第4节 金属氧化物催化剂及其催化作用
- 格式:ppt
- 大小:1.07 MB
- 文档页数:12
第4章3过渡金属氧化物催化剂及其催化作用过渡金属氧(硫)化物催化剂是一类广泛应用于化学反应中的催化剂。
它们由过渡金属和氧(硫)等原子组成,具有独特的结构和催化性能。
在本文中,我们将重点介绍过渡金属氧(硫)化物催化剂的种类、结构和催化作用,以及其在化学合成和能源转化等领域的应用。
过渡金属氧(硫)化物催化剂主要有负载型和非负载型两种形式。
负载型催化剂是将过渡金属氧(硫)化物负载在二氧化硅、活性炭等载体上,以增加其表面积和催化活性。
非负载型催化剂则是纯粹由过渡金属氧(硫)化物构成的颗粒或薄膜,具有较高的比表面积和催化活性。
这两种形式的催化剂在不同的反应中具有不同的催化机理和催化性能。
过渡金属氧(硫)化物催化剂的结构是其催化性能的关键因素。
大多数过渡金属氧(硫)化物催化剂具有复杂的晶体结构,如层状结构、中空球状结构等。
这些结构可以提供丰富的活性位点,并且具有调节反应中间体吸附和反应通道的能力。
此外,过渡金属氧(硫)化物催化剂还可以通过改变晶体结构或添加协同剂来调节其催化性能,提高催化活性和选择性。
过渡金属氧(硫)化物催化剂在化学反应中具有广泛的应用。
例如,通过调节过渡金属氧(硫)化物催化剂的结构和成分,可以实现氧化反应、氢化反应、催化裂解等各种化学转化。
特别是在有机合成中,过渡金属氧(硫)化物催化剂可以催化氧化还原反应、催化偶联反应、催化环化反应等,为合成高附加值化合物提供了重要的技术手段。
另外,过渡金属氧(硫)化物催化剂还可以催化电化学反应、光化学反应等非常规化学反应,为能源转化和环境保护等领域提供了新的解决方案。
总之,过渡金属氧(硫)化物催化剂是一类重要的催化剂,在化学合成和能源转化等领域具有广泛的应用。
通过调节其结构和成分,可以实现多种化学反应的高效催化。
随着新材料合成和催化机理的深入研究,过渡金属氧(硫)化物催化剂的催化性能有望进一步提高,为社会经济的可持续发展作出更大的贡献。
第四章金属催化剂及其催化作用4.1 金属催化剂的应用及其特性4.1.1 金属催化剂概述及应用金属催化剂是一类重要的工业催化剂。
主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等;4.1.2 金属催化剂的特性几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。
过渡金属能级中都含有未成对电子,在物理性质中表现出具有强的顺磁性或铁磁性,在化学吸附过程中,这些d电子可与被吸附物中的s电子或p电子配对,发生化学吸附,生成表面中间物种,从而使吸附分子活化。
金属适合于作哪种类型的催化剂,要看其对反应物的相容性。
发生催化反应时,催化剂与反应物要相互作用。
除表面外,不深入到体内,此即相容性。
如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。
但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。
故对金属催化剂的深入认识,要了解其吸附性能和化学键特性。
4.2 金属催化剂的化学吸附4.2.1 金属的电子组态与气体吸附能力间的关系不同的金属催化剂的化学吸附能力取决于各种因素,包括金属化学性质、气体化学性质、金属结构、吸附条件等等,见表4-3。
1 具有未结合d电子的金属催化剂容易产生化学吸附2 电子云重叠少,吸附弱;电子云重叠多,吸附强。
3 气体的化学性质越活泼,化学吸附越容易。
4 吸附条件也有一定影响。
低温有利于物理吸附,高温有利于化学吸附(但不能太高,否则TPD怎么做?)。
压力增加对物理吸附和化学吸附都有利。
4.2.2 金属催化剂的化学吸附与催化性能的关系金属催化剂催化活化的过程可以看成是化学吸附的过程,化学吸附的状态与金属催化剂的逸出功及反应物气体的电离势有关。
1 电子逸出功:将电子从金属催化剂中移到外界所需的最小功,或电子脱离金属表面所需的最低能量。
工业催化原理第4章金属催化剂及其催化作用金属催化剂是一类广泛应用于化学反应中的重要催化剂。
在工业催化原理中,金属催化剂因其高效、经济和环境友好的特性而备受关注。
