相当于一个正偏置电压。
在规定的漏极电流范围内,这个正偏置电压不大,V2不起作用,当Id大到一定程度时,该正偏置电压足以使V2开通,进而使V2和V3处于饱和状态,于是寄生晶体管开通,栅极失去控制作用,此时,漏电流增大,造成功耗急剧增加,器件损坏。
晶闸管导通现象被称为IGBT擎住效应, 使用中应避免出现集电极电流过大的情况。
漏极电流有一个临界值Idm。
当Id>Idm时便会产生擎住效应。
在IGBT关断的动态过程中,假若dvce/dt过高,那么在J2结中引起的位移电流会越大,当该电流流过体区扩展电阻Rbr时,也可产生足以使晶体管V2开通的正向偏置电压,满足寄生晶体管开通擎住的条件,形成动态擎住效应。
使用中必须防止IGBT发生擎住效应,为此可限制Idm值,或者用加大栅极电阻Rg的办法延长IGBT关断时间,以减少dv/dt 的值。
具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。
通常情况下,静态和动态擎住有如下主要区别:当晶闸管全部导通时,静态擎住出现。
只在关断时才会出现动态擎住。
这一特殊现象严重地限制了安全操作区。
为防止寄生NPN和PNP晶体管的有害现象,有必要采取以下措施:一是防止NPN部分接通,分别改变布局和掺杂级别。
二是降低NPN和PNP晶体管的总电流增益。
此外,擎住电流对PNP和NPN器件的电流增益有一定的影响,因此,它与结温的关系也非常密切;在结温和增益提高的情况下,P基区的电阻率会升高,破坏了整体特性。
MOSFET和IGBT是什么意思
MOSFET:金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管
(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以
广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。
MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。
IGBT:IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。
非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。
四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。
自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。
(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。
容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。
在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。
(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。
(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。
目前,其研制水平已达4500V/1000A。
开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。
GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。
MOSFET的开关时间一般在10--100ns之间。
IGBT的开关时间要低于电力MOSFET。
驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。
四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。
导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
下图为工作原理图。
2222R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)2、电力晶体管(GTR) 1)电力晶体管的结构:内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。
晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。
因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。
3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。
2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。
如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。
但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。
当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。
IGBT 是做什么的?有什么作用?IGBT 又叫绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET 的高输入阻抗和GTR 的低导通压降两方面的优点。
IGBT 模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品;封装后的IGBT 模块直接应用于变频器、UPS 不间断电源等设备上;IGBT 模块具有节能、安装维修方便、散热稳定等特点;当前市场上销售的多为此类模块化产品,一般所说的IGBT也指IGBT 模块;随着节能环保等理念的推进,此类产品在市场上将越来越多见。
IGBT 是能源变换与传输的核心器件,俗称电力电子装置的CPU,作为国家战略性新兴产业,在轨道交通、智能电网、航空航天、电动汽车与新能源装备等领域应用极广。
应用领域手机在日益增长的变频器市场,许多厂商提供性能和尺寸各异的变换器类型。
这正是以低损耗和高开关频率而著称的新IGBT 技术施展的舞台。
在62 毫米(当前模块的标准尺寸)模块中使用新IGBT 技术使用户可以因不必改变其机械设计概念而获益。
基于平台技术的标准62 毫米SEMITRANS?模块,由于针对IGBT 和二极管采用了不同的半导体技术,因此适合于多种应用场合。
采用标准尺寸模块外壳这一事实意味着用户有更多可供选择的供应商。
新能源汽车IGBT 模块在电动汽车中发挥着至关重要的作用,是电动汽车及充电桩等设备的核心技术部件。
IGBT 模块占电动汽车成本将近10%,占充电桩成本约20%。
IGBT 主要应用于电动汽车领域中以下几个方面:电动控制系统大功率直流/交流(DC/AC)逆变后驱动汽车电机;车载空调控制系统小功率直流/交流(DC/AC)逆变,使用电流较小的IGBT 和FRD;充电桩智能充电桩中IGBT 模块被作为开关元件使用;智能电网IGBT 广泛应用于智能电网的发电端、输电端、变电端及用电端:从发电端来看,风力发电、光伏发电中的整流器和逆变器都需要使用IGBT 模块。
什么是IGBT?IGBTIGBT(Insulated Gate Bipolar Transistor),绝缘栅极型功率管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。
应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。
IGBT是强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。
由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。
虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。
较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。
导通IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。
如等效电路图所示(图1),其中一个MOSFET驱动两个双极器件。
基片的应用在管体的P+和N+ 区之间创建了一个J1结。
当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率MOSFET的方式产生一股电流。
如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。
最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流);空穴电流(双极)。
关断当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。
在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。
IGBT模块是什么?主要应用在那些领域?以及IGBT市场规模和发展方向IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管) 和MOS(绝缘栅型场效应管) 组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。
简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。
IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。
IGBT模块是由IGBT与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品,具有节能、安装维修方便、散热稳定等特点。
IGBT是能源转换与传输的核心器件,是电力电子装置的“CPU”。
采用IGBT进行功率变换,能够提高用电效率和质量,具有高效节能和绿色环保的特点,是解决能源短缺问题和降低碳排放的关键支撑技术。
IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。
其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。
在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。
1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。
2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。
3)当集-射极电压UCE>0时,分两种情况:②若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。
②若栅-射极电压UGE>Uth ,栅极沟道形成,IGBT呈导通状态(正常工作)。
此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降。