7.3线性变换的应用
- 格式:ppt
- 大小:572.00 KB
- 文档页数:27
线性变换考研知识点总结一、线性变换的基本概念1.1 线性空间线性空间是指一个集合V,其上有两种运算:向量的加法和数乘,满足一定的性质,即:(1)对于任意u,v∈V,有u+v∈V;(2)对于任意k∈F(其中F是一个字段),有ku∈V;(3)满足加法交换律、结合律、分配律和单位元存在。
1.2 线性变换的定义设V和W是两个线性空间,若存在一个映射T: V→W,满足以下条件:(1)对于任意u,v∈V,有T(u+v) = T(u) + T(v);(2)对于任意k∈F和任意u∈V,有T(ku) = kT(u)。
则称T为从V到W的线性变换。
1.3 线性变换的矩阵表示设V是n维线性空间,B = {v1, v2, ..., vn}是V的一组基,W是m维线性空间,C = {w1, w2, ..., wm}是W的一组基。
若T: V→W是一个线性变换,则存在一个m×n的矩阵A,使得对于任意u∈V,都有T(u)在基C下的坐标向量等于A乘以u在基B下的坐标向量。
1.4 线性变换的性质(1)零变换:对于任意线性空间V,零变换T:V→V定义为T(u) = 0,对于任意u∈V都有T(u) = 0。
(2)恒等变换:对于任意线性空间V和其基B,存在一个单位矩阵I使得对于任意u∈V 都有I(u) = u。
二、线性变换的基本定理2.1 线性变换的核与值域(1)核:对于线性变换T: V→W,其核Ker(T)定义为Ker(T) = {u∈V | T(u) = 0},即T的所有零空间。
(2)值域:对于线性变换T: V→W,其值域Im(T)定义为Im(T) = {T(u) | u∈V},即T所有可能的输出向量。
2.2 线性变换的满射与单射(1)满射:若线性变换T: V→W的值域等于W,即Im(T) = W,则称T是满射的。
(2)单射:若对于任意非零向量u,若T(u)≠0,则称T是单射的。
2.3 线性变换的秩和零度若线性变换T: V→W,则其秩rank(T)等于T的值域Im(T)的维数;零度nullity(T)等于T 的核Ker(T)的维数。
第七章 线性变换 学习单元3: 线性变换的矩阵_________________________________________________________● 导学 学习目标:理解线性变换在一个基下的矩阵的概念;会计算线性变换在一个基下的矩阵;理解线性变换在不同基下的矩阵的相似关系;掌握矩阵等价与矩阵相似的区别与联系。
学习建议:线性变换在一个基下的矩阵建立了线性变换与矩阵的对应关系,类似于平面上点与坐标的对应关系,有了这种对应关系,可以让线性变换问题与矩阵问题互相转化。
建议大家多看书,认真理解概念与结论。
重点难点:重点:深刻理解线性变换在一个基下的矩阵。
难点:理解线性变换在两个不同基下的矩阵的相似关系。
_________________________________________________________● 学习内容 一、线性变换的确定设V 为P 上n 维线性空间,1,,n εεL 为V 的一个基,对任何11,n n V x x ξξεε∈=++L ,()A L V ∈,则11()()()n n A x A x A ξεε=++L 。
即只要知道了1(),()n A A εεL ,则()A ξ也就确定了。
命题1 设1,,n εεL 为线性空间V 的一个基,,()A B L V ∈,则A = B 当且仅当()(),1,2,,i i A B i n εε==L 。
命题2 设1,,n εεL 为线性空间V 的一个基,1,,n ααL 为V 中一个向量组,则存在()A L V ∈,使(),1,2,,i i A i n εα==L 。
定理 设1,,n εεL 为V 的一个基,1,,n ααL 为V 中任意n 个向量,则存在唯一的()A L V ∈,使(),1,2,,i i A i n εα==L 。
例 设V 为P 上n 维线性空间,()A L V ∈,A 不可逆,证明存在V 的非零线性变换B ,使得BA = 0。