本文将从金属催化剂的基本原理、催化作用机制以及工业应用等方面,详细介绍金属催化剂及其催化作用。
金属催化剂是由金属元素或其氧化物、硝酸盐等化合物制备而成。
金属催化剂具有良好的活性和选择性,可以有效地促使化学反应的进行。
金属催化剂的活性主要来自于其特殊的电子结构和活性位点,其中活性位点指的是金属表面上的特殊位置,其能够提供活化基团。
金属催化剂的催化作用机制多种多样,常见的包括氧化还原、酸碱性和配位作用等。
其中,氧化还原催化是金属催化剂最常见的催化作用机制。
金属催化剂能够在催化过程中与底物发生氧化还原反应,从而改变底物的氧化态并促使反应的进行。
此外,金属催化剂还可以通过提供酸碱性环境来加速反应速率,或者通过配位作用来稳定中间体,从而实现催化作用。
金属催化剂广泛应用于工业生产中,其中最典型的应用之一是在石油加工领域。
例如,挥发性金属催化剂可以在石油加氢反应中加速石油成分的裂化和转化,从而提高石油产品的质量和产量。
此外,金属催化剂还可以应用于合成氨、合成甲醇、催化裂化、液相氧化等重要工业反应中,提高反应的效率和产率。
在金属催化剂的设计和制备方面,研究人员通过调控金属催化剂的组成、结构和表面性质,以提高催化剂的活性和选择性。
常用的方法包括合金化、负载和改性等。
合金化可以通过混合两种或多种金属来调整催化剂的性质,从而提高催化剂的活性和稳定性。
负载是将金属催化剂负载在载体上,通过调控载体的孔隙结构和表面特性来改善催化剂的性能。
改性可以通过表面修饰或掺杂等方法,调整金属催化剂的表面性质,从而提高催化剂的催化活性和选择性。
总结起来,金属催化剂是一类应用广泛的重要催化剂。
金属催化剂的催化作用机制多样,包括氧化还原、酸碱性和配位作用等。
金属催化剂在工业生产中有着广泛的应用,已经成为提高反应效率和产率的重要手段。
金属氧化物催化剂及其催化作用金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。
如V O -MoO , TiO -V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。
组分中至少有一个组分是过渡金属氧化物。
组分与组分之间可能相互作用,作用的情况因条件而异。
复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。
就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。
金属氧化物催化作用机制-1z半导体的能带结构z催化中重要的是非化学计量的半导体,有n型和p型两大类。
非计量的化合物ZnO是典型的n型半导体(存在自由电子而产生导电行为)。
NiO是典型的p型半导体,由于缺正离子造成非计量性,形成氧离子空穴,温度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO导电的来源。
z Fermi能级E f是表征半导体性质的一个重要物理量,可以衡量固体中电子逸出的难易,它与电子的逸出功∅直接相关。
∅是将一个电子从固体内部拉到外部变成自由电子所需的能量,此能量用以克服电子的平均位能,Fermi能级E就是这种平均位能。
fz对于给定的晶格结构,Fermi能级E f的位置对于其催化活性具有重O分解催化反应。
要意义。
如Nxz XPS研究固体催化剂中元素能级变化金属氧化物催化作用机制-2z氧化物表面的M=O键性质与催化活性的关联z晶格氧(O=)的催化作用:对于金属氧化物催化剂表面发生氧化反应时,作为氧化剂的氧存在吸附氧与晶格氧两种形态。
晶格氧由于氧化物结构产生。
选择性氧化(Selective Oxidation)是固体氧化物催化剂应用主要方向之一。
在选择性氧化中,存在典型的还原-氧化催化循环(Redox mechanism))。
这里晶格氧直接参与了选择性氧化反应。
z根据众多的复合氧化物催化氧化可以概括出:1 选择性氧化涉及有效的晶格氧;2 无选择性完全氧化反应,吸附氧和晶格氧都参加了反应;3 对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子M+承担对烃分子的活化与氧化功能,它们再氧化靠晶格氧O=;另一种金属氧化物阳离子处于还原态,承担接受气相氧。