1998年高考试题(上海-理)
- 格式:doc
- 大小:331.00 KB
- 文档页数:4
1998年全国统一高考数学试卷(理科)一、选择题(共15小题,每小题4分,满分60分)1.(4分)(2008•陕西)sin330°等于()A .B.C.D.2.(4分)函数y=a|x|(a>1)的图象是()A .B.C.D.3.(4分)曲线的极坐标方程ρ=4cosθ化为直角坐标方程为()A .(x+2)2+y2=4B.(x﹣2)2+y2=4C.(x+4)2+y2=16D.(x﹣4)2+y2=164.(4分)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是()A .A1A2+B1B2=0B.A1A2﹣B1B2=0C.D.5.(4分)函数f(x)=(x≠0)的反函数f﹣1(x)=()A .x(x≠0)B.(x≠0)C.﹣x(x≠0)D.﹣(x≠0)6.(4分)若点P(sinα﹣cosα,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.* B.C.D.7.(4分)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A .120°B.150°C.180°D.240°8.(4分)复数﹣i的一个立方根是i,它的另外两个立方根是()A .i B.﹣iC.±i D.±i9.(4分)如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A .2B.S0=C.2S0=S+S′D.S02=2S'S10.(4分)向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的()A .B.C.D.11.(4分)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A .90种B.180种C.270种D.540种12.(4分)(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A .7倍B.5倍C.4倍D.3倍13.(4分)(2007•崇文区二模)球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆的周长为4π,那么这个球的半径为()A .4B.2C.2 D.14.(4分)一个直角三角形三内角的正弦值成等比数列,其最小内角是()A .arccos B.arcsin C.arccos D.arcsin15.(4分)在等比数列{a n}中,a1>1,且前n 项和S n 满足S n=,那么a1的取值范围是()A .(1,+∞)B.(1,4)C.(1,2)D.(1,)二、填空题(共4小题,每小题5分,满分20分)16.(5分)(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是_________.17.(5分)(x+2)10(x2﹣1)的展开式中x10的系数为_________(用数字作答).18.(5分)如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件_________时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)19.(5分)(2010•江西模拟)关于函数f(x)=4sin(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是_________.(把你认为正确的命题序号都填上)三、解答题(共6小题,满分70分)20.(10分)在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A﹣C=.求sinB的值.以下公式供解题时参考:sinθ+sin∅=2sin cos,sinθ﹣sin∅=2cos sin,cosθ+cos∅=2cos cos,cosθ﹣cos∅=﹣2sin sin.21.(12分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.22.(12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).23.(12分)已知如图,斜三棱柱ABC﹣A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.24.(12分)设曲线C的方程是y=x3﹣x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称;(3)如果曲线C与C1有且仅有一个公共点,证明s=﹣t且t≠0.25.(12分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.1998年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)1.(4分)(2008•陕西)sin330°等于()A .B.C.D.考点:运用诱导公式化简求值.分析:根据330°=360°﹣30°,由诱导公式一可得答案.解答:解:∵故选B.点评:本题主要考查根据三角函数的诱导公式进行化简求值的问题.属基础题.对于三角函数的诱导公式一定要强化记忆.2.(4分)函数y=a|x|(a>1)的图象是()A .B.C.D.考点:指数函数的图像与性质.专题:数形结合.分析:可以先由函数的解析式判断函数是偶函数,图象关于y 轴对称,再考虑x≥0时,函数是指数函数,据它的图象特征,从而选出正确的答案.解答:解:法一:由题设知y=,又a>1.由指数函数图象易知答案为B.法二:因y=a|x|是偶函数,又a>1.所以a|x|≥1,排除AC.当x≥0,y=a x,由指数函数图象知选B点评:本题考查指数函数的图象特征.3.(4分)曲线的极坐标方程ρ=4cosθ化为直角坐标方程为()A .(x+2)2+y2=4B.(x﹣2)2+y2=4C.(x+4)2+y2=16D.(x﹣4)2+y2=16考点:简单曲线的极坐标方程.专题:计算题.分析:先将原极坐标方程ρ=4cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行判断.解答:解:将原极坐标方程ρ=4cosθ,化为:ρ2=4ρcosθ,化成直角坐标方程为:x2+y2﹣4x=0,即y2+(x﹣2)2=4.故选B .点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.4.(4分)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是()A .A1A2+B1B2=0B.A1A2﹣B1B2=0C.D.考点:两条直线垂直的判定.专题:常规题型;计算题.分析:两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直,就是两条直线的方向向量的数量积为0,求解即可得到选项.解答:解:直线A1x+B1y+C1=0的方向向量为(﹣B1,A1),直线A2x+B2y+C2=0的方向向量为(﹣B2,A2),两条直线A1x+B1y+C1=0,A2x+B2y+C 2=0垂直,就是两条直线的方向向量的数量积为0,即:(﹣B1,A1)(﹣B2,A2)=0 可得A1A2+B1B2=0故选A.点评:本题考查两条直线垂直的判定,考查逻辑思维能力,是基础题.5.(4分)函数f(x)=(x≠0)的反函数f﹣1(x)=()A .x(x≠0)B.(x≠0)C.﹣x(x≠0)D.﹣(x≠0)考点:反函数.专题:计算题.分析:先求出函数f(x )=的值域y≠0,再由函数y=解出x后,将x与y互换位置即可得到答案.解答:由y=得x=且y≠0,所以反函数f﹣1(x)=且x≠0 故选则B点评:本题主要考查反函数的求法,属于基础题.6.(4分)若点P(sinα﹣cosα,tanα)在第一象限,则在[0,2π)内α的取值范围是()A.* B.C.D.考点:正弦函数的单调性;象限角、轴线角;正切函数的单调性.专题:计算题.分析:先根据点P(sinα﹣cosα,tanα)在第一象限,得到sinα﹣cosα>0,tanα>0,进而可解出α的范围,确定答案.解答:解:∵故选B.点评:本题主要考查正弦、正切函数值的求法.考查基础知识的简单应用.7.(4分)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A .120°B.150°C.180°D.240°考点:扇形面积公式;旋转体(圆柱、圆锥、圆台).专题:计算题.分析:圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,求出侧面展开图扇形的弧长,可求其圆心角.解答:解:圆锥的全面积是底面积的3倍,那么母线和底面半径的比为2,设圆锥底面半径为1,则圆锥母线长为2,圆锥的侧面展开图扇形的弧长是圆锥底面周长为2π,该圆锥的侧面展开图扇形的圆心角:π,即180°故选C.点评:本题考查圆锥的侧面展开图,及其面积等知识,考查空间想象能力,是基础题.8.(4分)复数﹣i的一个立方根是i,它的另外两个立方根是()A .i B.﹣iC.±i D.±i考点:复数乘法的棣莫弗公式;复数代数形式的混合运算.专题:计算题.分析:先把复数化简成标准的三角形式,再利用棣莫弗定理,求其立方根.解答:解:∵﹣i=cos+isin,其立方根是cos+isin ,k∈0,1,2,即i,﹣﹣i,﹣i,故选D.点评:本题考查复数的三角形式,棣莫弗定理得应用.9.(4分)如果棱台的两底面积分别是S,S′,中截面的面积是S0,那么()A .2B.S0=C.2S0=S+S′D.S02=2S'S考点:棱台的结构特征.专题:计算题;综合题.分析:棱台不妨看做三棱台,利用相似的性质,面积之比是相似比的平方,化简即可.