中性点直接接地系统短路故障的零序电流及方向保护
- 格式:ppt
- 大小:1.61 MB
- 文档页数:57
《电力系统继电保护》读书笔记1. 绪论1.1 电力系统的正常工作状态、不正常工作状态和故障状态一般将电能通过的设备称为电力系统的一次设备,对一次备的运行状态进行监视、测量、控制和保护的设备称为二次设备。
一般正常状态下的电力系统,其发电、输电和变电设备还保持一定的备用容量,能满足负荷随机变化的需要,同时在保证安全的条件下,可以实现经济运行;能承受常见的干挠,从一个正常状态和不正常状态、故障状态通过预定的控制连续变化到另一个正常状态,而不致于进一步产生有害的后果。
不正常运行状态指部分参量超过安全工作限额但又不是故障的工作状态,如因负荷潮流超过电气设备的额定上限造成的电流升高(又称为过负荷),系统中出现功率缺额而引起的频率降低,发电机突然甩负荷引起的发电机频率升高,中性点不接地系统和非有效接地系统中的单相接地引起的非接地相对地电压的升高,以及电力系统发生振荡等。
电力系统的故障状态最常见同时也是最危险的故障是发生各种类型的短路,包括三相短路、两相短路、两相短路接地和单相接地短路,其中以单相接地短路为主,其次为两相短路。
电力系统自动化(控制):为保证电力系统正常运行的经济性和电能质量的自动化技术与装备,主要进行电能生产过程的连续自动调节,动作速度相对缓,调节稳定性高,把整个电力系统或其中的一部分作为调节对象。
为了在故障后迅速恢复电力系统的正常运行,消除故障,保证持续供电,常采用以下的自动化措施:输电线路自动重合闸,备用电源自动投入,低电压切负荷,按频率自动减负荷,电气制动、振荡解列以及为维持系统的暂态稳定而配备的稳定性紧急控制系统,完成这些任务的自动装置统称为电网安全自动装置。
继电保护装置就是指能反应电力系统中电气设备发生故障或不正常运行状态,并动作于断路器跳闸或发生信号的一种自动装置。
1.2 继电保护的基本原理及构成实现继电保护需区分电力系统在不同运行状态下的差异,具有明显差异的电气量有:流过电力元件的相电流、序电流、功率及其方向;元件运行相电压幅值、序电压幅值;元件的电压与电流的比值即“测量阻抗”等。
第三章 中性点直接接地系统的零序电流保护一、零序电流保护及其在系统中的作用不对称短路的计算相当于在短路点增加了一个额外附加阻抗的三相短路如下:可见零序电流的大小与系统运行方式有关。
但零序电流在零序网罗中的分布只与零序网络的结构以及变压器中性点接地的数目和位置有关。
图3-31( b )为其短路计算的零序等效网络。
在零序等效网络中,零序电流看成是故障点F 出现一个零序电压U F0产生的,其方向取由母线流向故障点为正。
零序电压的方向采用线路高于大地的电压为正。
这样,A 母线的零序是电压表示为。
11)(oT o oA Z I U ∙∙-= (3-48)该处零序电压与零序电流之间的相位差是由Z 0T1的阻抗角决定的,与线路的零序阻抗无关,线路两端零序功率方向实际上都是由线路流向母线,与正序功率的方向相反利用零序分量构成线路接地短路的继电保护装置,由于工作原理与结构简单,不受负荷电流影响,保护范围比较稳定,正确动作率高达97%等优点,在我国大接地电流系统的不同电压等级电网的线路上,广泛装设带方向性和不带方向性的多段式零序电流保护,作为反应接地短路的基本保护。
二、中性点直接接地系统变压器中性点接地原则中性点直接接地系统发生接地短路时,线路上零序电流的大小和分布,主要决定于电网中线路的零序阻抗和中性点接地变压器的零序阻抗以及中性点接地变压器的数目和位置,对于变压器中性点接地的原则:(1)发电厂及变电站低压侧有电源的变压器,若变电站中只有单台变压器运行,其中性点应接地运行,以防止出现不接地系统的工频过电压。
(2)自耦变压器和有绝缘要求的其它变压器其中性点必须接地运行;(3)T接于线路上的变压器,以不接地运行为宜。
当T接变压器低压侧有电源时,则应采取防止接地故障时产生工频过电压的措施,最好故障时将小电源解裂;(4)为防止操作过电压,在操作时应临时将变压器中性点接地,操作完毕后再将其断开。
(5)从保护的整定运行出发,还应做如下考虑:变压器中性点接地运行方式的安排,应尽量保持同一厂(站)内零序阻抗基本不变,如:有两台及以上变压器时,一般只将一台变压器中性点接地运行,当该变压器停运时,将另一台中性点不接地变压器中性点直接接地运行,并把它们分别接于不同的母线上,当其中的一台中性点直接接地变压器停运时,将另一台中性点不接地的变压器直接接地。
1采用零序方向保护的意义我国电力系统中性点接地方式有3种:中性点直接接地、中性点经消弧线圈接地和中性点不接地方式。
110 kV及以上电网的中性点均采用第1种接线方式,在这种系统中发生单相接地故障时接地短路电流很大,故称其为大接地电流系统。
在大接地电流系统中发生单相接地故障的概率很高,可占总短路故障的70%左右,因此要求其接地保护能灵敏、可靠、快速地切除接地短路故障,以免危及电气设备的安全。
大接地电流系统接地短路时,零序电流、零序电压和零序功率的分布与正序分量、负序分量的分布有明显区别:a.当系统任一点单相及两相接地短路时,网络中任何处的三倍零序电流和电压都等于该处三相电流或电压的矢量和,即:? ? 3U0=UA+UB +UC? ? 3I0=IA+I B+ICb.系统零序电流分布只与中性点接地的多少及位置有关,图1为系统接地短路时的零序等效网络。
式中??EΣ——电源的合成电动势;Z0T1、Z0T2——变压器T1、T2的零序阻抗;Z01、Z02——短路点两侧线路的零序阻抗。
当发电厂M侧的变压器中性点接地点增多时,Z0T1将减小,从而使I0和I01增大,I02减小。
反之,I0和I01减小,I02增大。
如果发电厂N侧的中性点不接地,则Z0T2=∞,I01也将增大且等于I0。
两相接地短路时也可得到相应的结论。
c. 故障点的零序电压最高,变压器中性点接地处电压为0,保护安装处的电压U0A=-I0Z0T1,如图2所示。
d. 零序功率S0=I0U0。
由于故障点的电压U0最高,对应故障点的S0也最大。
越靠近变压器中性点接地处S0越小。
在故障线路上,S0是由线路流向母线。
? ? 综上所述,中性点直接接地系统发生接地短路时,将产生很大的零序电流分量,利用零序电流分量构成零序电流保护,可作为一种主要的接地短路保护。
因为它不反映三相和两相短路,在正常运行和系统发生振荡时也没有零序分量产生,所以有较好的灵敏度。