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
浅谈线性变换在中学数学中的应用线性变换是数学中的一个重要概念,它在数学的许多分支中都有广泛的应用,其中包括中学数学。
在数学的中学教育中,线性变换被广泛地运用在代数和几何中。
本文就浅谈线性变换在中学数学中的应用。
一、线性变换在代数中的应用线性变换在代数中的应用主要体现在线性方程组和矩阵中。
一般来说,我们可以用变量来表示一个未知量,因此一个线性方程组可以用一个矩阵表示。
在解线性方程组的过程中,我们需要通过矩阵变换将方程组转化为简单的形式,然后通过逆变换推导出解。
对于一个线性变换,我们可以用矩阵来表示。
这些矩阵的运算规则遵循线性变换的特点。
在矩阵运算中,我们可以用矩阵乘法将矩阵进行组合,以得到新的矩阵。
二、线性变换在几何中的应用线性变换在几何中的应用主要体现在二维和三维几何问题中。
例如,在平面上有两个点,我们可以通过线性变换将这两个点转化为一个向量,然后通过向量的运算进行计算。
在三维几何中,线性变换也有广泛的应用。
例如,在三维空间中,我们可以通过线性变换将一条直线或者平面进行变换。
这样,我们就可以在三维对空间中对许多重要的几何问题进行求解。
例如,在三维立体几何中,我们需要计算两个平面之间的夹角,这时我们可以通过线性变换将两个平面转化成两个向量,然后通过向量的运算求解出夹角。
线性变换还可以用于计算几何中的切线、曲线和超平面等问题。
例如,在椭圆曲线中,我们需要计算一些特殊的点和曲线之间的关系。
这时,我们可以通过线性变换将这些点和曲线转化成向量,然后通过向量的运算来求解关系。
三、总结线性变换在中学数学中的应用非常广泛,它涵盖了代数和几何的许多重要问题。
通过线性变换的技巧,我们可以将复杂的问题转化成更简单的形式,然后通过逆变换来求解出问题。
因此,在中学数学学习中,要牢固掌握线性变换的相关知识,以便在实际问题中运用自如。
线性变换的应用实例线性变换(linear transformation)是一章从静态矩阵Ax=b转向动态变化的过程,因此我觉得把线性变换放在这里讲更加合适。
之前的内容从空间到行列式,都是静态的,而之后的内容,如特征值(eigenvalues)和特征向量(eigenvectors)、相似矩阵等,都是对向量做变换得到的。
线性变换线性变换包括两个部分:线性和变换。
首先,变换是把一个东西变成另一个东西,比如把一个向量变成另一个向量,进而也可以把一个空间变成另一个空间。
举个例子,常见的求导符号就是一种变换,d/dx把f(x)变成f′(x).而线性,就是要保加法&数乘。
所以,假设有一个对向量的线性变换叫做T,那么T(v+w)=T(v)+T(w),T(cv)=cT(v)对所有c都成立,所以有结论T(0)=0.且看以下三个线性变换的例子。
f(x,y)↦f(2x,3y)是一个R2到R2的线性变换,如果有一个长方形,变换后就被缩放&拉伸了。
f(x,y)↦f(x+y,2y)也是一个R2到R2的线性变换,它会把长方形拉成平行四边形。
f(x,y)↦f(x+y,2y,x+2y)就把R2投射到R3上。
一些二维平面上的线性变换这些平面上的特殊线性变换都有它们的几何意义。
1、伸缩A=[c00c]2、翻折A=[0110]3、投影把向量投影在θ角的直线上,我们用两个分量分别去看投影后的位置,又已知v=xi+yj,最后重新组合就行了。
我们可以发现(1,0)点投影后变成了(cos2θ,cosθsinθ),而(0,1)变成了(cosθsinθ,sin2θ).因此P[xy]=x[c2cs]+y[css2]=[c2cscss2][xy](c for cosθ,s for sinθ).P=[c2cscss2].投影矩阵有两个关键性质:首先,投影操作是不可逆的,投影矩阵也是不可逆的(detP=0);其次,多次投影和一次投影得到的结果是完全相同的,因此Pn=P.(在投影部分已经接触)4、镜像镜像是先求一次在直线上的投影,得到e向量(垂直于投影直线)的坐标,在初始点加上2e就得到了。