解答:解:不妨设棱台为三棱台,设棱台的高为2r,上部三棱锥的高为a,根据相似比的性质可得:消去r,然后代入一个方程,可得2故选A.点评:本题考查棱台的结构特征,结论可作公式应用,是基础题.10.(4分)向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系如图,那么水瓶的形状是图中的()A .B.C.D.考点:函数的图象;旋转体(圆柱、圆锥、圆台).专题:数形结合.分析:本题利用排除法解.从所给函数的图象看出,V不是h的正比例函数,由体积公式可排除一些选项;从函数图象的单调性及切线的斜率的变化情况看,又可排除一些选项,从而得出正确选项.解答:解:如果水瓶形状是圆柱,V=πr2h,r不变,V是h的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D错;由已知函数图可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A、C错.故选:B.点评:本题主要考查知识点:旋转体(圆柱、圆锥、圆台)等简单几何体和函数的图象,属于基础题.本题还可从注水一半时的状况进行分析求解.11.(4分)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A .90种B.180种C.270种D.540种考点:组合及组合数公式.专题:计算题;综合题.分析:三所学校依次选1名医生、2名护士,同一个学校没有顺序,可得不同的分配方法数.解答:解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.故选D.点评:不同考查组合及组合数公式,考查计算能力,是基础题.12.(4分)(2014•邯郸一模)椭圆=1的焦点为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的()A .7倍B.5倍C.4倍D.3倍考点:椭圆的简单性质.专题:计算题.分析:由题设知F1(﹣3,0),F2(3,0),由线段PF1的中点在y轴上,设P(3,b),把P(3,b)代入椭圆=1,得.再由两点间距离公式分别求出|P F1|和|P F2|,由此得到|P F1|是|P F2|的倍数.解答:解:由题设知F1(﹣3,0),F2(3,0),如图,∵线段PF1的中点M在y轴上,∴可设P(3,b),把P(3,b)代入椭圆=1,得.∴|PF1|=,|PF2|=..故选A.点评:本题考查椭圆的基本性质和应用,解题时要注意两点间距离公式的合理运用.13.(4分)(2007•崇文区二模)球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆的周长为4π,那么这个球的半径为()A .4B.2C.2 D.考点:球面距离及相关计算.专题:计算题.分析:解法一:利用大小排除,解法二:这三个点满足等边三角形,即可求解角的大小,进而求解R,解法三:因为正三角形ABC的外径r=2,故可以得到高,D是BC的中点.在△OBC中,又可以得到角以及边与R的关系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.解答:解法一:过O作OO′⊥平面ABC,O′是垂足,则O′是△ABC的中心,则O′A=r=2,又因为∠AOC=θ=,OA=OC知OA=AC<2O′A.其次,OA是Rt△OO′A的斜边,故OA>O′A.所以O′A<OA<2O′A.因为OA=R,所以2<R<4.因此,排除A、C、D,得B.解法二:在正三角形ABC中,应用正弦定理,得AB=2rsin60°=2.因为∠AOB=θ=,所以侧面AOB是正三角形,得球半径R=OA=AB=2.解法三:因为正三角形ABC的外径r=2,故高AD=r=3,D是BC的中点.在△OBC中,BO=CO=R,∠BOC=,所以BC=BO=R,BD=BC=R.在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=R2+9,所以R=2.故选B.点评:本题考查学生的空间想象能力,以及对球的性质认识及利用,是基础题.14.(4分)一个直角三角形三内角的正弦值成等比数列,其最小内角是()A .arccos B.arcsin C.arccos D.arcsin考点:等比数列的性质;同角三角函数基本关系的运用.专题:计算题;压轴题.分析:设Rt△ABC中,C=,则A与B互余且A为最小内角.根据等比数列的性质得sin2B=sinA,求的sinA,进而求的A .解答:解:设Rt△ABC中,C=,则A与B互余且A为最小内角.又由已知得sin2B=sinA,即cos2A=sinA,1﹣sin 2A=sinA,解得sinA=或sinA=(舍).故选B点评:本题主要考查了等比数列的性质和同角三角函数基本关系的应用.属基础题.15.(4分)在等比数列{a n}中,a 1>1,且前n项和S n满足S n=,那么a1的取值范围是()A(1,+∞)B(1,4)C(1,2)D(1,)....考点:极限及其运算.专题:计算题;压轴题.分析:在等比数列{a n}中,S n=,由题意可知,=,再由a1>1,|q|<1能够推导出a1的取值范围.解答:解:由题意知S n==,∴a12=1﹣q,∵a1>1,|q|<1,∴1<a12<2,∴.故选D.点评:本题考查数列的极限及其应用,解题时要注意掌握极限的逆运算.二、填空题(共4小题,每小题5分,满分20分)16.(5分)(2014•云南一模)已知圆C过双曲线﹣=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是.考点:双曲线的简单性质.专题:计算题.分析:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).由此可求出它到双曲线中心的距离.解答:解:由双曲线的几何性质易知圆C过双曲线同一支上的顶点和焦点,所以圆C的圆心的横坐标为4.故圆心坐标为(4,±).∴它到中心(0,0)的距离为d==.故答案为:.点评:本题考查双曲线的性质和应用,解题时注意圆的性质的应用.17.(5分)(x+2)10(x2﹣1)的展开式中x10的系数为179(用数字作答).考点:二项式系数的性质.专题:计算题.分析:利用二项展开式的通项公式求出第r+1项,令r=0,2得展开式系数.解答:解:(x+2)10(x2﹣1)=x2(x+2)10﹣(x+2)10∴(x+2)10(x2﹣1)的展开式中x10的系数是(x+2)10展开式的x8的系数﹣x10的系数∵(x+2)10展开式的通项为T r+1=C10r x10﹣r2r=2r C10r x10﹣r∴令r=0,2分别得x10,x8的系数为1,180故展开式中x10的系数为180﹣1=179,故答案为179点评:二项展开式的通项公式是解决二项展开式的特定项问题的工具.18.(5分)如图,在直四棱柱A1B1C1D1﹣ABCD中,当底面四边形ABCD满足条件AC⊥BD时,有A1C⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)考点:空间中直线与直线之间的位置关系.专题:压轴题;开放型.分析:根据题意,由A1C⊥B1D1,结合直棱柱的性质,分析底面四边形ABCD得到BD⊥AC,进而验证即可得答案.解答:解:∵四棱柱A1B1C1D1﹣ABCD是直棱柱,∴B1D1⊥A1A,若A1C⊥B1D1则B1D1⊥平面A1AC1C∴B1D1⊥AC,又由B1D1∥BD,则有BD⊥AC,反之,由BD⊥AC亦可得到A1C⊥B1D1故答案为:BD⊥AC.点评:本题主要通过开放的形式来考查线线,线面,面面垂直关系的转化与应用.19.(5分)(2010•江西模拟)关于函数f(x)=4sin(x∈R),有下列命题:①由f(x1)=f(x2)=0可得x1﹣x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是②.(把你认为正确的命题序号都填上)考点:三角函数的周期性及其求法;命题的真假判断与应用;运用诱导公式化简求值;正弦函数的对称性.专题:计算题;压轴题.分析:首先根据函数求出最小正周期,然后根据诱导公式求出对称中心,然后根据图象分别求出最大值和最小值,最后综合判断选项.解答:解:函数f(x)=4sin的最小正周期T=π,由相邻两个零点的横坐标间的距离是=知①错.利用诱导公式得f(x)=4cos=4cos=4cos,知②正确.由于曲线f(x)与x轴的每个交点都是它的对称中心,将x=代入得f(x)=4sin≠0,因此点(,0)不是f(x)图象的一个对称中心,故命题③错误.曲线f(x)的对称轴必经过图象的最高点或最低点,且与y轴平行,而x=﹣时y=0,点(﹣,0)不是最高点也不是最低点,故直线x=﹣不是图象的对称轴,因此命题④不正确.故答案为:②点评:本题考查三角函数的周期性及其求法,诱导公式的利用,以及正弦函数的对称性问题,属于基础题.三、解答题(共6小题,满分70分)20.(10分)在△ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,A﹣C=.求sinB的值.以下公式供解题时参考:sinθ+sin∅=2sin cos,sinθ﹣sin∅=2cos sin,cosθ+cos∅=2cos cos,cosθ﹣cos∅=﹣2sin sin.考点:正弦定理的应用;三角函数中的恒等变换应用.分析:先根据正弦定理将边的关系转化为角的正弦的关系,再经过和差化积和诱导公式转化即可求出的余弦和正弦值,再由正弦的二倍角公式可得答案.解答:解:由正弦定理和已知条件a+c=2b得sinA+sinC=2sinB.由和差化积公式得2sin cos=2sinB.由A+B+C=π得sin=cos,又A﹣C=得cos=sinB,所以cos=2sin cos.因为0<<,cos≠0,所以sin=,从而cos=所以sinB=.点评:本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.21.