第三章线性分组码
- 格式:pptx
- 大小:510.88 KB
- 文档页数:36
线性分组码8.3.1 基本概念是一组固定长度的码组,可表示为(n, k),通常它用于前向纠错。
在分组码中,监督位被加到信息位之后,形成新的码。
在编码时,k个信息位被编为n位码组长度,而n-k个监督位的作用就是实现检错与纠错。
当分组码的信息码元与监督码元之间的关系为线性关系时,这种分组码就称为。
对于长度为n的二进制线性分组码,它有种可能的码组,从种码组中,可以选择M=个码组(k<n)组成一种码。
这样,一个k比特信息的线性分组码可以映射到一个长度为n码组上,该码组是从M=个码组构成的码集中选出来的,这样剩下的码组就可以对这个分组码进行检错或纠错。
线性分组码是建立在代数群论基础之上的,各许用码的集合构成了代数学中的群,它们的如下:(1)任意两许用码之和(对于二进制码这个和的含义是模二和)仍为一许用码,也就是说,线性分组码具有封闭性;(2)码组间的最小码距等于非零码的最小码重。
在8.2.1节中介绍的奇偶监督码,就是一种最简单的线性分组码,由于只有一位监督位通常可以表示为(n,n-1),式(8-5)表示采用偶校验时的监督关系。
在接收端解码时,实际上就是在计算:(8-6)其中,…表示接收到的信息位,表示接收到的监督位,若S=0,就认为无错;若S=1就认为有错。
式(8-6)被称为监督关系式,S是校正子。
由于校正子S的取值只有“0”和“1”两种状态,因此,它只能表示有错和无错这两种信息,而不能指出错码的位置。
设想如果监督位增加一位,即变成两位,则能增加一个类似于式(8-6)的监督关系式,计算出两个校正子和,而共有4种组合:00,01,10,11,可以表示4种不同的信息。
除了用00表示无错以外,其余3种状态就可用于指示3种不同的误码图样。
同理,由r个监督方程式计算得到的校正子有r位,可以用来指示-1种误码图样。
对于一位误码来说,就可以指示-1个误码位置。
对于码组长度为n、信息码元为k位、监督码元为r=n - k位的分组码(常记作(n,k)码),如果希望用r个监督位构造出r个监督关系式来指示一位错码的n种可能,则要求:(8-7) 下面通过一个例子来说明的。