如线路两端的变压器中性点都接地,当线路发生接地短路时,在故障点与各变压器中性点之间都有零序电流流过。
中性点直接接地的系统,发生单相接地故障时,接地短路电流很大,这种系统称为大电流接地系统。
一般110kv及以上的系统采用大电流接地系统。
中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。
一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护电力电网小接地系统大部分为中性点不接地系统,而单相接地保护的变化已从传统接地保护发展到无人值守变电所配合综合自动化装置的接地保护、接地选线装置等,其保护目前主要有以下几种:(1) 系统接地绝缘监视装置:绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。
将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。
当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。
该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。
要想判断故障线路,必须经拉线路试验,必将增加了对用户的停电次数。
且若发生两条线路以上接地故障时,将更难判别。
装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。
(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。
该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。
但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。
(3) 零序功率保护:零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。
零序方向过流保护小结变压器高压侧(110kV及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。
变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。
一、变压器接地后备保护概述变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。
对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。
中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。
对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。
在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。
当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。
因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。
对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。
对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。
综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。
二、零序方向过流保护逻辑零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,图1 零序方向过流保护逻辑框图零序电压闭锁元件的零序电压取自TV开口三角。
零序过流元件的零序电流可以自产,也可取自中性点零序TA。
零序方向元件的方向电压,可以取开口三角电压,也可以取自产,但方向电流必须取自产,而不能取中性点专用零序TA的电流。
中性点直接接地非直接接地系统中接地短路的零序电流及方向保护)分析一、中性点直接接地系统中的接地短路1.零序电流的产生原因当中性点直接接地的系统遭遇接地故障时,故障点会产生电流流入地下,并经过接地电阻返回中性点,形成一个环回电路。
这种环回电路可以产生零序电流。
2.转动方向保护的原理转动方向保护是对中性点直接接地系统中接地短路进行保护的一种方法。
其原理基于电流的方向差异。
当接地短路发生在导线的上游(电源侧),即电流方向从电源经过导线流向接地短路点,由于电流在导线和接地电阻中的阻抗相同,所以阻抗差异不大,无法通过阻抗差异实现保护。
当接地短路发生在导线的下游(负载侧),即电流方向从负载经过导线流向接地短路点,此时导线和接地电阻的阻抗差异很大,可以通过阻抗差异实现保护。
具体步骤如下:(1)对接地电阻进行接地电流测试,得到接地电流的大小和方向。
(2)监测导线上的电流和方向,将其与接地电流进行比较。
(3)如果电流方向一致并且电流大小大于接地电流,则表示发生了接地短路。
以上为中性点直接接地系统中接地短路的零序电流及方向保护方法。
二、中性点非直接接地系统中的接地短路中性点非直接接地系统是指中性点通过绕组或设备间接接地的系统,如通过绕组接地、通过无功补偿设备接地等方式。
在这种系统中,接地短路同样可能导致零序电流的产生。
1.零序电流的产生原因中性点非直接接地系统中接地短路导致的零序电流产生原因与中性点直接接地系统类似,即故障点产生电流流入地下并返回中性点,形成环回电路,产生零序电流。
2.方向保护的原理中性点非直接接地系统中,方向保护的原理相对复杂一些,需要考虑绕组和无功补偿设备的接地情况。
具体步骤如下:(1)通过对接地设备的综合性能测试,得到绕组的阻抗值和接地电流的参考值。
(2)监测绕组的电流和方向,并将其与接地电流进行比较。
(3)如果电流方向一致并且电流大小大于接地电流参考值,则表示发生了接地短路。
需要注意的是,在中性点非直接接地系统中,由于绕组和无功补偿设备的阻抗增加了接地电流的路径,所以接地电流的大小可能会相对较小,需要设置合适的灵敏度来实现准确的接地短路保护。