(12分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.考点:轨迹方程.专题:应用题.分析:方法一:由抛物线的定义知该曲线段是一段抛物线,建立适当的坐标系,依据题意求参数值.用定义法写出抛物线的方程.方法二:建立相应的坐标系,设出曲线段C上的任意一点的坐标(x,y),依据题意曲线段C上的任一点到l2的距离与到点N的距离相等得出方程整理即得抛物线的方程.解答:解:法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点.依题意知:曲线段C是以点N为焦点,以l2为准线的抛物线的一段,其中A,B分别为C的端点.设曲线段C的方程为y2=2px(p>0),(x A≤x≤x B,y>0),其中x A,x B分别为A,B的横坐标,p=|MN|.所以M(,0),N(,0).由|AM|=,|AN|=3得(x A+)2+2px A=17,①(x A﹣)2+2px A=9.②由①,②两式联立解得x A=.再将其代入①式并由p>0解得因为△AMN是锐角三角形,所以>x A,故舍去所以p=4,x A=1.由点B在曲线段C上,得x B=|BN|﹣=4.综上得曲线段C的方程为y2=8x(1≤x≤4,y>0).解法二:如图建立坐标系,分别以l1、l2为x、y轴,M为坐标原点.作AE⊥l1,AD⊥l2,BF⊥l2,垂足分别为E、D、F.设A(x A,y A)、B(x B,y B)、N(x N,0).依题意有x A=|ME|=|DA|=|AN|=3,y A=|DM|=,由于△AMN为锐角三角形,故有x N=|ME|+|EN|=|ME|+=4x B=|BF|=|BN|=6.设点P(x,y)是曲线段C上任一点,则由题意知P属于集合{(x,y)|(x﹣x N)2+y2=x2,x A≤x≤x B,y>0}.故曲线段C的方程为y2=8(x﹣2)(3≤x≤6,y>0).点评:考查利用坐标法求轨迹方程,以及抛物线的定义,本题主要是训练利用符号语言进行运算的能力.22.(12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).考点:基本不等式在最值问题中的应用.专题:压轴题.分析:先将实际问题转化成数学中的函数的最值问题,再利用基本不等式求.解答:解法一:设y为流出的水中杂质的质量分数,则y=,其中k>0为比例系数.依题意,即所求的a,b值使y值最小.根据题设,有4b+2ab+2a=60(a>0,b>0),得b=(0<a<30).①于是y====≥=,当a+2=时取等号,y达到最小值.这时a=6,a=﹣10(舍去).将a=6代入①式得b=3.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.解法二:依题意,即所求的a,b的值使ab最大.由题设知4b+2ab+2a=60(a>0,b>0),即a+2b+ab=30(a>0,b>0).因为a+2b≥2,所以+ab≤30,当且仅当a=2b时,上式取等号.由a>0,b>0,解得0<ab≤18.即当a=2b时,ab取得最大值,其最大值为18.所以2b2=18.解得b=3,a=6.故当a为6米,b为3米时,经沉淀后流出的水中该杂质的质量分数最小.点评:本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.23.(12分)已知如图,斜三棱柱ABC﹣A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.考点:棱柱的结构特征.专题:计算题;证明题;综合题;转化思想.分析:(1)要求侧棱A1A与底面ABC所成角的大小;必须先找出线面角,就是∠A1AC;(2)要求侧面A1ABB1与底面ABC所成二面角的大小;利用三垂线定理作出角,即作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.求解即可;(3)求顶点C到侧面A1ABB1的距离,可以应用等体积法求解,也可以直接作出距离解三角形即可.解答:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C﹣A1AB的高h.由得,即所以为所求.点评:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.24.(12分)设曲线C的方程是y=x3﹣x,将C沿x轴、y轴正向分别平行移动t、s单位长度后得曲线C1.(1)写出曲线C1的方程;(2)证明曲线C与C1关于点A(,)对称;(3)如果曲线C与C1有且仅有一个公共点,证明s=﹣t且t≠0.考点:曲线与方程;函数的图象.专题:压轴题;函数的性质及应用.分析:(1)将C沿x轴、y轴正向分别平行移动t、s单位长度后,x变为x﹣t,y变为y﹣s,(2)在曲线C上任取一点B1(x1,y1),利用中点公式求出它关于点A的对称点B2,证明点B2在曲线C1上,同样证明,在曲线C1上的点关于点A的对称点在曲线C上.(3)曲线C与C1有且仅有一个公共点,即方程组有唯一解,对应的一元二次方程的判别式等于0,解答:(1)解:曲线C1的方程为y=(x﹣t)3﹣(x﹣t)+s.(2)证明:在曲线C上任取一点B1(x1,y1).设B2(x2,y2)是B1关于点A的对称点,则有,,所以x1=t﹣x2,y1=s﹣y2.代入曲线C的方程,得x2和y2满足方程:s﹣y2=(t﹣x2)3﹣(t﹣x2),即y2=(x2﹣t)3﹣(x2﹣t)+s,可知点B2(x2,y2)在曲线C1上.反过来,同样可以证明,在曲线C1上的点关于点A的对称点在曲线C上.因此,曲线C与C1关于点A对称.(3)证明:因为曲线C与C1有且仅有一个公共点,所以,方程组有且仅有一组解.消去y,整理得3tx2﹣3t2x+(t3﹣t﹣s)=0,这个关于x的一元二次方程有且仅有一个根.所以t≠0并且其根的判别式△=9t4﹣12t(t3﹣t﹣s)=0,即所以且t≠0.点评:本小题主要考查函数图象、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.25.(12分)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.考点:等差数列的通项公式;数列的求和;数学归纳法.专题:计算题;证明题;压轴题.分析:(1)根据数列{b n}是等差数列,建立b1与d的方程组,解之即可;(2)因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小,利用用数学归纳法证明此式,当a>1时,S n>log a b n+1,当0<a<1时,S n<log a b n+1.解答:解:(1)设数列{b n}的公差为d,由题意得解得所以b n=3n﹣2.(2)由b n=3n﹣2,知S n=log a(1+1)+log a(1+)++log a(1+)=log a[(1+1)(1+)(1+)],log a b n+1=log a.因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1有(1+1)>,取n=2有(1+1)(1+)>,由此推测(1+1)(1+)(1+)>.①若①式成立,则由对数函数性质可断定:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.下面用数学归纳法证明①式.(ⅰ)当n=1时已验证①式成立.(ⅱ)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)(1+)>.那么,当n=k+1时,(1+1)(1+)(1+)(1+)>(1+)=(3k+2).因为==,所以(3k+2)>.因而(1+1)(1+)(1+)(1+)>.这就是说①式当n=k+1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n都成立.由此证得:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.点评:本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.。
1988年普通高等学校招生全国统一考试上海 数学试卷(理工农医类)一、填空题(每小题3分,共30分)1、方程08241=--+x x 的解是 。
2、1-=x y 的反函数是 。
3、在极坐标系中,以)2,2(πa 为圆心、2a 为半径的圆的方程为 。
4、参数方程⎩⎨⎧-=-=t t y t x 2221(t 为参数)化为普通方程是 。
5、一圆锥的侧面展开图是圆心角为0216的扇形,则此圆锥的轴截面的半顶角的 正弦是 。
6、=-+⋅⋅⋅-+---+∞→11)2(421)2(lim n n n 。
7、函数)]1(2cos[)2cos(-=x x y ππ的最小正周期是 。
8、在n x )1(+的展开式中,若第三项和第六项的系数相等,则=n 。
9、到椭圆192522=+y x 右焦点的距离与到直线6=x 的距离相等的动点轨迹的方程 是 。
10、从6个运动员中选出4人参加1004⨯米接力赛,如果甲、乙两人都不能跑第一棒,那么共有 种不同的参赛方案(要求结果用数 字表达)。
二、选择题(每小题3分,共30分)1、方程0442244=+--y x y x 所表示的曲线是 ( )(A )、双曲线和一个圆 (B )、两条相交直线(C )、两条平行直线和一个圆 (D )、两条相交直线和一个圆2、在]23,1[-上与函数x y =相同的函数是 ( ) (A )、)a r c o s (c o s x y = (B )、)a r c s i n (s i nx y = (C )、)s i n (a r c s i n x y = (D )、)c o s (a r c os x y = 3、函数xxa a y 2211-+=,)1,0(≠>a a ( ) (A )、是奇函数 (B )、是偶奇函数(C )、既是奇函数,又是偶函数 (D )、是非奇非偶函数4、2||≤x 是1|1|<+x 的 ( )(A )、必要不充分条件 (B )、充分不必要条件(C )、充分必要条件 (D )、既不充分也不必要条件5、下列命题中错误的是 ( )(A )、若一直线垂直于一平面,则此直线必垂直于这平面上所有直线(B )、若一个平面通过另一个平面的一条垂线,则这两个平面互相垂直(C )、若一直线垂直于一个平面的一条垂线,则此直线平行于这个平面(D )、若平面内的一条直线和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直6、若135sin =α,α为第二象限角,则2αtg 的值为( ) (A )、51 (B )、5 (C )、5- (D )、51- 7、在半径为a 的球中,高为a 32的球冠面积与整个球面面积之和 为 ( )(A )、2 38cm π (B )、2 310cm π (C )、2 314cm π (D )、2 316cm π 8、下列函数图象中正确的是 ( )(A )、 (B )、 (C )、 (D )、9、下列关系中正确的是 ( )(A )、313232)21()51()21(<< (B )、323231)51()21()21(<< (C )、323132)21()21()51(<< (D )、313232)21()21()51(<< 10、方程x x lg sin =的实数根有 ( )(A )、1个 (B )、2个 (C )、3个 (D )、无穷多个三、(本题满分30分,其中第1、2小题各7分,第3、4小题各8分)1、已知直线1l :0123=+-y x ,2l :,0623=-+y x ,求1l 、2l和y 轴所围成的三角形面积。
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) sin600º( )(A)21 (B) -21(C) 23 (D) -23(2) 函数y =a |x |(a >1)的图像是( )(3) 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( )(A) x 2+(y +2)2=4 (B) x 2+(y -2)2=4 (C) (x -2)2+y 2=4 (D) (x +2)2+y 2=4 (4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D) 12121=A A BB (5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( ) (A) x (x ≠0) (B) x 1(x ≠0) (C) -x (x ≠0) (D) -x1(x ≠0)(6) 已知点P (sin α-cos α,tg α)在第一象限,则在)20[π,内α的取值是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43) (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 ( )(A) 120º (B) 150º (C) 180º (D) 240º (8) 复数-i 的一个立方根是i ,它的另外两个立方根是( )(A)2123± i (B) -2123± i (C) ±2123+ i (D) ±2123-i (9) 如果棱台的两底面积分别是S ,S ′,中截面的面积是S 0,那么( )(A) 2S S S '+=0 (B) S 0=S S '(C) 2 S 0=S +S ′ (D) S S S '=22(10) 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是( )(11) 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( )(A) 90种 (B) 180种 (C) 270种 (D) 540种(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 3倍 (13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43 (B)23 (C) 2 (D) 3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角为( )(A) arccos215- (B) arcsin215- (C) arccos251- (D) arcsin 251-(15) 在等比数列{a n }中,a 1>1,且前n 项和S n 满足∞→n lim S n =11a ,那么a 1的取值范围是( ) (A)(1,+∞) (B)(1,4) (C) (1,2) (D)(1,2)第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_________17.(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答)18.如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1 C ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)19.关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题: ①由f (x 1)= f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos(2x -6π); ③y =f (x )的图像关于点(-6π,0)对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是_______ (注:把你认为正确的命题的序号都.填上.) 三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤. (20)(本小题满分10分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π.求sin B 的值. 以下公式供解题时参考: sin θ+sin ϕ =2sin2ϕθ+cos2ϕθ-, sin θ-sin ϕ=2cos2ϕθ+sin2ϕθ-,cos θ+cos ϕ=2cos 2ϕθ+cos 2ϕθ-, cos θ-cos ϕ=-2sin 2ϕθ+sin 2ϕθ-.(21)(本小题满分11分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(22)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).(23)(本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC 垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C .Ⅰ.求侧棱A 1A 与底面ABC 所成角的大小;Ⅱ.求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; Ⅲ.求顶点C 到侧面A 1 ABB 1的距离.(24)(本小题满分12分)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.Ⅰ.写出曲线C 1的方程; Ⅱ.证明曲线C 与C 1关于点A (3t ,2s)对称; Ⅲ.如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.(25)(本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. Ⅰ.求数列{b n }的通项b n ; Ⅱ.设数列{a n }的通项a n =log a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31log a b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案一、选择题(本题考查基本知识和基本运算.)1.D 2.B 3.B 4.A 5.B 6.B 7.C 8.D 9.A 10.B 11.D 12.A 13.B 14.B 15.D 二、填空题(本题考查基本知识和基本运算.)16.31617.179 18.AC ⊥BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 19.②,③ 三、解答题20.本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.解:由正弦定理和已知条件a +c =2b 得 sin A +sin C =2sin B .由和差化积公式得2sin 2C A +cos 2CA -=2sinB . 由A +B +C =π 得 sin 2C A +=cos 2B,又A -C =3π 得 23cos 2B=sin B ,所以23cos 2B =2sin 2B cos 2B. 因为0<2B <2π,cos 2B≠0, 所以sin2B =43, 从而cos2B =4132sin 12=-B所以sinB=83941323=⨯.21.本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,p =|MN |. 所以 M (2p -,0),N (2p,0). 由|AM |= 17 ,|AN |=3 得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9. ②由①,②两式联立解得x A =p4.再将其代入①式并由p >0解得 ⎩⎨⎧==⎩⎨⎧==.2,2;1,4AA x p x p 或 因为ΔAMN 是锐角三角形,所以2p> x A ,故舍去⎩⎨⎧==22Ax p所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥ l 1,AD ⊥ l 2,BF ⊥ l 2,垂足分别为E 、D 、F . 设A (x A ,y A )、B (x B ,y B )、N (x N ,0).依题意有x A =|ME |=|DA |=|AN |=3, y A =|DM |=2222=-DAAM,由于ΔAMN 为锐角三角形,故有 x N =|ME |+|EN | =|ME |+22AE AN -=4x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合{(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}.故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).22.本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数.依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0), 得 b =aa+-230(0<a <30). ① 于是 y =ab k=aaa k +-230226432+-+-=a a k ⎪⎭⎫ ⎝⎛+++-=264234a a k≥()2642234+⋅+-a a k18k =, 当a +2=264+a 时取等号,y 达到最小值. 这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4b +2ab +2a =60(a >0,b >0),即 a +2b +ab =30(a >0,b >0). 因为 a +2b ≥2ab 2, 所以 ab 22+ab ≤30, 当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值为18. 所以2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ.解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC ,所以∠A 1AD 为A 1A 与面ABC 所成的角. 因为AA 1⊥A 1C ,AA 1=A 1C , 所以∠A 1AD =45º为所求.Ⅱ.解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . 所以∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知,AB ⊥BC ,得ED ∥BC . 又D 是AC 的中点,BC =2,AC =23, 所以DE =1,AD =A 1D =3, tg ∠A 1ED =DEDA 1=3. 故∠A 1ED =60º为所求.Ⅲ.解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离.连结HB ,由于AB ⊥BC ,得AB ⊥HB . 又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED , 所以∠HBC =∠A 1ED =60º 所以CH =BC sin60º=3为所求. 解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=, 即 322312231⨯⨯=⨯h 所以3=h 为所求.24.本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.Ⅰ.解:曲线C 1的方程为y =(x -t )3-(x -t )+s .Ⅱ.证明:在曲线C 上任取一点B 1(x 1,y 1).设B 2(x 2,y 2)是B 1关于点A 的对称点,则有2221t x x =+, 2221sy y =+. 所以 x 1=t -x 2, y 1=s -y 2.代入曲线C 的方程,得x 2和y 2满足方程:s -y 2=(t -x 2)3-(t -x 2),即 y 2=(x 2-t )3-(x 2-t )+ s , 可知点B 2(x 2,y 2)在曲线C 1上.反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上. 因此,曲线C 与C 1关于点A 对称.Ⅲ.证明:因为曲线C 与C 1有且仅有一个公共点,所以,方程组⎪⎩⎪⎨⎧+---=-=st x t x y xx y )()(33有且仅有一组解.消去y ,整理得3tx 2-3t 2x +(t 3-t -s )=0, 这个关于x 的一元二次方程有且仅有一个根. 所以t ≠0并且其根的判别式Δ=9t 4-12t (t 3-t -s )=0.即 ⎩⎨⎧=--≠.0)44(,03s t t t t所以 t t s -=43且 t ≠0. 25.本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.解:Ⅰ.设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以 b n =3n -2.Ⅱ.由b n =3n -2,知S n =log a (1+1)+ log a (1+41)+…+ log a (1+231-n ) = log a [(1+1)(1+41)……(1+231-n )], 31log a b n +1= log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)……(1+231-n )与313+n 的大小.取n =1有(1+1)>3113+⋅,取n =2有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n . ① 若①式成立,则由对数函数性质可断定:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.下面用数学归纳法证明①式.(ⅰ)当n =1时已验证①式成立.(ⅱ)假设当n =k (k ≥1)时,①式成立,即(1+1)(1+41)……(1+231-k )>313+k . 那么,当n =k +1时,(1+1)(1+41)……(1+231-k )(1+()2131-+k )>313+k (1+131+k ) =13133++k k (3k +2). 因为()[]333343231313+-⎥⎦⎤⎢⎣⎡+++k k k k ()()()()22313134323+++-+=k k k k()013492>++=k k , 所以13133++k k (3k +2)>().1134333++=+k k 因而(1+1)(1+41)……(1+231-k )(1+131+k )>().1133++k 这就是说①式当n=k +1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立.由此证得:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.。
1988年全国普通高等学校招生统一考试上海物理试卷考生注意:1.全卷共七大题,在120分钟内完成。
2.第五、六、七题要求写出必要的文字说明、方程式和重要的演算步骤。
只写出最后答案,而未写出主要演算过程的,不能得分。
有数字计算的问题,答案中必须明确写出数值和单位。
一.(32分)每小题4分。
每小题只有一个正确答案,把正确答案前面的字母填写在题后的方括号内。
选对得4分;选错的或不答的,得0分;选了两个或两个以上的,得0分。
填写在方括号外的字母,不作为选出的答案。
1.关于光电效应的下述说法中,正确的是()(A)光电子的最大初动能随着入射光强度的增大而增大(B)只要入射光的强度足够大或照射的时间足够长,就一定能产生光电效应(C)任何一种金属都有一个极限频率,低于这个频率的光不能产生光电效应(D)在光电效应中,光电流的强度与入射光强度无关2.两个平面镜互成直角,入射光线AB经过两次反射后的反射光线为CD。
今以两平面镜的交线为轴,将镜转动10°,两平面镜仍保持直角,在入射光AB保持不变的情况下,经过两次反射后,反射光线为C′D′,则C′D′与CD()(A)不相交,同向平行(B)不相交,反向平行(C)相交成20°角(D)相交成40°角3.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图所示。
若用力使导体EF向右运动,则导体CD将()(A)保持不动(B)向右运动(C)向左运动(D)先向右运动,后向左运动4.如图为一矩形线圈,绕与匀强磁场垂直的中心轴OO′按顺时针方向旋转。
引出线的两端各与互相绝缘的半圆铜环连接,两个半圆环分别与固定电刷A、B滑动接触,电刷间接有电阻R,如图所示。
在线圈转动过程中,通过R的电流()(A)大小和方向都不断变化(B)大小和方向都不变(C)大小不断变化,方向从A→R→B(D)大小不断变化,方向从B→R→A5.设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的( )(A )速度越大 (B )角速度越大(C )向心加速度越大 (D )周期越长6.设在平直公路上以一般速度行驶的自行车,所受阻力约为车、人总重量的0.02倍,则骑车人的功率最接近于( )(A )10-1千瓦 (B )10-3千瓦 (C )1千瓦 (D )10千瓦7.关于物体内能及其变化,下列说法中正确的是( )(A )物体的温度改变时,其内能必定改变(B )物体对外作功,其内能不一定改变;向物体传递热量,其内能不一定改变(C )对物体作功,其内能必定改变;物体向外传出一定热量,其内能必定改变(D )若物体与外界不发生热交换,则物体的内能一定不改变8.右图是一端封闭,一端开口,截面均匀的U 形玻璃管佃,管内灌有水银。
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) sin600º( )(A)21 (B) -21(C) 23 (D) -23(2) 函数y =a |x |(a >1)的图像是( )(3) 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( )(A) x 2+(y +2)2=4 (B) x 2+(y -2)2=4 (C) (x -2)2+y 2=4 (D) (x +2)2+y 2=4 (4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D) 12121=A A B B(5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( ) (A) x (x ≠0) (B) x 1(x ≠0) (C) -x (x ≠0) (D) -x1(x ≠0)(6) 已知点P (sin α-cos α,tg α)在第一象限,则在)20[π,内α的取值是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43) (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 ( )(A) 120º (B) 150º (C) 180º (D) 240º (8) 复数-i 的一个立方根是i ,它的另外两个立方根是( )(A)2123± i (B) -2123± i (C) ±2123+ i (D) ±2123-i (9) 如果棱台的两底面积分别是S ,S ′,中截面的面积是S 0,那么( )(A) 2S S S '+=0 (B) S 0=S S '(C) 2 S 0=S +S ′ (D) S S S '=22(10) 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是( )(11) 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( )(A) 90种 (B) 180种 (C) 270种 (D) 540种(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 3倍 (13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43 (B)23 (C) 2 (D) 3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角为( )(A) arccos215- (B) arcsin215- (C) arccos251- (D) arcsin 251-(15) 在等比数列{a n }中,a 1>1,且前n 项和S n 满足∞→n lim S n =11a ,那么a 1的取值范围是( ) (A)(1,+∞) (B)(1,4) (C) (1,2) (D)(1,2)第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_________17.(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答)18.如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1 C ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)19.关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题: ①由f (x 1)= f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos(2x -6π); ③y =f (x )的图像关于点(-6π,0)对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是_______ (注:把你认为正确的命题的序号都.填上.) 三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤. (20)(本小题满分10分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π.求sin B 的值. 以下公式供解题时参考: sin θ+sin ϕ =2sin2ϕθ+cos2ϕθ-, sin θ-sin ϕ=2cos2ϕθ+sin2ϕθ-,cos θ+cos ϕ=2cos 2ϕθ+cos 2ϕθ-, cos θ-cos ϕ=-2sin 2ϕθ+sin 2ϕθ-.(21)(本小题满分11分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(22)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).(23)(本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC 垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C .Ⅰ.求侧棱A 1A 与底面ABC 所成角的大小;Ⅱ.求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; Ⅲ.求顶点C 到侧面A 1 ABB 1的距离.(24)(本小题满分12分)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.Ⅰ.写出曲线C 1的方程; Ⅱ.证明曲线C 与C 1关于点A (3t ,2s)对称; Ⅲ.如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.(25)(本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. Ⅰ.求数列{b n }的通项b n ; Ⅱ.设数列{a n }的通项a n =log a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31log a b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案一、选择题(本题考查基本知识和基本运算.)1.D 2.B 3.B 4.A 5.B 6.B 7.C 8.D 9.A 10.B 11.D 12.A 13.B 14.B 15.D 二、填空题(本题考查基本知识和基本运算.)16.31617.179 18.AC ⊥BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 19.②,③ 三、解答题20.本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.解:由正弦定理和已知条件a +c =2b 得 sin A +sin C =2sin B .由和差化积公式得2sin 2C A +cos 2CA -=2sinB . 由A +B +C =π 得 sin 2C A +=cos 2B,又A -C =3π 得 23cos 2B=sin B ,所以23cos 2B =2sin 2B cos 2B. 因为0<2B <2π,cos 2B≠0, 所以sin2B =43, 从而cos2B =4132sin 12=-B 所以sinB=83941323=⨯.21.本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,p =|MN |. 所以 M (2p -,0),N (2p,0). 由|AM |= 17 ,|AN |=3 得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9. ②由①,②两式联立解得x A =p4.再将其代入①式并由p >0解得 ⎩⎨⎧==⎩⎨⎧==.2,2;1,4AA x p x p 或 因为ΔAMN 是锐角三角形,所以2p> x A ,故舍去⎩⎨⎧==22A x p 所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥ l 1,AD ⊥ l 2,BF ⊥ l 2,垂足分别为E 、D 、F . 设A (x A ,y A )、B (x B ,y B )、N (x N ,0).依题意有x A =|ME |=|DA |=|AN |=3, y A =|DM |=2222=-DAAM,由于ΔAMN 为锐角三角形,故有 x N =|ME |+|EN | =|ME |+22AE AN -=4x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合{(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}.故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).22.本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数.依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0), 得 b =aa+-230(0<a <30). ① 于是 y =ab k =aaa k+-230226432+-+-=a a k ⎪⎭⎫ ⎝⎛+++-=264234a a k≥()2642234+⋅+-a a k18k =, 当a +2=264+a 时取等号,y 达到最小值. 这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4b +2ab +2a =60(a >0,b >0),即 a +2b +ab =30(a >0,b >0). 因为 a +2b ≥2ab 2, 所以 ab 22+ab ≤30, 当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值为18. 所以2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ.解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC , 所以∠A 1AD 为A 1A 与面ABC 所成的角. 因为AA 1⊥A 1C ,AA 1=A 1C , 所以∠A 1AD =45º为所求.Ⅱ.解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . 所以∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知,AB ⊥BC ,得ED ∥BC . 又D 是AC 的中点,BC =2,AC =23, 所以DE =1,AD =A 1D =3, tg ∠A 1ED =DEDA 1=3. 故∠A 1ED =60º为所求.Ⅲ.解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离.连结HB ,由于AB ⊥BC ,得AB ⊥HB . 又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED , 所以∠HBC =∠A 1ED =60º 所以CH =BC sin60º=3为所求. 解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=, 即 322312231⨯⨯=⨯h 所以3=h 为所求.24.本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.Ⅰ.解:曲线C 1的方程为y =(x -t )3-(x -t )+s .Ⅱ.证明:在曲线C 上任取一点B 1(x 1,y 1).设B 2(x 2,y 2)是B 1关于点A 的对称点,则有2221t x x =+, 2221sy y =+. 所以 x 1=t -x 2, y 1=s -y 2.代入曲线C 的方程,得x 2和y 2满足方程:s -y 2=(t -x 2)3-(t -x 2),即 y 2=(x 2-t )3-(x 2-t )+ s , 可知点B 2(x 2,y 2)在曲线C 1上.反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上. 因此,曲线C 与C 1关于点A 对称.Ⅲ.证明:因为曲线C 与C 1有且仅有一个公共点,所以,方程组⎪⎩⎪⎨⎧+---=-=st x t x y xx y )()(33有且仅有一组解.消去y ,整理得3tx 2-3t 2x +(t 3-t -s )=0, 这个关于x 的一元二次方程有且仅有一个根. 所以t ≠0并且其根的判别式Δ=9t 4-12t (t 3-t -s )=0.即 ⎩⎨⎧=--≠.0)44(,03s t t t t所以 t t s -=43且 t ≠0. 25.本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.解:Ⅰ.设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以 b n =3n -2.Ⅱ.由b n =3n -2,知S n =log a (1+1)+ log a (1+41)+…+ log a (1+231-n ) = log a [(1+1)(1+41)……(1+231-n )], 31log a b n +1= log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)……(1+231-n )与313+n 的大小.取n =1有(1+1)>3113+⋅,取n =2有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n . ① 若①式成立,则由对数函数性质可断定:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1. 下面用数学归纳法证明①式.(ⅰ)当n =1时已验证①式成立.(ⅱ)假设当n =k (k ≥1)时,①式成立,即(1+1)(1+41)……(1+231-k )>313+k . 那么,当n =k +1时,(1+1)(1+41)……(1+231-k )(1+()2131-+k )>313+k (1+131+k ) =13133++k k (3k +2). 因为()[]333343231313+-⎥⎦⎤⎢⎣⎡+++k k k k ()()()()22313134323+++-+=k k k k ()013492>++=k k , 所以13133++k k (3k +2)>().1134333++=+k k 因而(1+1)(1+41)……(1+231-k )(1+131+k )>().1133++k 这就是说①式当n=k +1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立.由此证得:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.。
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、sin600°的值是23.D 23.C 21.B 21.A --[Key] D2、函数)1a (a y |x |>=的图象是[Key] B3、曲线的极坐标方程θ=ρsin 4化成直角坐标方程为A . 4)2y (x 22=++B .4)2y (x 22=-+ C . 4y )2x (22=+- D .4y )2x (22=++[Key] B4、两条直线0C y B x A ,0C y B x A 222111=++=++垂直的充要条件是A . 0B B A A 2121=+B . 0B B A A 2121=-C . 1B B A A 2121-=D . 1B B A A 2121=[Key] A5、函数)0x (x 1)x (f ≠=的反函数=-)x (f 1A . x(x ≠0)B . )0x (x 1≠C . -x(x ≠0)D .)0x (x 1≠- [Key] B6、已知点)tg ,cos (sin P αα-α在第一象限,则在)2,0(π内α的取值范围是A . )45,()43,2(ππ⋃ππ B . )45,()2,4(ππ⋃ππ C . )23,45()43,2(ππ⋃ππ D . ),43()2,4(ππ⋃ππ[Key] B °7、已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A .120°B .150°C .180°D .240°[Key] C8、复数-i 的一个立方根是i ,它的另外两个立方根是A . i 2123±B .i 2123±-C .i 2123+± D . i 2123-± [Key] D9、如果棱台的两底面积分别是S , S',中截面的面积是S 0,那么A . 'S S +=22B . S 'S S =0C . 'S S S +=02D . S 'S S 220=[Key] A10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是[Key] B11、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种B .180种C .270种D .540种[Key] D12、椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的A .7倍B .5倍C .4倍D .3倍[Key] A13、球面上有3个点,其中任意两点的球面距离都等于大圆周长的1/6,经过这3个点的小圆的周长为4π,那么这个球的半径为A . 34B .32C .2D .3[Key] B14、一个直角三角形三内角的正弦值成等比数列,其最小内角为A . 215arccos -B . 215arcsin -C . 251arccos- D . 251arcsin - [Key] B15、在等比数列{a n }中,a 1>1,且前n 项和S n 满足11lim a S n n =∞→,那么a 1的取值范围是A .(1,+∞)B .(1,4)C .(1,2)D .(1,2)[Key] D16、设圆过双曲线116922=+y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 _______。
1998年普通高等学校招生全国统一考试(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至4页。
第Ⅱ卷5至12页,共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在试题卷上。
3.考试结束,将本试卷和答题卡一并交回.一、本题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得5分,选不全的得2分,有选错或不答的得0分.1.三段不可伸长的细绳OA、OB、OC能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB是水平的,A端、B端固定.若逐渐增加C端所挂物体的质量,则最先断的绳A.必定是OA B.必定是OBC.必定是OC D.可能是OB,也可能是OC2.下列说法中正确的是A.液体中悬浮微粒的布朗运动是作无规则运动的液体分子撞击微粒而引起的B.物体的温度越高,其分子的平均动能越大C.物体里所有分子动能的总和叫做物体的内能.D.只有传热才能改变物体的内能3.一简谐横波在x轴上传播,在某时刻的波形如图所示.已知此时质点F的运动方向向下,则A.此波朝x轴负方向传播B.质点D此时向下运动C.质点B将比质点C先回到平衡位置D.质点E的振幅为零4.通电矩形导线框abcd 与无限长通电直导线MN 在同一平面内,电流方向如图所示,ab 边与MN 平行。
关于MN 的磁场对线框的作用,下列叙述正确的是A .线框有两条边所受的安培力方向相同B .线框有两条边所受的安培力大小相同C .线框所受安培力的合力朝左D .cd 边所受安培力对ab 边的力矩不为零5.如图所示,一宽40cm 的匀强磁场区域,磁场方向垂直纸面向里。
一边长为20cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。
1998年全国普通高等学校招生统一考试上海 物理试题一、(24分)单项选择题。
本大题共6小题,每题4分。
每小题给出的四个答案中,只有一个是正确的。
把正确答案前面的字母填写在题后的方括号内,选对的得4分,选错的或不答的,得0分;选两个或两个以上的,得0分。
填写在方括号以外的字母,不作为选出的答案。
1.下列实验中,能证实光具有粒子性的是A .光电效应实验B .光的双缝干涉实验C .炮的圆孔衍射实验D .α粒子散射实验2.下列核反应方程中正确的是H Th U .A 212349023892+→ n C H B .B 10126e 42e 94+→+ e P Th .C 01a 2349023490-+→ e S P .D 01i 30143115+→3.有两个光滑固定的斜面AB 和BC ,A 和C 两点在同一水平面上,斜面BC 比斜面AB 长[如图(a )所示]。
一个滑块自A 点以速度v A 上滑,到达B 点时速度减小为零,紧接着沿BC 滑下。
设滑块从A 点到C 点的总时间是t C ,那么下列四个图[图(b )]中,正确表示滑块速度的大小v 随时间t变化的规律的是4.如图电路中,电源E 的电动势为3.2V ,电阻R 的阻值为30Ω,小灯泡L 的额定电压为3 V ,额定功率为4.5W 。
当电键S 接位置1时,电压表的读数为3V ,那么当电键S 接到位置2时,小灯泡L 的发光情况是A .很暗,甚至不亮B .正常发光C .比正常发光略亮D .有可能被烧坏 5.如图(a )电路中,L 是电阻不计的电感器,C 是电容器。
闭合电键S ,待电路达到稳定状态后,再打开电键S ,LC 电路中将产生电磁振荡。
如果规定电感L中的电流方v (a )ccv c c v c c v c c v A B C D向从a 到b 为正,打开电健的时刻t=0,那么下列四个图中[图(b )]中能正确表示电感中的电流i 随时间t 变化规律的是6.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑。
1998年普通高等学校招生全国统一考试
上海 数学试卷(理工农医类)
一、填空题(每小题4分,共44分)
1、=+25log 20lg 100 。
2、若函数4cos sin 2++=x a x y 的最小值为1,则=a 。
3、若23
3
lim
321=+++→x ax x x ,则=a 。
4、函数2)1()(3
1+-=x x f 的反函数是=-)(1x f 。
5、棱长为2的正四面体的体积为 。
6、以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆 两焦点的极坐标分别是)2,1(π、)3
,1(π
,长轴长是4,则些椭圆的直角坐标方
程是 。
7、袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有 一个黑球的概率是 。
8、函数⎪⎩
⎪
⎨⎧>+-≤<+≤+= )1(,5)10(,3 )0(,32x x x x x x y 的最大值是 。
9、设n 是一个自然数,n n x )1(+的展开式中3x 的系数为16
1
,则=n 。
10、在数列}{n a 和}{n b 中,21=a ,且对任意自然数n ,031=-+n n a a ,n b 是n a 与 1+n a 的等差中项,则}{n b 的各项和是 。
11、函数x a x f =)(,)1,0(≠>a a 在[1,2]中的最大值比最小值大2
a
,则a 的值
为 。
二、选择题(每小题4分,共20分)
12、下列函数中,周期2
π
为的偶函数是 ( )
(A )、x y 4sin = (B )、x x y 2sin 2cos 22-= (C )、x tg y 2= (D )、x y 2cos =
13、若10<<a ,则函数)5(log +=x y a 的图象不经过 ( )
(A )、第一象限 (B )、第二象限
(C )、第三象限 (D )、第四象限
14、在下列命题中,假命题是 ( ) (A )、若平面α内的一条直线l 垂直于平面β内的任一直线,则βα⊥ (B )、若平面α内的任一直线平行于平面β,则βα// (C )、若平面⊥α平面β,任取直线α⊂l ,则必有β⊥l (D )、若平面//α平面β,任取直线α⊂l ,则必有β//l
15、设全集为R ,}065|{2>--=x x x A ,}|5||{a x x B <-=(a 是常数),且 B ∈11,则 ( ) (A )、R B A =⋃ (B )、R B A =⋃ (C )、R B A =⋃ (D )、R B A =⋃
16、设c b a ,,分别是ABC ∆中∠A 、∠B 、∠C 所对边的边长,则直线
0sin =++⋅c ay x A 与0sin sin =+-C By bx 的位置关系是 ( ) (A )、平行 (B )、重合 (C )、垂直 (D )、相交但不垂直 三、解答题 17、(本题满分8分)
设α是第二象限角,53sin =α,求)26
37
sin(απ-的值。
18、(本题满分12分z
已知向量OZ 所表示的复数z 满足i i z +=-1)2(,将OZ 绕原点O 按顺时针
方向旋转4
π
得Z O ',设Z O '所表示的复数为z ',求复数i z 2+'的幅角主值。
19、(本题满分16分,第1、2小题各8分)
直四棱柱ABCD —A 1B 1C 1D 1的高为6,底面是边长为4,060=∠DAB 的菱 形,AC 与BD 相交于O ,A 1C 1与B 1D 相交于O 1,E 是O 1A 的中点。
(1)、求二面角O 1—BC —D 的大小(用反三角函数表示); (2)、分别以射线OA ,OB ,O O 1为x 轴,y 轴,z 轴的正半轴建立空间直 角坐标系,求点B 1,D 1,E 的坐标,并求异面直线OB 1与D 1E 所成 角的大小(用反三角函数表示)。
20、(本题满分16分,其中第1小题6分,第2小题10分)
(1)、动直线a y =与抛物线)2(2
1
2-=x y 相交于A 点,动点B 的坐标是
)3,0(a ,求线段AB 中点M 的轨迹C 的方程; (2)、过点D )0,2(的直线l 交上述轨迹C 于P 、Q 两点,E 点坐标是)0,1(, 若EP ∆Q 的面积为4,求直线l 的倾斜角α的值。
21、(本题满分16分,其中第1小题6分,第2小题7分,第3小题3分) 设某物体一天中的温度T 是时间t 的函数:d ct bt at t T +++=23)(,)0(≠a ,其中温度的单位是C 0,时间的单位是小时,0=t 表示12:00,t 取正值
表示12:00以后,若测得该物体在8:00的温度为8C 0,12:00的温度为60C 0, 13:00的温度为58C 0,且已知该物体的温度在8:00和16:00有相同的变化 率。
(1)、写出该物体的温度T 关于时间t 的函数关系式; (2)、该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温 度最高?并求出最高温度; (3)、如果规定一个函数)(x f 在],[21x x ,)(21x x <上函数值的平均为
⎰-21
)(1
12x x dx x f x x ,求该物体在8:00到16:00这段时间内的平均温
度。
22、(本题满分18分,其中第1小题4分,第2小题8分,第3小题6分) 若n A 和n B 分别表示数列}{n a 和}{n b 前n 项的和,对任意正整数n ,
2
3
2+-=n a n ,n A B n n 13124=-
(1)、求数列}{n b 的通项公式; (2)、设有抛物线列1C ,2C ,…,n C ,…抛物线n C ,)(N n ∈的对称轴平 行于y 轴,顶点为),(n n b a ,且通过点)1,0(2+n D n ,过点n D 且与抛
物线n C 相切的直线斜率为n k ,求极限n
n n
n b a k k k k +⋅⋅⋅+++∞→321lim 。
(3)、设集合},2|{N n a x x X n ∈==,},4|{N n b y y Y n ∈==,若等差数 列}{n c 的任一项Y X c n ⋂∈,1c 是Y X ⋂中的最大数, 且12526510-<<-c ,求}{n c 的通项公式。
1998年普通高等学校招生全国统一考试
上海 数学试卷答案(理工农医类)
一.
1.2 2.5 3.4 4.R x x ∈+-,1)2(3 5.
3
2
2 6.14322=+y x 7.3518 8.4 9.4 10.2 11.21或2
3 二.BACDC 三.
17.503247+
18.4
7π
19.(1)32arctg (2)4010
7arccos
20.(1))1(42-=x y (2)6πα=或6
5π
α=
21.(1)603)(2
+-=t t t T
(2)11:00-14:00温度最高,最高为C 062 (3)C 060
22.(1)453--=n b n (2)31
(3)N n n c n ∈+-=,724。